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Venomous marine snails of the genus Conus employ small peptides to capture prey,
mainly osteichthyes, mollusks, and worms. A subset of these peptides known as
α-conotoxins, are antagonists of nicotinic acetylcholine receptors (nAChRs). These
disulfide-rich peptides provide a large number of evolutionarily refined templates that
can be used to develop conopeptides that are highly selective for the various nAChR
subtypes. Two such conopeptides, namely [V11L;V16D]ArIB and RgIA4, have been
engineered to selectively target mammalian α7∗ and α9∗ nAChRs, respectively, and
have been used to study the functional roles of these subtypes in immune cells.
Unlike in neurons and cochlear hair cells, where α7∗ and α9∗ nAChRs, respectively,
function as ligand-gated ion channels, in immune cells ligand-evoked ion currents
have not been demonstrated. Instead, different metabotropic functions of α7∗

and α9∗ nAChRs have been described in monocytic cells including the inhibition
of ATP-induced ion currents, inflammasome activation, and interleukin-1β (IL-1β)
release. In addition to conventional nAChR agonists, diverse compounds containing
a phosphocholine group inhibit monocytic IL-1β release and include dipalmitoyl
phosphatidylcholine, palmitoyl lysophosphatidylcholine, glycerophosphocholine,
phosphocholine, phosphocholine-decorated lipooligosaccharides from Haemophilus
influenzae, synthetic phosphocholine-modified bovine serum albumin, and the
phosphocholine-binding C-reactive protein. In monocytic cells, the effects of
[V11L;V16D]ArIB and RgIA4 suggested that activation of nAChRs containing α9,
α7, and/or α10 subunits inhibits ATP-induced IL-1β release. These results have
been corroborated utilizing gene-deficient mice and small interfering RNA. Targeted
re-engineering of native α-conotoxins has resulted in excellent tools for nAChR research
as well as potential therapeutics. ∗indicates possible presence of additional subunits.
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INTRODUCTION

Nicotinic acetylcholine (ACh) receptors (nAChRs) are present
at the neuromuscular junction in a wide variety of animal
species. Venomous predators have evolved toxins targeted to
neuromuscular nAChRs to facilitate prey capture and to defend
against predators (Dutertre et al., 2014). Elapid snakes produce
toxins characterized by a three finger protein domain (Fry et al.,
2003; Utkin, 2013). These proteins are 60–80 amino acids in
length, contain four disulfide bonds, and when injected produce
paralysis in marine and terrestrial vertebrata. The vertebrate
muscle nAChR subtype composed of α1, β1, δ, and ε/γ subunits
has been intensively studied and extensive structure and function
information has been obtained by examining the muscle nAChR
in complex with three finger toxins, most notably α-bungarotoxin
(Dellisanti et al., 2007).

Cone snails are among the dominant marine predators in
coral reefs. Although their prey types include vertebrate fish,
the predominant prey types of Conus species are invertebrates
that include mollusks, polychaete, and hemichordate worms.
Cone snails produce numerous types of conopeptides which are
named, in part, according to their disulfide bond framework.
Highly prevalent peptides include those that belong to the
α-conotoxin family which target nAChRs (Abraham and Lewis,
2018; Giribaldi and Dutertre, 2018). Compared to elapid snake
toxins, α-conotoxins are much smaller, usually 13–25 amino acids
in length, and have only two disulfide bonds. Their small size
facilitates de novo peptide synthesis of the native toxin as well
synthesis of α-conotoxin-derived peptide analogs.

