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Introduction
Rasmussen’s encephalitis (RE), also known as 
Rasmussen syndrome, is a rare chronic disease of 
unknown origin, causing inflammation and creating 
a unilateral cerebral hemisphere lesion in the central 
nervous system (CNS). Theodore Rasmussen first 
described this devastating disease with its clinical 
and pathological characteristics in 1958.1 Its clinical 
features are refractory epilepsy, and progressive 
neurological and cognitive impairment. The most 
characteristic representations are progress local 
atrophy of the cerebral cortex and epilepsia partialis 
continua (EPC). RE occurs especially in school-age 
children, imposing a huge family burden due to the 
inexorable atrophy of the cerebral hemisphere lead-
ing to further impairment of neurological function, 
and thus neuropsychological problems. Up to now, 

hemispherectomy is still the only efficient therapy.2 
In the past nearly 60 years, although we have made 
considerable advances in the study of this crippling 
disease, research into its pathogenesis, etiology  
and better methods of treatment is still ongoing. 
Consequently, it is necessary to extract research on 
pathogenesis and the direction of future treatment. 
In this review, we summarize the clinical features 
and recent fundamental research related to RE 
pathogenesis, looking forward to providing new 
insights for the treatment of RE.

Clinical features
Epidemiological research in Germany showed an 
estimated incidence rate of RE of about 2.4 patients 
per 10 million persons under 18 years old.3 The 
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mean age of onset in RE is 6 years, thus the disease 
occurs mainly in childhood or early adolescence, 
with no gender difference.4 Diverse types of sei-
zures, such as focal aware seizure and focal impaired 
awareness seizure, even associated secondary gen-
eralized tonic-clonic seizure, are a common clinical 
symptom of RE. EPC, which appear in half of 
cases, may occur with a rapid increase in seizure 
frequency, and is difficult to control with antiepi-
leptic drugs (AEDs). The typical progression of RE 
is progressive unihemispheric cerebral neurological 
deficit within a few months of the initial seizure. 
Hemiplegia accompanies all stages of RE once it 
appears. Initially, movement deficiency is confined 
to the post-seizure phase, but then becomes serious 
and permanent as the disease continues to advance. 
If the lesion affects the dominant hemisphere, 
symptoms such as aphasia and hemianopia may 
occur.5 RE patients reach a stable stage of neural 
function loss, called the residual stage, a few months 
to 1 year after origination.6,7 Cognitive impairment, 
another distinguishing feature of RE that is related 
to the severity of seizure, embodies mainly memory 
decline and lack of concentration and leads to 
learning disability.8 In terms of the overall course of 
RE, three stages are proposed: (i) a prodromal 
stage with low frequency of seizure possibly accom-
panied by slight hemiplegia and an average dura-
tion of 7.1 months (0–8.1 years); (ii) an acute stage 
with frequent seizures for which AEDs are ineffec-
tive, especially in patients with EPC, and rapid 
neurological decline; (iii) a residual stage, progres-
sive atrophy of the cerebral hemisphere, permanent 
neurological deficits, and persisting infrequent sei-
zures as in the acute phase.9

Abnormal electroencephalography (EEG) accom-
panies RE progression, although there is no spe-
cific EEG change to help make a definite diagnosis. 
In the initial stages of RE, EEG can manifest as 
slow background rhythms, with slow focal and 
epileptic abnormalities in the lesion hemisphere. 
During the subsequent few months, interictal 
abnormal discharge may appear independently in 
the unaffected hemisphere, which is indicative of 
the risk of overall cognitive decline rather than 
bilateral lesions of the brain (Figure 1K–L).10 
Neuroimaging examination provides significant 
evidence for the diagnosis and evaluation of RE. 
Magnetic resonance imaging (MRI) shows the 
unilateral hemispheric atrophy. The characteristic 
MRI features are the preferential atrophic process 
in the frontal lobe and the insula, enlargement of 
the lateral ventricle, atrophy of caudate nucleus, 

