
Chapter 2
Proactive Scheduling and Reactive
Real-Time Control in Industry 4.0

Dmitry Ivanov, Boris Sokolov, Frank Werner, and Alexandre Dolgui

Abstract Scheduling in Industry 4.0 systems belongs to a class of problems that
have mixed structural-temporal-logical constraints. In other words, a strong coupling
is considered when product and process are created simultaneously. As a result
of the proven NP-hardness of such problems, solution methods have extensively
utilized different decomposition principles. The known decomposition methods in
discrete optimization are founded on the difficulties in deriving analytical properties.
The existing solutions in continuous optimization are based on the maximum
principle and yield a dynamic process decomposition using the natural logic of
time. By combining the advantages of continuous and discrete optimization, this
chapter develops a decomposition method for shop floor scheduling in Industry 4.0
manufacturing systems. Technically, this study proposes to decompose dynamically
the large-scale assignment matrix according to the precedence relations between the
operations of the jobs and considers only the operations that satisfy these precedence
relations at a given time point in small-dimensional, discrete optimization models.
Continuous optimization is used to generate a schedule from the assignments found
in the discrete optimization models at each time point by extremizing the Hamiltonian
function at this time point subject to scheduling objective(s). In addition, the
execution of the operations in time can be accurately modeled in continuous time as
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a continuous state variable; the machine availability and capacity disturbances at the
machines are also considered. The method developed provides further insights into
decomposition methods for scheduling and is supported by an analytical analysis
and an algorithmic realization.

Keywords Scheduling · Industry 4.0 · Flexible flow shop · Manufacturing ·
Optimal control · Algorithm · Real-time scheduling · Dynamic scheduling

2.1 Introduction

Individualization of products is a critical business capability and requires flexible
and customized production systems. Because of the increased complexity of flexible,
small batch manufacturing, the costs of individualized production are typically higher
than in mass production systems. The Industry 4.0 technology has enabled new
production strategies, particularly through the use of cyber-physical systems that
require highly customized assemblies (Erol et al. 2016; Oesterreich and Teuteberg
2016; Kumar et al. 2016; Nayak et al. 2016; Battaïa et al. 2017a; Hwang et al.
2017). The ultimate objective of these systems is to facilitate a flexible customized
manufacturing at the lower cost of mass production.

Such innovative production strategies engender new challenges and opportunities
for short-term job scheduling and sequencing. In particular, Kusiak (2018) points
out the issue of strong coupling in smart manufacturing when product and process
are created at the same time. Simultaneous product and process creation results in a
class of scheduling problems that have mixed structural-temporal-logical constraints
with order scheduling based on a search for free resources for free operations (Dolgui
et al. 2019b; Fragapane et al. 2020; Ivanov et al. 2020). Manufacturing processes
for different customer orders may have individual structures of the stations such that
the flexible stations are able to execute different functions subject to individual sets
of operations within the jobs (Weyer et al. 2015; Ivanov et al. 2016a, b; Nayak et al.
2016; Battaïa et al. 2017b; Zhong et al. 2017). Therefore, an integrated problem
of simultaneous, structural-functional synthesis of the Industry 4.0 customized
assembly systems and job scheduling in these systems arises and becomes a visible
research avenue (Chen et al. 2019; Dolgui et al. 2019a, b; Ivanov et al. 2018b; Leusin
et al. 2018; Liu et al. 2019; Mourtzis and Vlachou 2018; Panetto et al. 2019; Rossit
et al. 2019; Zhang et al. 2019).

In the given problem class, multi-stage, flexible, job-flow shop scheduling
problems with flexible machines have been studied (Ivanov and Sokolov 2012a,
2013; Ivanov et al. 2016a, b; Boz̈ek and Werner 2018). Kyparisis and Koulamas
(2006) considered a multi-stage, flexible flow shop scheduling problem with uniform
parallel machines at each stage and makespan minimization. This study proposed a
heuristic algorithm for this strongly NP-hard problem. Tahar et al. (2006) considered
a scheduling problem for a set of independent jobs with sequence-dependent setup
times and job splitting on a set of identical parallel machines such that the maximum
completion time (i.e., the makespan) is minimized. For this NP-hard problem, the
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study developed a heuristic algorithm using linear programming (LP). Furthering
these insights, Boz̈ek and Werner (2018) developed an optimization method for
flexible job shop scheduling with lot streaming and sublot size optimization. It can
be noted that a review of solution techniques for flexible (or hybrid) flow shop
problems has been given, for example, in the paper by Ruiz and Vazquez-Rodriguez
(2010), and a review on flexible job shop scheduling problems has been given by
Chaudry and Khan (2016).

In light of the proven NP-hardness of such problems, solution methods
for the simultaneous structural-functional synthesis of customized Industry 4.0
assembly systems and job scheduling in these systems need to be developed using
different decomposition principles. This is because large-scale mixed integer linear
programming (MILP) models would be negatively influenced by the computational
complexity of these problems. The known solutions in discrete optimization based
on decomposition, such as data-driven or clustering approaches (Chen et al. 2013a,
b), are founded on the difficulties in deriving analytical properties.

The existing solutions in continuous optimization based on the maximum
principle and the control of a dynamic system use a decomposition of a dynamic
process and the natural logic of time (Ivanov and Sokolov 2012b). These solutions
were primarily applied to technical systems (e.g., space shuttle movement control)
and rely on a proven analytical axiomatic of optimal control. In the 1990s, optimal
control models based on the maximum principle were applied to master production
scheduling, but they did not consider the precedence relations within the jobs
(Dolgui et al. 2019b) and focused mostly on small-dimensional problems (Kogan
and Khmelnitsky 2000).

The major intention of this chapter is to provide further insights into scheduling
in smart manufacturing with simultaneous product and process creation using
decomposition methods by combining the advantages of continuous and discrete
optimization. In particular, we focus on shop floor scheduling in very flexible
manufacturing systems such as Industry 4.0. Technically, this study proposes a
dynamical decomposition of a large-scale assignment matrix according to the
precedence relations between the operations of the jobs and considers only
the operations that satisfy the precedence relations at the given time point in
small-dimensional LP models. Discrete optimization algorithms (B&B, Hungarian
method) are used for scheduling in these matrices of small dimension at each
time point. Continuous optimization algorithms (e.g., the method of successive
approximations, or the method of Krylov-Chernousko; see Ivanov et al. 2016a and
Dolgui et al. 2019b, and the references in these papers) are used to create a schedule
from the LP results generated at each time point by extremizing the Hamiltonian
function at this time point subject to some criteria (e.g., tardiness). In addition, the
execution of the operations in time can be accurately modeled in continuous time
as a continuous state variable, while considering machine availability and capacity
disturbances at the machines.