In addition to neurons, ACh is secreted and sensed by
a broad range of non-neuronal cells including immune cells
(Kawashima and Fujii, 2003, 2004; Wessler and Kirkpatrick,
2008; Beckmann and Lips, 2013; Kummer and Krasteva-
Christ, 2014; Fujii et al., 2017a,b). The cholinergic system
of immunity is a highly complex, regulated network that is
capable of sending and receiving signals and can be modulated
by other organ systems such as the central nervous system.
We are only beginning to understand the cholinergic control
of immunity that encompasses innate and adaptive immunity
and can be pro- and anti-inflammatory (Fujii et al., 2017a,b).
Essential components of the cholinergic system are expressed
by immune cells in a regulated fashion, including transporters
and enzymes involved in ACh synthesis, nAChRs, muscarinic
ACh receptors, endogenous modulators of receptor function, and
ACh-degrading esterases (Kawashima and Fujii, 2003, 2004; Fujii
et al., 2017b). Immune cells express all five muscarinic ACh
receptor subtypes (M1–M5) as well as nAChR subunits α2, α5,
α6, α7, α9, α10, and β2 (Fujii et al., 2017b).

Similar to ACh, ATP can be released by nerve endings and
function as a neurotransmitter (Burnstock, 2014). In addition,
activated or damaged cells release cytoplasmic ATP into the
extracellular space (Bortolotti et al., 2018). The most recognized
and presumably most important function of extracellular
ATP is that of a danger signal for monocytes/macrophages
that leads to ion-channel functions of the ATP-receptor
P2X7 (P2X7R) resulting in NLRP3 (NACHT, LRR, and
PYD domains-containing protein 3) inflammasome assembly,

activation of caspase-1, interleukin-1β (IL-1β) maturation, and
release (Broz and Dixit, 2016; Bortolotti et al., 2018). IL-
1β is a potent pro-inflammatory cytokine involved in host
defense against infections (Broz and Dixit, 2016). However, IL-
1β contributes to the pathogenesis of numerous debilitating
diseases including autoimmune diseases and the life-threatening
systemic inflammatory response syndrome (Dinarello et al., 2012;
Bortolotti et al., 2018).

In this mini review, we summarize the strategies used
to develop highly selective nAChR antagonists using native
α-conotoxins as starting templates as well as their use in the
discovery of an unexpected interaction of nAChR subunits α7, α9,
and α10 in monocytic and epithelial cells. These unusual nAChRs
efficiently control P2X7R activation, inflammasome assembly
and, hence, release of IL-1β.

Conopeptide Structure, Function and
Development
There are ca. 700 species of Conus. Proteomic and transcriptomic
analyses of Conus have demonstrated that there are likely
thousands of unique α-conotoxins synthesized in the cone snail
venom ducts (Lebbe et al., 2014; Robinson and Norton, 2014;
Giribaldi and Dutertre, 2018). Conus thus represent an abundant
source of lead compounds for conopeptide-based development.
Peptide synthesis and pharmacological testing of α-conotoxins
has shown that toxins from mollusk- and worm-hunting Conus
lack potent activity at mammalian neuromuscular nAChRs
and therefore are non-paralytic when injected into rodents. In
contrast, some of these same α-conotoxins are potent antagonists
of the nAChR subtypes expressed by neurons and non-neuronal
cells (Azam and McIntosh, 2012) including those of immune cells
as described in this review.

Development of the α7 nAChR-Selective
[V11L;V16D]ArIB
Conus arenatus is a vermivore that hunts throughout the Indo-
Pacific from East Africa to French Polynesia. Native ArIB was
identified by genomic cloning from C. arenatus hepatopancreas
and the predicted peptide synthesized (Whiteaker et al., 2007).
Testing of ArIB on cloned nAChRs revealed potent activity on
homomeric α7 (1.8 nM IC50) but also had substantial potency
on α3β2 nAChRs (60 nM IC50). Structure-activity information
from previously characterized α-conotoxins that have activity
at α7 and α3β2 nAChRs was used to improve the selectivity
of ArIB. Serial substitutions of the primary sequence of ArIB
were made based on structure-activity studies of α-conotoxins
PnIA and MII. PnIA inhibits both α7 and α3β2 nAChRs, but
a single amino acid substitution of Leu for Val in position
10 of PnIA shifts activity in favor of α7 (Hogg et al., 1999;
Luo et al., 1999). Substitution of Ala for Leu in position 15 of
MII reduces activity for α3β2 nAChRs (McIntosh et al., 2004).
We inserted both of these amino acids into the homologous
position of ArIB to make [V11L;V16A]ArIB and determined
that this analog had increased activity for α7 and decreased
activity for α3β2 compared to native ArIB. Subsequent mutation
of position 15 to Asp further lessened activity for α3β2. The
final analog, [V11L;V16D]ArIB, had IC50 values of 1.1 nM for
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α7 and >10,000 nM IC50 for α3β2. [V11L;V16D]ArIB (Table 1)
is the most selective α7 antagonist yet reported and is the basis
for the generation of selective conopeptides with radioactive and
fluorescent reporter groups (Whiteaker et al., 2008; Hone et al.,
2009, 2010).