as well as hyperintensity of cortex and subcortical 
white matter on T2 and flair image. As the disease 
deteriorates, cortical atrophy often develops in the 
unilateral hemisphere (Figure 1A–J). Recently, it 
was proposed that gray matter in the contrale-
sional hemisphere appeared to lose volume in sub-
cortical gray matter structures; however, patient 
numbers in this study were limited.11 In addition, 
automated MRI volumetric hemisphere analysis 
can be offered as an independent means of assess-
ing RE progression.12 Functional imaging, such as 
fluorodeoxyglucose-positron emission tomogra-
phy (FDG-PET), reveals diffuse hypometabolism 
in the affected hemisphere. Moreover, single pho-
ton emission computed tomography (SPECT) 
demonstrates interictal hypoperfusion and ictal 
hyperperfusion of focal lesions. FDG-PET and 
SPECT to localize the RE increases diagnostic 
confidence, with especially effective detection of 
ictal onset area by ictal EEG in the absence of 
MRI abnormalities by the central benzodiazepine 
receptor (BZR)-SPECT.13,14

At present, the clinical diagnosis of RE depends 
mainly on the European consensus criteria pro-
posed in 2005. The diagnostic criteria are 
described two parts: Part A and Part B (Table 1). 
All three conditions in Part A or two conditions in 
Part B need to be satisfied for a diagnosis of RE. 
A study by Olson reported that the sensitivity of 
Bien’s diagnostic criteria is 81%, taking 82 
patients with a differential diagnosis of RE in con-
trast to pathological examination as the diagnos-
tic gold standard.15 Although Bien’s diagnostic 
criteria have reliable sensitivity and specificity, 
Olson proposed that RE can also be diagnosed 
without evidence of EPC, progression of focal 
cortical deficits, or abnormal MRI in the case of 
positive pathological biopsy. In other words, B3 
in Part B plus two conditions of Part A could also 
be used for diagnosis.15 Moreover, Karla et  al. 
suggested modified criteria, replacing “markedly 
lateralized” with “unihemispheric”, as a result of 
affecting contralateral hemisphere in abnormal 
EEG and cerebral atrophy of MRI as the disease 
progresses.4 In our view, the evaluation criteria 
for diagnosis need a greater accumulation of clini-
cal cases and adequate argument.

The pathological peculiarities of RE are cortical 
inflammation activation, neuron loss, gliosis, 
microglial nodules, T-lymphocyte clusters, and 
perivascular cuffs in the unilateral hemisphere 
(Figure 2). According to these pathological 
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characteristics, Robitaille et  al. suggested that 
pathological changes in the cortex divide RE 
into four stages, from mild to severe.16 The 
pathologic changes in the unihemisphere emerge 
with multifocal distribution at different stages, 
which corresponds with immune-mediated pro-
cessing of neuronal loss.17 A dual pathology has 
been reported in some cases, comprising corti-
cal dysplasia, tuberous sclerosis, and ischaemic 
lesions.2,18–20 In recent years, the frequency of 
dual pathology, especially focal cortical dyspla-
sia (FCD), seems to be on the rise.21–23 Further 
research into dual pathology may provide a new 
direction for the pathogenesis of RE.

Although the etiology of RE is not completely 
clear, the main treatment is aimed at symptoms 
and inflammation, to control epilepsy, and to  

prevent further deterioration of neurological  
function, which means treatment with AEDs, 
immune treatments and surgery. Of course, symp-
tomatic treatments such as vagus nerve stimula-
tion (VNS) and transcranial stimulation also are 
means of sporadic palliative therapy according to 
the literature.24,25 AED treatment has only a lim-
ited effect on seizures. Immunotherapy, which  
is used mainly in the early stage of the disease, can 
relieve seizures or prevent immune-mediated 
hemispheric damage; however, these treatments 
also have only slight effects. Surgical treatment is 
a more satisfactory therapeutic strategy for RE.26,27 
There are three main types of surgical operation: 
anatomical hemispherectomy, functional hemi-
spherectomy, and disconnection hemisphere.28–30 
Moreover, anatomical hemispherectomy surgery 
is more effective in controlling epileptic seizures 