The remainder of this chapter is as follows. Section 2.2 is devoted to a verbal
problem statement. Section 2.3 develops generalized models of selecting the design
of the manufacturing process and operation sequencing. It also considers a model for
a simultaneous process design and sequencing. In Sect. 2.4, the generalized model
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from Sect. 2.4 is modified regarding a flexible dynamic scheduling in Industry
4.0 systems. Subsequently, a computational algorithm is presented. Section 2.5
concludes the chapter by summarizing the most important results of this study and
outlining some issues for future research.

2.2 State of the Art

Practical environments for applying scheduling and sequencing models and
algorithms to a simultaneous structural-functional synthesis of the customized
assembly system are multi-faceted. With the help of smart sensors and plug-and-
produce cyber-physical systems, the stations in the assembly system are capable
of changing the operation processing and setup sequences according to the actual
order of the incoming flows and capacity utilization (Otto et al. 2014; Theorin et al.
2017). In the FOUP—front opening unified pods—technology in the semiconductor
industry, robots are used for a real-time operation sequencing. Robots read the
information about the products from the sensors and tags and decide flexibly, where
to forward a wafer batch next (Mönch et al. 2012).

The recent literature has included a variety of principles and approaches to
the design and scheduling of flexible and reconfigurable assembly systems with
a focus on balancing, scheduling, and sequencing (Boysen et al. 2007; Chaube et al.
2012; Delorme et al. 2012; Battaïa and Dolgui 2013; Battaïa et al. 2017a). In these
studies, models and methods have been presented for solving problems related to the
optimization of the performance intensity of an assembly system for sets of flexibly
intersecting operations.

For systems that consider both the machine selection for each part of the
manufacturing process and the loading sequences of the parts to the machines,
Blazewicz et al. (2001) showed that these problems are NP-hard. In particular,
scheduling with alternative parallel machines addresses the practical challenge that
at each stage of the manufacturing process, alternative machines may execute the
operations. This creates flexibility in the process plan and requires both a machine
assignment and sequencing of tasks (Yu et al. 2011; Janiak et al. 2013; Blazewicz et
al. 2015). In practice, the optimization objectives consider throughput maximization,
lateness minimization, and equal machine utilization.

Józefowska et al. (2002) presented a heuristic approach to allocate a continuous
resource in discrete-continuous scheduling problems to minimize the makespan.
Kyparisis and Koulamas (2006) considered a multi-stage, flexible flow shop schedul-
ing problem with uniform parallel machines at each stage and the minimization
of makespan. Tahar et al. (2006) considered the problem of scheduling a set of
independent jobs with sequence-dependent setup times and job splitting on a set of
identical parallel machines such that the maximum completion time (makespan) is
minimized.

During the last three decades, a variety of papers presented results and algorithms
for flexible flow shop and job shop scheduling. The paper by Ribas et al. (2010)
first classifies the papers for flexible (hybrid) flow shop scheduling according to
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the production characteristics and limitations and then according to the solution
approaches proposed. The reader can find 164 references to papers dealing with
hybrid flow shop problems. In parallel, another review on solution approaches with
225 references has been presented by Ruiz and Vazquez-Rodriguez (2010). For
flexible job shop scheduling problems, a recent review has been given by Chaudry
and Khan (2016). The authors found 404 papers dealing with flexible job shop
problems from the period 1990 to 2014. The interested reader can also find 212
cited references in this paper. In a very recent paper, Shen et al. (2018) presented a
mathematical model and a tabu search algorithm for the flexible job shop problem
with sequence-dependent setup times and minimizing the makespan. The results
show that their algorithm outperforms most existing approaches for the classical
flexible job shop problem.

Lauff and Werner (2004); Jungwattanakit et al. (2009); Sotskov et al. (2013); and
Harjunkoski et al. (2014) have pointed out that specific scheduling problems require
further investigation and the application of a broad range of methodical approaches.
Control approaches to scheduling are of vital importance for addressing the flow
dynamics in the assembly line. The studies by Sarimveis et al. (2008); Ivanov et al.
(2013b); and Harjunkoski et al. (2014) showed a wide range of advantages regarding
the application of control-theoretic models in combination with other techniques for
scheduling in manufacturing. These advantages include, but are not limited to, a
non-stationary process view and the accuracy of continuous time.

Optimal control approaches provide a different perspective than mathematical
programming methods. Optimal control approaches represent schedules as trajec-
tories. The first studies in this area were devoted to inventory control. One of
these studies was published in the first volume of the International Journal of
Production Research (IJPR). Later, Hwang et al. (1967) were among the first to
apply optimal control and the maximum principle to multi-level and multi-period
master production scheduling, which determined an optimal control (i.e., production)
for the corresponding state (i.e., the inventory trajectory). Developed a Bayesian
approach to the optimal control of continuous industrial processes. Developed a
dynamic model for the planning of a manufacturing system. The maximum principle
was used to formulate the problem and to obtain a solution. Flexible manufacturing
systems and their dynamics have been examined in numerous studies. The stream
of production scheduling was continued by Khmelnitsky et al. (1997), who applied
the maximum principle in discrete form to the planning of continuous-time flows in
flexible manufacturing systems.

Applications of optimal control to scheduling problems are encountered in
production systems with single machines, job sequencing in two-stage production
systems, and multi-stage machine structures with alternatives in job assignments
and intensity-dependent processing rates, such as those in flexible manufacturing
systems (Ivanov and Sokolov 2013); supply chains as multi-stage networks (Ivanov
et al. 2004, 2007, 2013a; Ivanov and Sokolov 2012a), and Industry 4.0 systems based
on a data interchange between the product and stations, flexible stations dedicated to
various technological operations, and real-time capacity utilization control (Ivanov
et al. 2016a).
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In previous studies, the selection of the process structure and the respective station
functionality for the execution of the operations were considered in isolation. In many
real-life problems, such an integration can have a significant impact on the process
efficiency (Bukchin and Rubinovitz 2003). The problem of a simultaneous structural-
functional synthesis of the customized assembly system is still at the beginning of
its investigation (Levin et al. 2016).

Optimal control scheduling models with only terminal constraints typically
address the level of master production scheduling (Hwang et al. 1967; Khmelnitsky
et al. 1997; Kogan and Khmelnitsky 2000). Scheduling models with both terminal
and logical constraints can also be applied to flow shop and job shop scheduling
(Kalinin and Sokolov 1985; Ivanov and Sokolov 2013; Ivanov et al. 2016a, b) as
well as to supply chain scheduling (Ivanov and Sokolov 2012b; Ivanov et al. 2013a,
2015).