Development of the α9α10 nAChR-Selective RgIA4
Conus regius, known as the crown cone, is found in the Caribbean
Sea and in coastal waters of Brazil. C. regius preys on amphinomid
worms and employs a small, 13 amino acid α-conotoxin known
as RgIA. RgIA was shown to potently and selectively block rat
α9α10 nAChRs (Ellison et al., 2006, 2008). In addition, RgIA was
shown to treat and prevent the development neuropathic pain,
suggesting a range of potential human therapeutic applications
(Vincler et al., 2006; Di Cesare Mannelli et al., 2014; Pacini et al.,
2016). Unfortunately, RgIA has low potency for human α9α10
nAChRs due to a Thr to Ile difference in the (-) binding face of the
α9 subunit of the human α9α10 nAChR (Azam and McIntosh,
2012). In an attempt to overcome the low potency at the
human nAChRs, non-Cys residues of RgIA were systematically
substituted and the resulting analogs tested for activity. Residues
in both the first and second disulfide loops of RgIA could be
substituted to create analogs with increased potency for human
α9α10 nAChRs. Four favorable substitutions were combined
into one analog to create RgIA4 (Table 1). RgIA4 has low nM
potency and high selectivity for human, mouse and rat α9α10
nAChRs (Christensen et al., 2017; Romero et al., 2017). Like
RgIA, RgIA4 is effective at preventing and treating neuropathic
pain in mice and rats (Christensen et al., 2017; Romero et al.,
2017).

The α7 and α9 nAChR subunits have a close evolutionary
relationship. Their similar sequences have made distinguishing
among these subtypes difficult. α-Bungarotoxin and the plant
norditerpenoid alkyloid methyllycaconitine both potently block
α7 nAChRs but also have substantial potency for α9∗ nAChRs
(Elgoyhen et al., 2001; Baker et al., 2004). With the advent of
[V11L;V16D]ArIB and RgIA4, molecular dissection of α7 and
α9∗ nAChR functions was enabled.

Ion-Current Versus Metabotropic
Functions of α7∗ NACHR and α9∗ NACHR
In most cases, nAChRs including α7∗ and α9∗ nAChRs function
as ionotropic receptors that are permeable to the cations Na+,

TABLE 1 | Conopeptide Sequences.

Peptide Sequence

ArIB1 DECCSNPACRVNNPHVCRRR

[V11L;V16D]ArIB1 DECCSNPACRLNNPHDCRRR

[A10L]PnIA2 GCCSLPPCALNNPDYC

[15A]MII3 GCCSNPVCHLEHSNAC

RgIA4 GCCSDPRCRYRCR

RgIA45 GCCTDPRCX1X2QCY

1Whiteaker et al., 2007; 2Luo et al., 1999; 3McIntosh et al., 2004; 4Ellison et al.,
2006; 5Romero et al., 2017. X1, citrulline; X2, monoiodotyrosine; underlining
indicates amino acid change from native peptide.

K+, and Ca2+ (Ullian et al., 1997; Katz et al., 2000; Verbitsky
et al., 2000). α7∗ nAChRs are highly permeable to Ca2+ and
display rapid desensitization characteristics which means a
channel conformation state with high agonist affinity at the same
time being impermeable to ions (Corradi and Bouzat, 2016).