Figure 1. MRI imaging features of RE. This is a 5-year-old patient; image acquisition was at 17 months after 
seizure onset. (A–F) Left hemisphere atrophy in T1, T2, and T2 FLAIR image from axial and coronal scan. (G–H) 
PET showed left hemisphere hypometabolism. (I–J) T2 FLAIR image after surgical treatment of anatomic 
hemispherectomy. (K) EEG showing focal slow wave activity in the left hemisphere, which increased during the 
interictal period. (L) EEG showing EPC at right lower limbs in the ictal period.
EEG, electroencephalography; EPC, epilepsia partialis continua; MRI, magnetic resonance imaging; PET, positron emission 
tomography; RE, Rasmussen encephalitis.
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Figure 2. Characteristic neuropathological changes of RE. (A) Perivascular lymphocytic cuffing (arrow, H&E 
staining). (B) Microglial nodule formation (arrow, H&E staining). (C) Neuron undergoing neuronophagia (H&E 
stain). (D) Neuronal degeneration in the cerebral cortex (H&E stain). (E) Parenchymal lymphocytic in the 
cerebral cortex (arrows, CD8 immunostaining). (F) Perivascular lymphocytic cuffing in the cerebral cortex (CD8 
immunostaining).
H&E, hematoxylin and eosin; RE, Rasmussen encephalitis.

Table 1. RE diagnostic criteria of Bien et al. in 2005.2

Part A:

1. Clinical Focal epilepsy (with or without EPC) and unilateral cortical deficit

2. EEG Unilateral hemisphere slowing with or without epileptiform activity and unilateral 
seizure onset

3. MRI Unihemispheric focal cortical atrophy and at least one of the following:
Grey or white matter T2/FLAIR hyperintense signal
Hyperintense signal or atrophy of the ipsilateral caudate head

Part B:

1. Clinical EPC or progressive# unilateral cortical deficit(s)

2. MRI Progressive# unihemispheric focal cortical atrophy

3. Histopathology T cell dominated encephalitis with activated microglial cells (typically, but not 
necessarily forming nodules) and reactive astrogliosis.
Numerous parenchymal macrophages, B cells or plasma cells or viral inclusion bodies 
exclude the diagnosis of RE

#Progressive means that at least two sequential clinical examinations or MRI studies are required to meet the respective 
criteria.
EEG, electroencephalography; EPC, epilepsia partialis continua; MRI, magnetic resonance imaging; RE, Rasmussen 
encephalitis.

within acceptable complications compared with 
hemisphere disconnection surgery and functional 
hemispherectomy surgery, as shown by a series of 
45 cases at our epilepsy center.31 Perfectly curable 

RE without any complications continues to be our 
ultimate aim, which certainly still requires a search 
for new treatment plans from the perspective of 
pathogenesis.
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Etiology and pathogenesis

Hypothesis of virus infection mechanism
By virtue of the similar pathological process of 
chronic inflammation, and based on our knowl-
edge of encephalitis, investigators looked at viral 
infection initially as a main research direction in 
the field of RE etiology. In addition, the character-
istics of being confined to one side of the cerebral 
hemisphere seemed to fit the slow progression of 
viral infections. Our epilepsy center suggested that 
expression of Epstein-Barr virus antigen, human 
cytomegalovirus antigen, human herpes virus 6 
antigen, and human papilloma virus antigen was 
obvious in RE brain.32–35 However, virus infection 
mechanisms could not illustrate the pathogenesis 
adequately and no study has detected virus repli-
cation in brain tissue of RE patients up to now. 
The reasons underlying virus antigen expression 
in RE need further investigation.