Previously isolated insights gained in hybrid shop scheduling, scheduling and
sequencing with alternative parallel machines, and optimal control scheduling
models with both terminal and logical constraints can now be integrated into a
unified framework of Industry 4.0 and must be extended toward models with hybrid
structural-terminal-logical constraints (Dolgui et al. 2019a, b; Ivanov et al. 2018a,
b). The three most important prerequisites for such an integration, that is, the data
interchange between the product and stations, flexible stations dedicated to various
technological operations, and a real-time capacity utilization control, are enabled by
the Industry 4.0 technology (Ivanov et al. 2019).

This study extends previous publications of the authors (Ivanov et al. 2016a, b):
the problem statement and the scheduling model consider the structural synthesis
and sequencing decisions of the manufacturing process. In the studies (Ivanov et al.
2016a, b), only scheduling decisions were considered and the design of the process
structure was assumed to be fixed, that is, the design of a flow shop process was
considered.

This study develops an optimal control model for the simultaneous structural-
functional design of a customized manufacturing process and the sequencing of
the operations within the jobs. The developed theoretical framework presents a
contribution to flexible scheduling in the emerging field of Industry 4.0-based
innovative production systems.

2.3 Model

2.3.1 Problem Statement

In generalized terms, the problem considered captures the following features.
The processing speed of each machine is described as a time function and is
modeled by material flow functions (integrals of processing speed functions) and
the resulting processing time of the operation is, in general, dependent on the
characteristics of the processing channel. The processing and routing capacities
are constrained. Setups are included into the analysis. The lot sizes are fixed and
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known in advance. The temporary unavailability of capacity as a consequence of
possible disruptions is included. Material supply and consumption dynamics are
considered. The optimization is performed subject to the following performance
indicators (control functionals): throughput, lead time, makespan, total lateness,
equal utilization of the stations in the assembly line, and waiting time.

In terms of scheduling theory, we study a multi-objective, multi-stage hybrid
shop scheduling problem with alternative machines at each stage with different time-
dependent processing speeds, time-dependent machine availability, and ordered jobs,
where job splitting is allowed. Examples of such problems can be found in the studies
by Kyparisis and Koulamas (2006) and Tahar et al. (2006). The peculiarity of the
problem under consideration is the simultaneous consideration of both the selection
of the process design structure and the operation assignment. On the one hand,
an assignment problem is discrete by nature and requires the introduction of binary
variables, that is, in this case discrete optimization techniques are appropriate. On the
other hand, the execution of a non-stationary operation can be accurately described in
terms of continuous optimization. An additional peculiarity of such a simultaneous
consideration is that both the machine structures and the flow parameters may be
uncertain and changes in dynamics are therefore non-stationary.

According to the problem statement, we integrate and synchronize the following
processes:

• Customer order fulfillment dynamics in regard to the process design and operation
sequencing

• Processing and transportation channel utilization dynamics
• Material supply and consumption dynamics in the assembly system
• Processing and movement dynamics in regard to processing and transportation

channels in the assembly system

2.3.2 Model

Let us introduce the following basic sets and structures (indices [o], [k], [r], and [f]
describe the relations of the sets to the operations [o], channels [k], resources [r],
and material flows [f], respectively):

A = {Aν, ν ∈ 1, . . . n} is the set of customer orders (jobs).
M = {Mi, i ∈ 1, . . .m} is the set of stations in the assembly line.
B̃ = A ∪ M is the union of the assembly line stations and the customer orders, that

is, the customized assembly system.
C =

{
C

(i)
λ , λ ∈ 1, . . . li

}
is the set of channels at the stations and in-between the

stations i and j in the assembly line, where index j is used for stations that receive
products from an i-station.

D =
{ {

D
(i)

æ′
}

∪
{
D

(i,j)
æ

}
, æ, æ′ ∈ 1, . . . si

}
is the set of operations that can be

executed in the assembly system.
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Φ =
{ {

ΦS
(i)
π

}
∪

{
ΦN

(i)
μ

}
, π ∈ K

(r,1)
i , μ ∈ K

(r,2)
i

}
is the set of resources at the

stations in the assembly line, where K is the set of numbers.
ΦS(i) =

{
ΦS

(i)
π , π ∈ K

(r,1)
i

}
is the set of storable resources at M(i) and ΦN(i) ={

ΦN
(i)
μ , μ ∈ K

(r,2)
i

}
is the set of non-storable resources at M(i).

P =
{ {

P
(i)

<æ′,ρ>

}
∪

{
P

(i,j)
<æ,ρ>

}
, ρ ∈ K

(f)
i

}
is the set of material flows in the

manufacturing process.
P (i) =

{
P

(i)

<æ′,ρ>

}
is the set of material flows for the ρ-types of materials subject

to M(j).
P (i,j) =

{
P

(i,j)
<æ,ρ>

}
is the set of material flows for the ρ-types of materials subject

to M(i) and M(j).

The sets ¦ν1, ¦ν2 define “and” and “or” precedence relations for different jobs
and the sets ¦iæ1, ¦iæ2 define “and” and “or” precedence relations for the operations
D

(i,j)
æ and D

(i)

æ′ , respectively.
Assume that the manufacturing and transportation capacities may be disrupted,

and:

– The availability of a station can be described by a given preset matrix time function
εi j (t) of time-spatial constraints: we have εi j (t) = 1, if the station is available
and εi j (t) = 0, otherwise.

– The availability of a channel at a station can be described by the function �tϕλ(t)
(or �νϕλ(t)), which is equal to 1 if there are available channels, and equals 0,
otherwise.

– The capacity degradation and recovery dynamics can be described by a continuous
function of the perturbation impacts ξ ij (t); ξ ij (t) = 1 if the channel is 100%
available and ξ ij (t) = 0 if the channel is fully disrupted. All other values for ξ ij
(t) in the interval [0;1] are possible.

The formal statement of the scheduling problem is based on a dynamic
interpretation of the execution processes of the operations. Let us introduce some
new notations.