Increasing evidence supports the existence of non-canonical
signaling pathway(s) used by ligand-gated ion channels like
nAChRs (Valbuena and Lerma, 2016). This metabotropic mode
of action of nAChRs was first shown for the α7∗ nAChR
in leukocytes. In T cells, activation of α7∗ nAChRs induced
metabotropic signaling that resulted in an increase of intracellular
Ca2+ concentrations independent of obvious ionotropic receptor
functions (De Jonge and Ulloa, 2007; Razani-Boroujerdi et al.,
2007). Similar channel-independent functions have also been
shown in microglial cells (Suzuki et al., 2006; King et al., 2017)
and in neurons (Zhong et al., 2008, 2013).

Proteomic analyses identified 55 intracellular interaction
partners of α7∗ nAChR in the central nervous system and some
of them may potentially mediate metabotropic signaling (Paulo
et al., 2009). In addition, studies on neuronal cells indicate that
α7∗ nAChRs are directly coupled to G-proteins and regulate axon
growth at the growth cone (Kabbani et al., 2013; Kabbani and
Nichols, 2018). G-protein mediated signaling in neuronal cells
enables activation of growth-associated protein 43, as well as
activation of phospholipase C, leading to inositol triphosphate-
mediated release of Ca2+ from intracellular stores (Kabbani and
Nichols, 2018).

In innate immune cells, various classical metabotropic
signal transduction pathways and micro RNAs are involved
in α7 nAChR-mediated down-regulation of pro-inflammatory
cytokines and up-regulation of anti-inflammatory molecules at
the transcriptional and translational level (Corradi and Bouzat,
2016; Fujii et al., 2017a; Hoover, 2017; Pavlov et al., 2018). In
addition, one study suggests that extracellular ACh enters the
cytoplasm, activates mitochondrial α7 nAChR and inhibits the
release of mitochondrial DNA (Lu et al., 2014).

Whether stimulation of immune cells with nAChR agonists
induces ion-channel functions is unclear. In most studies, no
ion-currents have been detected in response to nAChR agonists
(Peng et al., 2004; Razani-Boroujerdi et al., 2007; Hecker
et al., 2009, 2015; Mikulski et al., 2010; Richter et al., 2016,
2018a; Zakrzewicz et al., 2017). However, stimulation of murine
intestinal macrophages with agonists of α7 nAChR evoked
small Ca2+ transients (Matteoli et al., 2014). It remains to be
determined if these Ca2+ signals are due to ion-channel activity
of nAChRs.

It has been suggested that metabotropic signal transduction
through α7∗ nAChRs is associated with the desensitized
conformation of the channel (Stokes et al., 2015; Corradi and
Bouzat, 2016; Kabbani and Nichols, 2018). This suggestion
is supported by the findings that some of the most effective
modulators of α7∗ nAChR-mediated anti-inflammatory
responses are compounds termed nAChR silent agonists, potent
agonists of metabotropic functions in innate immune cells but
do not evoke ionotropic functions (Thomsen and Mikkelsen,
2012; Chojnacka et al., 2013; Papke et al., 2014; Stokes et al., 2015;
Horenstein and Papke, 2017).
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Cholinergic Control of Innate Immunity
Control of Gene Expression via α7∗ nAChR and α9∗