Antibody-mediated pathogenesis
The hypothesis of antibody-mediated pathogene-
sis of RE originated in 1994, following presenta-
tion of the histopathologic features of RE in two 
rabbits immunized with glutamate receptor 
(GluR3) after enhancing antibodies to recombi-
nant GluRs. But what is more interesting is that 
anti-GluR3 antibody, via plasma exchange, effi-
ciently improved seizure frequency and neurologi-
cal deficits in one RE patient.36 Results of other 
studies maintained that the reason for neuron  
loss in RE is related to an antibody-mediated 
response or the direct activation of ion channel 
receptors.37,38 Therefore, in the study of the patho-
genesis of RE, antibody-mediated mechanisms 
currently occupy the dominant position. However, 
only a proportion of patients benefit from plasma-
pheresis therapy in a short period, whereas others 
show no improvement in clinical symptoms.39,40 
Later research suggested that anti-GluR3 antibod-
ies were detected in other types of epilepsy patients, 
and other anti-neuronal antibodies, such as Munc-
18 and the alpha7-acetylcholine receptor, were 
identified in sera from a few patients with RE.41–43 
Moreover, patients with limbic encephalitis, where 
seizure is the main clinical feature, had detectable 
leucin-rich glioma inactivated 1 (LGI1), α-amino-
3-hydroxy-5-methyl-4-isoxazoleproprionic acid 
(AMPA) or gamma-aminobutyric acid (GABA) 
receptors antibodies, and were treated effectively 
by immunotherapy.44,45 Another prospective study 

suggested that a fraction of AED-resistant epilepsy 
patients presented neural autoantibodies, particu-
larly antibodies binding to synaptic antigens.46 
Although one case reported that clinical syndrome 
and neuroimaging manifestations of anti-N-methyl-
d-aspartate (NMDA) receptor antibody-mediated 
encephalitis mimicked those of RE, these anti-neu-
ronal antibodies have a low occurrence rate in RE 
patients.47 It is accepted that the appearance of 
these antibodies are likely a secondary pathological 
process of this disease rather than being central to 
RE pathogenesis. For now, the antibody-mediated 
theory does not seem to explain the pathogenic 
process completely.

Cell-mediated immunity mechanism
Recent studies have concentrated mainly on the 
function of cytotoxic T cells in the pathogenesis 
of RE. Pathologic examination of affected cere-
bral hemisphere revealed that cytotoxic CD8+ T 
cell lymphocytes occupy the majority of infil-
trated T cells, and, more importantly, that, in the 
inflammatory lesions, about 10% of them are 
granzyme-B positive CD8+ T cells. This is 
viewed as a strong evidence of neuronal damage 
caused by cytotoxic T cells, as the proportion of 
granzyme-B+ T lymphocytes that gravitate 
toward the neuronal membrane exhibit features 
of polarization of cytotoxic granules.48 Astrocytic 
degeneration, caused by cytotoxic T lymphocyte 
attack, gives rise to neuronal cell death and sei-
zure induction.49 Spectratyping of T cells in 
peripheral blood and corresponding brain speci-
mens found that CD8+ T cell clones expanded 
with brain-restricted T-cell receptor (TCR) clo-
notypes, and proved an antigen-driven major his-
tocompatibility complex (MHC)-I restricted 
immune response.50 As CD8+ T cell expansion 
in peripheral blood was related to severity of RE 
disease, a probable way to improve symptoms 
was to restrict these cells infiltrating into the 
brain.51 This evidence seemed to support the 
view that the T cell immune response in the brain 
was induced by particular antigens. The identity 
of these antigens, and whether they are intrinsic 
autoantigens or foreign antigens, is difficult to 
determine currently. Nevertheless, exemplary 
studies confirmed that non-MHC-restricted 
immune response also participated in pathogen-
esis of RE, on account of verifying γδ T cells with 
uniform TCR δ1 chain CDR3 sequences.52 
Indeed, CD4+ expanded T-cell clones and 
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CD103+ resident memory T cells illustrate the 
complexity of brain-infiltrating T-cell immunity 
in RE.53,54