Parameters

a
(o,1)
α , a

(o,1)
β , a

(o,2,ν)

iα̃
, a

(o,2,ν)

iβ̃
, a(o,2,ν)

isi
, a(o,1,ν)

iæ are the planned manufacturing and
transportation quantities for each operation. The values of these parameters
are related to the end conditions that need to be reached in x

(o,1)
α (t), x

(o,1)
β (t),

x
(o,2,ν)

iα̃
(t), x

(o,2,ν)

iβ̃
(t), x

(o,2,ν)
isi

(t), x
(o,1,ν)
iæ (t) at t = Tf .

h(o)
0 , h(o)

1 are known differential functions for the start and end conditions subject
to the state variables Ø(Ñ) at t = T0 and t = Tf .

h(k)
0 , h(k)

1 are known differential functions for the start and end conditions in
regard to the state vector Ø(κ).
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b
(j,λ)

i′æ′iæ is the channel setup time.
d

(π)
iæjλ, g

(μ)
iæjλ are given consumption rates of the resources ΦS

(j)
π and ΦN

(j)
μ for

D
(i,j)
æ and C

(j)
λ .

H̃
(π)
j (t), ˜̃

H
(μ)

j (t) are known rates for the replenishment of the resources ΦS
(j)
π

and ΦN
(j)
μ , respectively.

a
(p,3)

jλπ(η−1), a
(p,4)

jλμ(η′−1)
are known volumes (quantities) of the resource replen-

ishment at the (η – 1)th recovery cycle; ρ̃λ, ˜̃ρλ are the numbers of the
replenishment cycles.

a
(f,1)
iæρ is the known lot size of a product type ρ for each operation D

(i,j)
æ .

P̃
(1)
j , P̃

(2)
jρ , P̃

(3)
ij are known values for the maximum storage capacities at Mj,

handling (throughput) at Mj for ρ, and the transportation between Mi and Mj.
c
(f,1)
iæjλρ is the maximum processing rate for the operation D

(i,j)
æ at the λ-channel;

it determines the maximum possible value for the production rate u
(f,1)
iæjλρ .

Decision Variables
x

(0,1)
ν (t) is a state variable characterizing the lead time for job Aν at each

moment t.
x

(0,2,ν)
iæ (t) is a state variable characterizing the flow time of the operation D

(i)
æ or

D
(i,j)
æ .

x
(0,3)
ν (t) is a state variable characterizing the gap between the planned completion

time for all jobs and the actual completion time of the job Aν.
u

(0,1)
νj (t), u

(0,2,ν)
iæj (t), u

(0,3)
νj (t) are control variables; if u

(0,1)
νj (t) = 1, then we have

a transportation of job Aν to Bj, and u
(0,1)
νj (t) = 0 otherwise; u

(0,2,ν)
iæjλ (t) = 1

if operation D
(i)
æ or D

(i,j)
æ is assigned to a λ-channel, and u

(0,2,ν)
iæjλ (t) = 0

otherwise; u
(0,3)
νj (t) = 1 at the moment when Aν is completed at time point t

until t = Tf , and u
(0,3)
νj (t) = 0 otherwise.

x
(κ,1)
iæjλ(t) is the state variable for the channel C

(i)
λ at Mj during the setup to prepare

the channel for processing D
(i,j)

æ′ after completing the operation D
(i,j)
æ .

u
(κ,1)
iæjλ(t) is a control variable; u

(κ,1)
iæjλ(t) = 1 if C

(i)
λ is in the setup process and

u
(κ,1)
iæjλ(t) = 0 otherwise.

x
(κ,2)
jλ (t) is a state variable characterizing the process (run) time of a channel.

x
(p,1)

jλπ (t), x
(p,2)

jλμ (t), x
(p,1)

jλπη(t), x
(p,2)

jλμη′(t) are state variables that characterize the
current quantity (volume) of non-storable resources ΦS

(j)
π , storable resources

ΦN
(j)
μ , non-storable and recoverable (at stages η and η′) resources, and

storable and recoverable (at stages η and η′) resources subject to channel C
(j)
λ ,

respectively. These state variables characterize a π-resource consumption and
replenishment.
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x
(p,3)

jλπη(t), x
(p,4)

jλμη′(t) are auxiliary state variables that are needed to define the
sequence of the resource replenishments and the ends of the replenishment
intervals, respectively.

u
(p,1)

jλπη, u
(p,2)

jλμη are control variables characterizing the replenishment process for
the non-storable and storable resources respectively; u

(p,1)

jλπη, u
(p,2)

jλμη = 1 if a
π-resource is under replenishment at time point t, and equal 0 otherwise.

x
(f,1)
iæjλρ(t) is a state variable characterizing the quantity (volume) of the product

«ρ» that is being delivered at Mj from Mi during the execution of D
(i,j)
æ (or

the processed quantity at Mj, if i = j).
x

(f,2)
iæjλρ(t) is an auxiliary state variable characterizing the total processing time

(including the waiting time) of a product flow ρ resulting from the interaction
of Mi and Mj for D

(i,j)
æ at C

(i)
λ , C

(j)
λ .

u
(f,1)
iæjλρ is the shipment rate for the transportation from Mi to Mj (or the processing

rate at Mj if i = j); u
(f,2)
iæjλρ(t) is an auxiliary control variable; u

(f,2)
iæjλρ(t) = 1

if processing at Mj is completed, and u
(f,2)
iæjλρ(t) = 0 otherwise, or if, after the

completion of D
(i,j)
æ (or D

(i)
æ , if i = j), the next operation in the technological

process D
(i,j)

æ̃ (or D
(i)

æ̃ , if i = j) begins.

2.3.2.1 Process Model of the Operation Execution

x(0,1)
ν =

m∑
j=1

u
(0,1)
νj ; x

(0,2,ν)
iæ =

m∑
j=1

lj∑
λ=1

εij (t)Θiæjλ(t)u
(0,2,ν)
iæjλ ; x

(0,3)
νj = u

(0,3)
νj ,

(2.1)

x
(κ,1)
iæjλ =

m∑
j ′=1

si∑
æ′=1

Θi′æ′jæu
(κ,1)

i′æ′jλ

b
(j,λ)

i′æ′iæ − x
(κ,1)
iæjλ

x
(κ,1)

i′æ′jλ

, (2.2)

x
(κ,2)
jλ =

m∑
i=1

si∑
æ=1

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
, (2.3)

x
(p,1)

jλπ = −
m∑

i=1

si∑
æ=1

d
(π)
iæjλ

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
, (2.4)
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x
(p,2)

jλμ = −
m∑

i=1

si∑
æ=1

g
(μ)
iæjλ

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
, (2.5)

x
(p,1)

jλπη = −
m∑

i=1

si∑
æ=1

d
(π)
iæjλ

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
+ u

(p,1)

jλπ(η−1), (2.6)

x
(p,2)

jλμη′ = −
m∑

i=1

si∑
æ=1

g
(μ)
iæjλ

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
+ u

(p,2)

jλμ(η′−1)
, (2.7)

x
(p,3)

jλπη = u
(p,1)

jλπη; x
(p,4)

jλμη′ = u
(p,2)

jλμη′ , (2.8)

x
(f,1)
iæjλρ = u

(f,1)
iæjλρ; x

(f,2)
iæjλρ = u

(f,2)
iæjλρ. (2.9)

Equation (2.1) describes the dynamics of the operation execution for the job Aν.
If

x
(0,1)
ν =

m∑
j=1

u
(0,1)
νj , then at each time point where, if u

(0,1)
νj (t) = 1 (i.e., the volume

of the state variable xv is increasing), the job processing is in progress at the j-station

in the assembly system. If x
(0,2,ν)
iæ =

m∑
j=1

εij (t)u
(0,2,ν)
iæj , then the operation processing

can start subject to the time windows of feasible capacity. If x
(0,3)
νj = u

(0,3)
νj , then the

job is completed earlier than the due date (i.e., the earliness of the job completion
subject to the slack time).