nAChR
A role of nAChRs in the regulation of innate immunity was
first suggested by Tracey and colleagues, who reported that vagal
nerve stimulation attenuates the release of the pro-inflammatory
tumor necrosis factor in a model of endotoxin shock and coined
the term “cholinergic anti-inflammatory pathway” (Borovikova
et al., 2000). The anti-inflammatory effects were sensitive to
an unspecified “α-conotoxin,” suggesting that signaling involves
nAChRs (Borovikova et al., 2000). Subsequently, an essential
role of α7 nAChR for the vagal control of inflammation was
demonstrated (Wang et al., 2003). The current knowledge on
cholinergic neuro-immune interactions involving α7 nAChR has
recently been summarized in excellent reviews (e.g., Fujii et al.,
2017a; Hoover, 2017; Pavlov et al., 2018). In addition to the
nAChR α7 subunit, α9 and β2 subunits contribute to anti-
inflammatory effects of nAChR agonists (Simard et al., 2013;
Jiang et al., 2016; St-Pierre et al., 2016; Liu et al., 2017). It is,
however, unclear if these nAChR subunits interact or if they
independently trigger anti-inflammatory mechanisms.

Inhibition of P2X7R Ion-Channel Function by
Conventional nAChR Agonists
ATP-dependent IL-1β release by lipopolysaccharide-primed
human monocytic U937 cells, primary human blood monocytes
as well as human and mouse peripheral blood mononuclear cells
(PBMCs) is efficiently inhibited by the nAChR agonists nicotine
and ACh, but also by choline, a selective agonist of α7∗ and α9∗
nAChRs (Hecker et al., 2015; Richter et al., 2016; Figure 1). In
line with an involvement of α7∗ and α9∗ nAChRs, inhibition
of IL-1β release is sensitive to mecamylamine, α-bungarotoxin
and strychnine (Hecker et al., 2015; Richter et al., 2016;
Zakrzewicz et al., 2017). As these nAChR antagonists do not
differentiate between α7∗ or α9∗ nAChRs, the conopeptides
[V11L;V16D]ArIB and RgIA4 have turned out to be invaluable
tools. Surprisingly, both conopeptides reversed the inhibitory
effects of nicotine and ACh (Hecker et al., 2015; Zakrzewicz et al.,
2017), suggesting an involvement of nAChR subunits α7, α9,
and/or α10. Gene knock-down in U937 cells and knock-out mice
revealed an obligate role of nAChR subunits α7, α9, and α10 in
signaling (Hecker et al., 2015; Zakrzewicz et al., 2017).

Of note, nAChR agonists do not provoke obvious ion-
channel functions in U937 cells as measured by whole-cell
patch-clamp recordings, but completely abolish the ion-currents
induced by P2X7R activation (Hecker et al., 2015; Richter
et al., 2016). This is of eminent clinical importance, because
nAChR agonists control sterile, trauma-associated inflammation
without completely inhibiting host defense against pathogens
that stimulate numerous ATP-independent pathways of IL-1β

maturation (Broz and Dixit, 2016). The mechanism down-stream
of nAChR activation controlling P2X7R ion-channel function is
currently under investigation.

Phosphocholine Is an Agonist of Monocytic nAChR
Apart from conventional nAChR agonists, phosphocholine
stimulates monocytic nAChRs and inhibits ATP-induced

IL-1β release (Hecker et al., 2015; Richter et al., 2016,
2018a,b; Figure 1). The response of monocytic cells to free
phosphocholine resembles that of choline: IC50 values are
in the range of 10 µM, signaling involves nAChR subunits
α7, α9, and α10, both compounds do not elicit ion-currents
at U937 cells, but inhibit the ion-channel function of the
P2X7R (Hecker et al., 2015; Richter et al., 2016). In sharp
contrast to choline, phosphocholine does not induce ion-
current responses in Xenopus laevis oocytes that heterologously
express human nAChR α9 subunits, alone or co-injected
with α7 and/or α10 (Richter et al., 2016; Zakrzewicz et al.,
2017). Remarkably, choline-gated currents in Xenopus
oocytes expressing human α9α10 nAChR are strongly but
reversibly inhibited by phosphocholine, resembling silent
agonist or antagonist functions (Richter et al., 2016). Hence,
metabotropic functions of monocytic nAChRs can be elicited
by endogenous agonists that do not induce ion-currents at
conventional receptors. Whether phosphocholine functions as
silent agonist of canonical α9∗ nAChR in vivo, remains to be
investigated.