On the other hand, the idea that inflammatory 
cytokines are secreted from T cells has attracted 
increasing attention as it could be evidence of a cel-
lular immune response. Research has shown that 
mRNA expression of interferon-γ (INF- γ) and five 
chemokines, including CCL5, CCL22, CCL23, 
CXCL9 and CXCL10, increased in RE brain tis-
sue compared with brain specimens of cortical dys-
plasia. There is a marked negative correlation 
between the expression of these cytokines (IFN-γ, 
CXCL5, CXCL9, CXCL10) and the period from 
the onset of seizure to surgery.55 CXCL10, which is 
expressed on neurons and astrocytes in surgical 
specimens of children with RE, is one of the known 
ligands of CXCR3, which is expressed on cytotoxic 
T lymphocytes. The CXCR3–CXCL10 axis plays 
a significant role in T cell recruitment into the 
affected hemisphere.56 The existence of IFN-γ and 
tumor necrosis factor (TNF) secreted by CD4+ T 
cells was a supplement to previous studies.54 
Although the above studies suggested the view  
that the main pathogenesis of RE was an adaptive 
immune response, a general plan for immunomod-
ulatory and immunosuppressive drug therapy 
needs more investigation.

Microglia-activation-mediated 
neurodegeneration
Microglia act as the resident innate immune cells 
in brain, and their activation state is one of most 
characteristic pathological hallmarks in RE. 
Activation levels of microglia in various regions 
of the brain are diverse, and are correlated with 
the infiltration of T cells, especially in the early 
pathological stage with cortical damage.17,57 So 
far, there are actually no details about the func-
tion of microglia emerging in the early stage of 
pathogenesis. With more research, the release by 
microglia of cytokines such as IL-1β and inflam-
masome activation was confirmed as inducing 
seizures and causing neuronal damage in other 
epileptic disorders.58–61 As the cause of cellular 
hyperexcitability, increased pannexin hemichan-
nels linked to microglial activation manifested  
as epileptogenic mechanisms in RE.62 Recent 
research has revealed that upregulated endoso-
mal Toll-like receptor (TLRs) in microglia at 
pathological stage 0 provide a microenvironment 

for infiltration of T cells and attacking neurons at 
pathological stage 1, leading to even more activa-
tion of inflammasomes and chemokines.63 This 
supplied direct evidence for microglia-activation-
mediated neurodegeneration.

More and more attention has been paid to the 
activation of astrocytes in RE because this process 
is dominant at each stage of cortical damage, and 
is simultaneous with T lymphocyte infiltration 
and microglial activation.49,64 Because astrocytes 
participate in induction and perpetuation of the 
inflammatory response during the process of epi-
leptogenesis, it is speculated that activated astro-
cytes are involved in the epileptogenic process of 
RE.65,66 Our resent work detected endogenous 
high-mobility group box-1 (HMGB1) binding to 
TLRs in the cytoplasm of activated astrocytes in 
RE specimens, which hinted that a HMGB1-
TLR pro-inflammation pathway in astrocytes 
might represent a potential target.67 The facility 
of astrocytes and microglia activation needs fur-
ther study.

Future therapeutic directions: experimental 
and clinical evidence

Adenosine system dysfunction in RE
Adenosine – an inhibitory and protective modula-
tor in the CNS – plays an active role in anticon-
vulsant and anti-inflammatory effects through 
regulating the balance of A1 receptor (A1R) and 
A2A receptor (A2AR).68–70 Moreover, the finding 
that overexpression of adenosine kinase (ADK) 
related with astrogliosis results in downregulated 
adenosine has been confirmed as being involved 
in epileptogenesis in both a rat epileptic model 
and epileptic human brain tissues.71–74 Focal 
adenosine augmentation therapy, in which treat-
ment with ADK inhibitors corrected adenosine 
dysfunction, is well authenticated to reduce 
abnormal discharge of neurons and seizures.75,76 
In our recent work on RE, excessive ADK accom-
panied by astrocytosis was examined in lesion 
cortical specimens using western blot analysis and 
immunohistochemistry.77 At the same time, A1R 
positioned at the perinuclear region of neurons 
was also upregulated in the focus tissues.78 
Furthermore, our study demonstrated that upreg-
ulated A2AR led to downregulation of glutamate 
transporter GLT-1, and that neuron apoptosis 
was finally induced.79 The above results proved 
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that dysfunction of the adenosine system plays a 
significant role in the pathogenesis of RE, in par-
ticular in neuronal damage.