Equations (2.2) and (2.3) describe the state dynamics of the channel C
(i)
λ at Mi

and characterize the availability of the channel for the processing of operation D
(i,j)
æ .

Equation (2.2) describes the setup dynamics, and Eq. (2.3) reflects the occupation
time of each channel subject to the dynamics of the operation execution (i.e., variable
u

(o,2)
iæjλ = 1) in Eq. (2.1).

Equations (2.4)–(2.8) describe the resource consumption dynamics (Eqs. 2.4
and 2.5) and the resource replenishment dynamics (Eqs. 2.6–2.8) subject to the
assignment and setup decisions in Eqs. (2.1)–(2.3). Finally, Eq. (2.9) describes the
material flow dynamics in the assembly system subject to the operation assignments
to the stations, setups, and resource management decisions.
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2.3.2.2 Constraints

m∑
j=1

u
(0,1)
νj

⎡
⎣ ∑

α∈Γν1

(
a(0,1)
α − x(0,1)

α (t)
)

+
∏

β∈Γν2

(
a

(0,1)
β − x

(0,1)
β (t)

)⎤
⎦ = 0, (2.10)

lj∑
λ=1

u
(0,2,ν)
iæjλ

⎡
⎣ ∑

α̃∈Γiæ1

(
a

(0,2,ν)

iα̃
− x

(0,2,ν)

iα̃
(t)

)
+

∏

β̃∈Γiæ2

(
a

(0,2,ν)

iβ̃
− x

(0,2,ν)

iβ̃
(t)

)
⎤
⎦ = 0,

(2.11)

u∑
ν=1

u
(0,1)
νj (t) ≤ 1, ∀j ;

m∑
j=1

u
(0,1)
νj (t) ≤ 1, ∀j ; u

(0,1)
νj (t) ∈ {0, 1} (2.12)

u
(0,2,ν)
iæjλ (t) ∈

{
0, u

(0,1)
νj

}
; u

(0,3)
νj (t) ∈ {0, 1} ; u

(0,3)
νj

(
a

(0,2,ν)
jsi

− x
(0,2,ν)
jsj

(t)
)

= 0

(2.13)

u
(0,2)
iæjλx

(κ,1)
iæjλ = 0; x

(κ,1)
iæjλ(t) ∈ {0, 1} , (2.14)

n∑
i=1

si∑
æ=1

u
(κ,1)
iæjλ(t) ≤ 1, ∀j, ∀λ, (2.15)

∑
i,æ,λ

d
(π)
iæjλ

(
u

(o,2)
iæjλ + u

(κ,1)
iæjλ

)
≤ H̃

(π)
j (t), (2.16)

∑
i,æ,λ

Tf∫

T0

g
(μ)
iæjλ

(
u

(o,2)
iæjλ (τ) + u

(κ,1)
iæjλ (τ)

)
dτ ≤

Tf∫

T0

˜̃
H

(μ)

j (τ) dτ, (2.17)

u
(p,1)

jλπη

(
a

(p,3)

jλπ(η−1) − x
(p,3)

jλπ(η−1)

)
= 0, u

(p,1)

jλπηx
(p,1)

jλπη = 0, (2.18)



2 Proactive Scheduling and Reactive Real-Time Control in Industry 4.0 23

u
(p,2)

jλμη

(
a

(p,4)

jλπ(η′−1)
− x

(p,4)

jλπ(η′−1)

)
= 0, u

(p,2)

jλμη′x
(p,2)

jλμη′ = 0, (2.19)

u
(p,1)

jλπη(t), u
(p,2)

jλμη(t) ∈ {0, 1} , η = 1, . . . , ρ̃λ; η′ = 1, . . . , ˜̃ρλ, (2.20)

0 ≤ u
(f,1)
iæjλρ ≤ c

(f,1)
iæjλρu

(o,2)
iæjλ, (2.21)

u
(f,2)
iæjλρ

(
a

(f,1)
iæρ − x

(f,1)
iæjλρ

)
= 0; u

(f,2)
iæjλρx

(o,2)

iæ̃ = 0; u
(f,2)
iæjλρ(t) ∈ {0, 1} ,

(2.22)

m∑
i=1

li∑
λ=1

si∑
æ=1

ki∑
ρ=1

x
(f,1)
iæjλρ

(
u

(o,2)
iæjλρ+(f,2)

iæjλρ

)
≤ P̃

(1)
j , (2.23)

m∑
i=1

li∑
λ=1

si∑
æ=1

u
(f,1)
iæjλρ ≤ P̃

(2)
jρ , (2.24)

li∑
λ=1

si∑
æ=1

ki∑
ρ=1

u
(f,1)
iæjλρ ≤ P̃

(3)
ij . (2.25)

Constraints (2.10) and (2.11) describe the technological precedence relations in
regard to the jobs and operations of the jobs. Constraint (2.12) defines the rules of
operation splitting and overlapping. Equation (2.13) is a binary constraint on the
control variables.

Constraints (2.14) and (2.15) determine the setup sequence at the channels
and the conditions for setups at the channel C

(i)
λ . According to constraints (2.16)

and (2.17), the intensities of the maximum resource consumption at each time

point t are constrained subject to H̃
(π)
j , ˜̃

H
(μ)

j . Constraints (2.18)–(2.20) determine
the sequence of the replenishment actions. Equations (2.21)–(2.25) constrain the
maximum processing rates subject to the operation assignments.
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2.3.2.3 Boundary Conditions

h(o)
0

(
x(o) (T0)

)
≤ 0 ; h(o)

1

(
x(o) (Tf)

)
≤ 0, (2.26)

h(k)
0

(
x(k) (T0)

)
≤ 0 ; h(k)

1

(
x(k) (Tf)

)
≤ 0, (2.27)

h(r)
0

(
x(r) (T0)

)
≤ 0 ; h(r)

1

(
x(r) (Tf)

)
≤ 0, (2.28)

h(f)
0

(
x(f) (T0)

)
≤ 0 ; h(f)

1

(
x(f) (Tf)

)
≤ 0. (2.29)

Equations (2.26)–(2.29) determine the initial and final values for the state variables
in regard to the operations, channel, resource, and flow dynamics.