C-Reactive Protein (CRP) Potentiates the nAChR
Agonist Function of Phosphocholine
The pentameric acute-phase protein CRP is mainly synthesized
in the liver in response to increased circulating levels of
IL-1β and IL-6. Under physiological conditions, CRP forms
Ca2+-dependent complexes with phosphocholine and
other compounds with a phosphocholine head-group at a
stoichiometric proportion of 1:1 per monomer (Pepys and
Hirschfield, 2003; Mantovani et al., 2008). Native CRP-ligand
complexes are potent nAChR agonists at human monocytic
cells that inhibit the ATP-dependent inflammasome assembly
(Figure 1) and IL-1β release, whereas CRP devoid of ligands
is ineffective (Richter et al., 2018a). The IC50 of CRP isolated
from human bodily fluids is about 40 nM, far below that of
phosphocholine (10 µM), suggesting that CRP potentiates the
effect of free phosphocholine (Richter et al., 2018a). The effects of
CRP-phosphocholine complexes on monocytic cells are sensitive
to [V11L;V16D]ArIB and RgIA4, depend on interaction of
nAChR subunits α7, α9, α10, and resemble silent agonists or
partial antagonists at canonical α9α10 nAChR (Richter et al.,
2018a). A prospective clinical study on patients suffering from
multiple traumata was in line with a protective anti-inflammatory
function of CRP in vivo, suggesting that endogenous CRP is a
negative feed-back regulator of IL-1β-mediated inflammation
(Richter et al., 2018a).

Phosphocholine-Modified Macromolecules Function
as nAChR Agonists
Some eukaryotic parasites and bacterial pathogens conjugate
phosphocholine moieties to proteins or cell wall glycolipids
(Grabitzki and Lochnit, 2009; Clark and Weiser, 2013). Two
opposing but not necessarily mutually exclusive views on
the biological relevance of these PC-modified molecules
prevail. First, CRP and highly prevalent phosphocholine-
specific antibodies bind to phosphocholine-modified
surfaces and activate mechanisms of pathogen elimination
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FIGURE 1 | Working hypothesis of the cholinergic control of ATP-dependent release of monocytic IL-1β. Stimulation of the ATP-gated P2X7R results in the assembly
of the NLRP3 inflammasome and activation of capspase-1 that cleaves pro-IL-β and enables its swift release. Agonists of monocytic nAChRs metabotropically inhibit
the ionotropic function of P2X7R and, hence, eventually IL-1β release. Different nAChR subunits interact, depending on the respective nicotinic agonist. Conventional
nAChR agonists (ACh, Cho, and Nic) as well as PC, PC/CRP complexes and PC-LOS require nAChR subunits α7, α9, and α10 for signaling. LPC and G-PC depend
on the interaction of nAChR subunits α9 and α10, whereas only nAChR subunit α9 is essential for signaling of DPPC. In the latter case, nAChR subunit α9 interacts
with either subunit α7 or α10. Accordingly, signaling of ACh, Cho, Nic, PC, PC/CRP complexes, and PC-LOS is sensitive to both conopeptides, [V11L;V16D]ArIB
and RgIA4, whereas signaling of L-PC, GPC and DPPC is only sensitive to RgIA4. These cholinergic control mechanisms are also triggered by the chemokine CCL3
that signals via chemokine receptor CCR1, activates PLA2G6, and induces the release of a yet unknown agonist of nAChRs composed of subunits α7, α9, and α10.
In a similar way, AAT and β-NAD signal via CD36 and P2Y receptors and trigger the secretion of a nAChR agonist that activates nAChRs similar to DPPC. The
structure of the nAChRs involved in the control of IL-1β release remains to be elucidated as well as the signaling cascade resulting in P2X7R inhibition. AAT,
α1-antitrypsin; ACh, acetylcholine; ASC, apoptosis-associated speck like protein containing a caspase recruitment domain; Cho, choline; CRP, C-reactive protein;
DPPC, dipalmitoyl phosphatidylcholine; GPC, nAChR, nicotinic acetylcholine receptor; Nic, nicotine; NLRP3, NACHT, LRR and PYD domains-containing protein 3;
P2X7R, ATP receptor P2X7; PC, phosphocholine; PC-LOS, PC-modified lipooligosaccharides; PLA2G6, calcium-independent phospholipase A2β.