Mechanism of transporter-mediated GABA 
release in RE
The disruptive balance between GABA and gluta-
mate is one of the key considerations in seizure. 
Chronic impairment of the GABAergic system has 
been proved in the epileptic cerebral cortex of 
human and animal models, resulting in a decrease 
in the seizure threshold.80,81 Enhancing GABA 
release by reducing extracellular calcium concen-
tration ([Ca2+]e) is an effective mechanism against 
seizures, even as a potential drug treatment of 
EPC by compensating GABAergic interneuron 
dysfunction.82 However, unlike the pathogenesis 
of other epilepsy, GABA release depending on 
calcium-withdrawal is decreased in RE. This sup-
ports a point of view in which Na+/Ca2+ exchanger 
activators could enhance GABA-transporter-
mediated GABA release, so as to achieve the pur-
pose of anti-seizure in early stage RE patients.83,84 
Of importance, the further mechanism of this 
pathway remains to be studied.

Immunosuppressive or immunomodulatory 
treatment
In recent years, immunotherapy for RE had 
focused on infiltrative immunocytes and secreted 
cytokines described in some case reports. With its 
direct effect against B cells, Rituximab – a chimeric 
mouse-human monoclonal anti-CD20 antibody – 
reportedly led to one RE patient being seizure-free 
for several months.85 Tacrolimus – a comprehen-
sive inhibitor of T lymphocytes through limiting 
IL-2 – was applied as a treatment strategy after a 
few months of steroid pulse in the early stages of 
childhood RE.86 Another randomized prospective 
study proposed that tacrolimus may prevent neu-
rological deficit and development of refractory epi-
lepsy.3 In a case report, one patient diagnosed with 
RE selected treatment with mycophenolate 
mofetil, which leads to inhibition of lymphocyte 
proliferation after no response to corticosteroids 
and immunoglobulin treatment.87 It is likely an 
effective treatment would need to impede inflam-
matory cytokines secreted from T cells and micro-
glia. An open pilot study illustrated this point; 
adalimumab, as an immunoglobulin G1 (IgG1) 
monoclonal antibody acting on TNF-α, reduced 

the frequency of seizure and neurological impair-
ment.88 Yet adalimumab improved symptoms only 
in the early stage of RE and any curative effect 
needs further confirmation.89 Another recent 
research study into the effectiveness of different 
immunotherapies reported that drugs targeting 
T-cells, such as cyclophosphamide, natalizumab 
and alemtuzumab, but not azathioprine, could 
reduce the inflammatory reaction of RE patients.90 
At present, there is more and more research into 
RE immunotherapy, with most studies focusing on 
the positive effectiveness of treatments, causing 
failed attempts to be neglected. Despite research 
into various immunotherapeutic strategies, thera-
peutic effects required to be verified through mul-
ticenter and large sample studies.

Conclusion
RE is rare progressive disease leading to disastrous 
EPC and neurological disorder. Hemispherectomy 
is considered to be the most direct cure for intrac-
table epilepsy, but is unfortunately accompanied 
by the postoperative complications of hemiparesis 
and hemianopia. As the etiology of this disease is 
unclear, there is no specific therapeutic strategy 
aimed at pathogenic factors. Most work in the 
pathogenic area is devoted to the activation of infil-
trating CD8+ T cells and microglia in order to 
explore better non-surgical treatments. Currently, 
immunotherapy, including tacrolimus and adali-
mumab, appears to be effective in the early stage of 
the disease in some cases. However, because the 
features of this disease are only gradually becom-
ing clear, comprehensive judgments of early diag-
nosis have a certain degree of difficulty. In addition, 
developing study fields in RE, such as the adeno-
sine system, bring a whole new direction to treat-
ment possibilities. With such deep research into 
pathogenesis from experimental to clinical studies, 
the therapeutic dilemma posed by RE will be over-
come in the foreseeable future.
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