2.3.2.4 Control Functionals

J
(o)
1 =

n∑
ν=1

m∑
j=1

u
(o,3)
νj

(
Tf

)
, (2.30)

J
(o)
<2,α,ν> =

m∑
i=1

m∑
j=1

(
x

(o,3)
αi

(
Tf

) − x
(o,3)
νj

(
Tf

))
, (2.31)

J
(o)
3 = Tf −

∑
j=1

x
(o,1)
nj

(
Tf

)
, (2.32)

J
(o)
<4,i,ν> =

∑
ν,j,λ,æ

Tf∫

T0

εij (τ) Θiæjλ (τ) u
(0,2,ν)
iæjλ (τ) dτ, (2.33)

J
(o)
<5,i> =

∑
ν,j,æ

Tf∫

T0

[
εij (τ ) − εij (τ ) u

(0,2,ν)
iæjλ (τ )

]
dτ, (2.34)
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J
(o)
6 =

m∑
i=1

si∑
æ=1

(
a

(o,2,ν)
iæ − x

(o,2,ν)
iæ

(
Tf

))2
, (2.35)

J
(o)
7 =

n∑
ν=1

m∑
i=1

si∑
æ=1

m∑
j=1

lj∑
λ=1

Tf∫

T0

˜̃
β

(ν)

iæ (τ ) u
(0,2,ν)
iæjλ (τ ) dτ, (2.36)

J
(κ)
1 =

m−1∑
Δ1=1

m∑
Δ2=Δ1+1

l∑
λ=1

l∑
ζ=1

Tf∫

T0

(
x

(κ,2)
Δ1λ

(τ) − x
(k,2)
Δ2ζ

(τ)
)

dτ, (2.37)

J
(κ)
2 =

m−1∑
Δ1=1

m∑
Δ2=Δ1+1

l∑
λ=1

l∑
ζ=1

(
x

(κ,2)
Δ1λ

(
Tf

) − x
(κ,2)
Δ2ζ

(
Tf

))
, (2.38)

J
(p)

1jπ =
lj∑

λ=1

ρ̃λ∑
η=1

x
(p,3)

jλπη, (2.39)

J
(p)

2jμ =
lj∑

λ=1

˜̃ρλ∑
η′=1

x
(p,4)

jλμη, (2.40)

J
(f)
1 =

m∑
i=1

si∑
æ=1

m∑

j = 1
i �= j

li∑
λ=1

ki∑
ρ=1

(
a

(f,1)
iæρ − x

(f,1)
iæjλρ

)2

∣∣∣∣∣∣∣∣∣∣∣∣
t=Tf

, (2.41)

J
(f)
2 =

m∑
i=1

si∑
æ=1

m∑

j = 1
i �= j

li∑
λ=1

ki∑
ρ=1

Tf∫

T0

x
(f,2)
iæjλ (τ ) dτ. (2.42)

We refer to the studies (Ivanov et al. 2010; Ivanov and Sokolov 2012a) for a
multi-objective resolution of optimal control scheduling models.

The control functional J
(o)
1 (Eq. 2.30) characterizes the overall number of

completed jobs in the assembly system at t = Tf . This is the performance indicator
for the assembly system throughput. J

(o)
<2,α,ν> (Eq. 2.31) reflects the lead time for
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the job Aν. J
(o)
3 (Eq. 2.32) characterizes the makespan for all jobs Aν. J

(o)
<4,i,ν> (Eq.

2.33) characterizes the processing time of job Aν. J
(o)
<5,i> (Eq. 2.34) is the waiting

time of job Aν. J (o)
6 (Eq. 2.35) depicts the degree of the job completion at the end of

the planning interval. J
(o)
7 (Eq. 2.36) expresses the total tardiness for all operations

subject to the penalty functions ˜̃
β

(ν)

iæ , that is, an on-time-delivery.
The control functionals (2.37) and (2.38) estimate the equality of the channel

utilization at the stations in the assembly system at each time point t ∈ (T0, Tf ]
and at the end of the planning interval. The control functionals (2.39) and (2.40)
estimate the degree of the resource replenishment and the timeliness of the resource
replenishment, respectively. The control functional (2.41) characterizes the gap
between the planned and actually processed operation volume and is interconnected
with the control functional (2.35). The control functional (2.42) depicts the waiting
time for the operations and is interconnected with the control functional (2.34).

2.3.2.5 Integration Principle

To obtain a constructive solution to the problem considered, we propose to use
a functorial transition from the category of digraphs (Cat�) that specifies the
manufacturing technology to the category of dynamic models (CatD), which
describes the operation execution. The covariant functor G: · → D sets the
state relations in-between the nodes in the manufacturing technology plan and the
operation execution schedule. The simplified mathematical model of manufacturing
technology plan and the operation execution schedule integration can be presented
as shown in Eq. (2.43):

Δ =
{

u| dxi

dt
=

n∑
ν=1

uvj ;
m∑

j=1
uvj ≤ 1;

n∑
ν=1

uvj ≤ 1; uvj (t) ∈
{

0, 1
}
;

n∑
ν=1

uvj

⎡
⎣ ∑

α∈Γ −
1

(aα − xα(t)) + ∏
β∈Γ −

2

(
aβ − xβ(t)

)
⎤
⎦ = 0;

t ∈ (
T0, Tf

] = T ; xv (T0) = 0; xv

(
Tf

) = av

}

(2.43)

where xv is a variable characterizing the state of the job Av, uvj = 1 is a control
action (uvj = 1, if the station M(i) is used for job A(ν)), av, aα , aβ are given
quantities (end conditions), the values of which should have the corresponding
variables xv(t), xα(t), xβ (t) at the end of the planning interval at the time point
t = Tf , t is the running time point, T0 is the start time point of the planning
horizon, Tf is the end time point of the planning horizon, T is the planning horizon,
n∑

ν=1
uvj

∑
a∈Γ −

1

(aα − xα(t)) = 0 are constraints “and” that relate the condition of

the total processing of all predecessor operations,
n∑

ν=1
uνj

∏
β∈Γ −

2

(
aβ − xβ(t)

) = 0
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are constraints “or” that relate the condition of the processing of at least one of
the predecessor operations, and Γ −

1 , Γ −
2 are the sets of processes that immediately

precede the job A(ν).
In the proposed approach, the assignment and flow control are considered

simultaneously. Since the task times may differ subject to a varying processing speed
c
(f,1)
iæjλρ and the channel availability εij(t) and �iæjλ(t), the assignments made on the

basis of the planned processing volumes avj are forwarded to the resource and flow
dynamics control models and further optimized in regard to resource consumption,
replenishment, and usage over time. In the flow control model, the assignment of an
operation to a channel and the execution start of the operation at the channel cause
dynamic flows of the processed products.