(Scott et al., 1987; Nishinarita et al., 1990; Shaw et al., 2000;
Pepys and Hirschfield, 2003; Mantovani et al., 2008; De
Faire and Frostegård, 2009; Frostegård, 2010; Fiskesund
et al., 2014). Second, PC-modified products exert strong
anti-inflammatory effects and serve the immune evasion of
pathogens (Grabitzki and Lochnit, 2009; Clark and Weiser,
2013). We recently demonstrated that phosphocholine-modified
lipooligosaccharides from wildtype Haemophilus influenzae are
potent nAChR agonists inhibiting the ATP-induced release of
IL-1β in monocytic U937 cells (25 nM IC50), in pulmonary
epithelial cell lines and in living lung slices (Hecker et al., 2015;
Richter et al., 2018b; Figure 1). Similarly, phosphocholine
synthetically conjugated to bovine serum albumin, a compound
that mimics the properties of secreted phosphocholine-modified
helminth proteins, is a functional agonist of monocytic nAChR
(Hecker et al., 2015).

Phosphatidylcholines and Their Metabolites Are
Agonists at Monocytic α9∗ nAChRs
Phosphatidylcholines, common constituents of biomembranes
and surfactant, are amphiphilic neutral lipids composed of

a phosphocholine head-group linked to glycerol with two
variable fatty acid chains. Dipalmitoyl phosphatidylcholine, the
dominating lipid component of pulmonary surfactant (Lang
et al., 2005; Lopez-Rodriguez and Pérez-Gil, 2014), inhibits
ATP-induced IL-1β release (10 µM IC50) (Backhaus et al.,
2017; Figure 1). This function is sensitive to RgIA4 but
remarkably not to [V11L;V16D]ArIB (Backhaus et al., 2017).
Accordingly, knock-down of nAChR subunit α9 blunts the effect
of dipalmitoyl phosphatidylcholine, whereas single knock-down
of nACh subunits α7 and α10 does not. However, concomitant
knock-down of nAChR subunits α7 and α10 abolishes the
effect of dipalmitoyl phosphatidylcholine suggesting that nAChR
subunit α9 is mandatory for signaling, whereas α7 and α10 can
replace each other (Backhaus et al., 2017).

Phosphatidylcholine metabolites palmitoyl lysophosphatidyl-
choline and glycerophosphocholine, are also efficient inhibitors
of ATP-mediated IL-1β release (1 µM IC50), their effects
are sensitive to RgIA4 but not to [V11L;V16D]ArIB and
they function as silent agonists or partial antagonists at
canonical α9α10 nAChR (Zakrzewicz et al., 2017; Figure 1). In
contrast to dipalmitoyl phosphatidylcholine, however, nAChR
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subunits α9 and α10 are mandatory for signaling of palmitoyl
lysophosphatidylcholine and glycerophosphocholine, whereas
α7 is dispensable (Zakrzewicz et al., 2017). It remains to be
investigated, if these findings apply to all phosphatidylcholines
and lysophosphatidylcholines or if the structure of the fatty acid
remnants is of functional importance.