2.3.2.6 Formulation of the Scheduling Problem

The task is to find a feasible control u(t), [T0,Tf ), which ensures that the dynamic
control model meets the constraint functions and guides the dynamic system (i.e.,
the schedule) ẋ = f (t, x, u) from the initial state to the specified final state subject to
given end conditions and the uncertainty area under the disturbances ξ(t). If there are
several feasible controls (schedules), then the best one (optimal) should be selected
in order to maximize (minimize) the control functionals (2.30)–(2.42).

2.4 The Role of Industry 4.0 and Digital Technology in the
Implementation of the Dynamic Schedule Computation

The control model proposed can be enriched by the integration of Industry 4.0
elements such as sensors and data analytics that may have two impacts on the
system. The first is the tuning: changing uncertain coefficients in the structure of the
differential equations of the system, taking into account that a larger number of these
coefficients implies a more accurate system response to a changing environment.
The second is the learning: imposing new restrictions on the system behavior. The
number of arbitrary coefficients in the structure of the differential equations changes
in the process of learning, imposing dynamic restriction adjustments on the behavior
of the system.

The possibility to use real-time data of the machine availability and the operation
processing status on the basis of digital technologies allows the realization of different
dynamic decomposition principles in the optimal control algorithm. The selection
of the time points at which the Hamiltonian is extremized and small-dimensional
assignment problems are solved can be implemented not only as a fixed t-step
procedure but also in the event-oriented form subject to such events as “a machine
becomes available” or “a new job enters the system” (Fig. 2.1).
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Fig. 2.1 Cyber-physical scheduling control framework in Industry 4.0

Consider the example illustrated in Fig. 2.1 with two machines M1 and M2 and
three products. The manufacturing of the products is organized in three jobs each of
which is characterized by the sequence of operations D1-D2-D3 that can be processed
on both M1 and M2. Both machines and products are equipped with sensors and
a communication protocol is established between the sensors. The sensors observe
the machine utilization and operation processing subject to three states, that is, “in
process,” “waiting,” and “finished.” The scheduling algorithm is activated in the case
of the following events in the communication protocol: (1) a machine signals the
completion of an operation processing and there is at least one operation either in the
state “waiting” or “finished,” (2) a product signals the completion of the processing
of an operation on a machine and there is at least one machine either in the state
“waiting” or “finished,” and (3) there are at least one machine and one operation in
the state “waiting.”

At the proactive stage, our method can be used for a descriptive and diagnostic
analysis and a predictive modeling to analyze the possible performances of the
production system. At the reactive stage, we contribute to the control of the real-time
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schedule and adaptive learning. The Industry 4.0 and cloud manufacturing typically
have data-driven, sensor-based environments. Sensors and data analytics may have
two impacts on the system. The first is the tuning: changing uncertain coefficients
in the structure of the differential equations of the system, taking into account that
a larger number of these coefficients implies a more accurate system response to
a changing environment. The second is the learning: imposing new restrictions
on the system behavior. The number of arbitrary coefficients in the structure of
the differential equations changes in the process of learning, imposing dynamic
restriction adjustments on the behavior of the system. The use of real-time data
allows the realization of different dynamic decomposition principles in the optimal
control algorithm for task and service compositions. The selection of the time points
at which the Hamiltonian is extremized and small-dimensional assignment problems
are solved can be implemented not only as a fixed t-step procedure but also in the
event-oriented form subject to events for a service composition such as “a machine
becomes available” or events for task composition such as “a new job enters the
system.”

Moreover, the first analyses of COVID-19 pandemic impacts on the supply
chains and production systems show the importance of Industry 4.0 and digital
manufacturing from the perspectives of supply chain resilience and ripple effect
control (Ivanov and Dolgui 2019; Hosseini et al. 2020). Firms that have visibility
and digital control in manufacturing networks seem to be better positioned at the
crisis time and for the future recovery coordination (Choi et al. 2020; Ivanov et al.
2019; Panetto et al. 2019; Ivanov 2020; Ivanov and Dolgui 2020a, b; Ivanov and Das
2020; Ni et al. 2020).

2.5 Conclusions

The Industry 4.0 technology enables new production strategies that require highly
customized assembly systems. The ultimate objective of these systems is to facilitate
a flexible customized manufacturing at the lower costs of mass production. Such
innovative production strategies create a number of new challenges and opportunities
for short-term job scheduling. In particular, the manufacturing processes for different
customer orders may have individual machine structures such that the flexible stations
are able to execute different functions subject to individual sets of operations within
the jobs. Therefore, the problem of a simultaneous structural-functional synthesis of
the customized assembly system arises. A flexible distributed scheduling as required
by the Industry 4.0 paradigm has been addressed in this study using optimal program
control theory.

The major contribution of this chapter is the development of an optimal
control model for the simultaneous structural-functional design of a customized
manufacturing process and sequencing of the operations of the jobs in an Industry
4.0 system. For the first time, a multi-objective, multi-stage job shop scheduling
problem with alternative and flexible machines at each stage and different time-
dependent processing speeds and time-dependent machine availability, without job
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splitting, was solved by means of optimal control and the maximum principle using
the maximization of the Hamiltonian.

The method and the algorithm developed present a contribution to flexible,
distributed scheduling in the emerging field of Industry 4.0-based innovative
production systems. In contrast to previous studies that assumed a fixed process
design, our approach is capable of designing simultaneously the manufacturing
process in regard to the available alternative stations, their current capacity utilization
and the processing time, and the sequencing of the jobs at the stations.

The basic computational idea of the computational approach developed is that
the operation execution and machine availability are dynamically distributed in time
over the planning horizon. As such, not all operations and machines are relevant to
decision-making at the same time. Therefore, the solution at each time point for a
small-dimensional system is calculated by mathematical programming. The multi-
dimensionality and the combinatorial explosion of the problem faces a decreasing
connectivity under the network diagram of the operations. The analysis of the
manufacturing process paths for the execution of different jobs can help to reveal a
real utilization of the channels at different stations as well as the stations all together.
This may be helpful for estimating the requirements on the multi-functionality of the
stations. Such an analysis may reveal, for example, that some channels are utilized
fully while other channels are used occasionally. This analysis may be used for the
capacity design and investment decisions.