Signaling of Chemokines, β-NAD and α1-Antitrypsin
Induce the Secretion of Agonists of Monocytic
nAChR
Chemokines, β-NAD and α1-antitrypsin surprisingly inhibit
the ATP-induced release of IL-1β via mechanisms that join
the above described cholinergic pathways (Amati et al., 2017;
Hiller et al., 2018; Siebers et al., 2018; Figure 1). CCL3 signals
via chemokine receptor CCR1, activates the Ca2+-independent
phospholipase A2β (PLA2G6) and induces the release of low
molecular mass factors that function as agonists of monocytic
nAChR. Signaling is sensitive to [V11L;V16D]ArIB and RgIA4
suggesting that subunits α7, α9, and/or α10 are required (Amati
et al., 2017). β-NAD activates purinergic receptors P2Y1 and
P2Y11, whereas α1-antitrypsin signals via CD36 to activate
PLA2G6 and to induce the release of nAChR agonists (Hiller
et al., 2018; Siebers et al., 2018). Surprisingly, these factors are
different from those secreted in response to CCL3, as they are
sensitive to RgIA4 but insensitive to [V11L;V16D]ArIB. Results
from gene silencing experiments are in line with the assumption
that β-NAD and α1-antitrypsin signal via nAChR subunits α9
and either α7 or α10 (Hiller et al., 2018; Siebers et al., 2018).
The structure of these secreted factors remains to be determined.
As the preferred substrates of PLA2G6 are phosphatidylcholines
(Ramanadham et al., 2015), their above described metabolites
are possible candidates. This novel triple-membrane passing
signaling pathway involving PLA2G6 activation and nAChRs
might be of general importance, far beyond the control of
inflammasome activation.

Do Monocytic nAChRs Structurally Differ From
Canonical nAChRs?
It is an open question as to how monocytic nAChRs inhibit
ion-channel function of P2X7Rs. There are, however, several
hints that monocytic nAChRs differ from classical pentameric
channels. As they induce metabotropic functions (Hecker et al.,
2009, 2015; Mikulski et al., 2010; Richter et al., 2016), there may
be no need for the activatable state of a classical pentameric
ion channel. In this instance, binding of agonist to the nAChR
promotes a receptor state that allows G-protein coupling but
not fast ionotropic conduction. Whereas nicotine acts as an
agonist that induces ion-channel function at α7 nAChRs, for α9∗
nAChRS expressed in cochlear hair cells and those heterologously
expressed in Xenopus oocytes, nicotine acts as an antagonist
(Lustig et al., 2001; Sgard et al., 2002). In contrast, nicotine
functions as an agonist at monocytic α9∗nAChRs. This might

be due to the addition of an α7 subunit to the α9-containing
receptor complex. Alternatively, pentameric nAChRs can exist
in a state that is ‘uncoupled’ from ion-conducting function, yet
might maintain metabotropic properties (Drenan et al., 2008;
Baenziger et al., 2015). It is also possible that α9 subunits form
non-pentameric oligomers together with subunits α7 and/or α10
that lack ionotropic function but possess metabotropic function.

Structural modeling revealed an accumulation of charged
amino acids at the α9 (-) side that seems to interfere
with loop-C closure and might hinder nicotine engulfment
by the ligand binding pocket (Giastas et al., 2018).
Because nicotine and bulky molecules such as palmitoyl
lysophosphatidylcholine, dipalmitoyl phosphatidylcholine,
CRP-phosphocholine complexes, phosphocholine-modified
lipooligosaccharides, and phosphocholine-modified bovine
serum albumin function as agonists (Hecker et al., 2015;
Backhaus et al., 2017; Zakrzewicz et al., 2017), we speculate that
binding sites of monocytic nAChR do not necessarily close upon
ligand binding. May be, they even do not involve the (-) side of
an adjacent subunit.

CONCLUSION

Conus produce a vast array of toxins some of which have
been systematically modified to produce peptides highly selective
for mammalian nAChR subtypes. These conopeptides have
been used to help demonstrate that monocytes express novel
unexpected nAChRs that contain α9, α7, and/or α10 subunits,
inhibit the ionotropic function of P2X7R and modulate ATP-
induced IL-1β release. A diverse set of key compounds, some
of them already known to modulate immune responses, act as
agonists of these nAChRs suggesting a pivotal role in health and
disease processes.
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