The formulation of the scheduling model in the dynamic control form makes it
possible to apply it both to proactive and reactive real-time scheduling. As such,
integration of the planning and real-time control stages can be realized using
the unified methodical and technical principles. Moreover, the formulation of the
scheduling model as an optimal program control allows the consideration of a non-
stationary process view and the use of the accuracy of continuous time. In addition,
a wide range of analysis tools from control theory regarding stability, controllability,
adaptability, etc. may be used if a schedule is described in terms of control.

In the future, a robustness analysis of the overall system, that is, both of
the process design and the schedule, can extend the results of this study. In
addition, computational examples may help to reveal new insights. A more detailed
analysis of the Industry 4.0 technology may illuminate a taxonomy of structural-
functional problems in this emerging research field. Finally, Industry 4.0 and digital
technologies open new possibilities to the implementation of dynamic scheduling
techniques using real-time data about the machine utilization, entering of new jobs,
and the operation processing status. This makes it possible to extend the algorithmic
dynamic decomposition principles of the control scheduling models, for example, by
incorporating an event-oriented decomposition based on such events as “a machine
becomes available,” “an operation is completed,” or “a new job enters the system.”
These extensions can be considered in light of future research topics.
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2.6 Appendix. Notations

2.6.1 Sets, Maps, and Constants

Notation Meaning
A = {Aν, ν ∈ 1, . . . n} Set of jobs
D ={ {

D
(i)

æ′
}

∪
{
D

(i,j)
æ

}
,

i, j ∈ 1, ..m, æ′, æ ∈ 1, . . . si

} Set of operations

M = {Mi, i ∈ 1, . . .m} Set of stations
C =

{
C

(i)
λ , λ ∈ 1, li

}
Set of channels

Φ =
{ {

ΦS
(i)
π

}
∪

{
ΦN

(i)
μ

}
,

π ∈ K
(r,1)
i , μ ∈ K

(r,2)
i

}
Set of resources

ΦS(i) =
{

ΦS
(i)
π , π ∈ K

(r,1)
i

}
Set of storable resources at M(i)

ΦN(i) =
{

ΦN
(i)
μ , μ ∈ K

(r,2)
i

}
Set of non-storable resources at M(i)

K Set of numbers
P ={ {

P
(i)

<æ′,ρ>

}
∪

{
P

(i,j)
<æ,ρ>

}
, ρ ∈ K

(f)
i

} Set of material flows subject to M(i)

P (i,j) =
{

P
(i,j)
<æ,ρ>, ρ ∈ K

(f)
i

}
Set of material flows for the ρ-types of materials
subject to M(i) and M(j).

¦ν1, ¦ν2 Sets of “and” and “or” precedence relations for the
jobs

�iæ1, �iæ2 Sets of “and” and “or” precedence relations for the
operations

U Set of feasible control inputs
J Set of performance indicators
Πt

<δ,δ′> Map describing the allowable transitions from one
multi-structural macro-state to another one

� Set of dynamic and static alternatives of the
manufacturing process

Rr̃ Set of process constraints
˜̃
Rr̃ Constants, which are known, and T = (T0,Tf ] is

the time interval for the manufacturing process
design synthesis

ζ ∈ {1, . . . , 	} Set of the numbers of the performance indicator
X(ξ(t), t) Area of the allowable states of the assembly line

structural dynamics
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2.6.2 Parameters and Functions

Notation Meaning
a Planned processing volume (lot size)
P̃

(1)
j , P̃

(2)
jρ , P̃

(3)
ij Known values for the maximal storage capacity at Mj , handling capacity

(throughput) at Mj for ρ, and transportation capacity between Mi and Mj ,
respectively

T0 Start time of the scheduling horizon
Tf End time of the scheduling horizon
b Setup time of a channel
d

(π)
iæjλ, g

(μ)
iæjλ Given consumption intensities of ΦS

(j)
π and ΦN

(j)
μ for D

(i,j)
æ and C

(j)
λ

H̃
(π)
j (t), ˜̃

H
(μ)

j (t) Intensities for the replenishment of the resources of ΦS
(j)
π and ΦN

(j)
μ ,

respectively
ξ (t) Vector of perturbation impacts
h(o)

0 , h(o)
1 Differentiable functions that determine the end conditions of the vector

σ Duration of the planning interval
ε(t) Preset matrix time function of the time-spatial constraints for the stations
�iæjλ(t) Preset matrix time function of the time-spatial constraints for the channels
β̃ (τ ) Penalty function for the completion delay of an operation
q(1) and q(2) Vector-functions, defining the main spatio-temporal, economic, technical,

and technological conditions for the machine functioning process

2.6.3 Indices

Notation Meaning
v Job index
n Running numbers of a job
æ Operation index
s Running numbers of an operation
i Station index

Job index from Sect. 3.6.2 ongoing
m Running numbers of a station
λ Channel index
l Running numbers of a channel
r Number of the iteration of the algorithm
ρ Product flow index
π Storable resource index
μ Non-storable resource index

Operation index from Sect. 3.6.2 ongoing
η Replenishment cycle
ρ̃, ˜̃ρ Running numbers of the replenishment cycles

(continued)
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Notation Meaning
α, β Indices of the precedence relations “and” and “or” for the jobs
α̃, β̃ Indices of the precedence relations “and” and “or” for the operations
l′ Running numbers of a structure element of the manufacturing process
δ Running number of a multi-structural macro-state of the manufacturing

process
χ Running number of the design structure of an alternative manufacturing

process
(o), (k), (r), (f) Indexes to describe the relationships of the respective sets to the

operations (o), channels (k), machines (r), and material flows (f)
t Current time point

2.6.4 Decision Control and State Variables

Notation Meaning
u(t) Control variable
x(t) State variables
zijμ(o) Auxiliary variable that characterizes the execution of the μ-operation
hijμ(o) The square under the integral curve zijμ(o)
gijμ(o) Auxiliary variable that is equal to the time t

/
ijμ between the completion

time of the μ-operation and Tf
w

(o)
iμ j Auxiliary control variable that equals 1 if x

(f )
iμ (t) = a

(f )
iμ at time t and

x
(o)
iμ �= a

(o)
iμ

σ
(and)
iα ; σ

(or)

iβ
;

σ
(or)

iβ
; σ

(and)

iα
;

σ
(5,2)
iμ ; σ

(2,1)
iμ

Coefficients of the adjoint system

ψ(t) Adjoint variable
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