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Abstract

Like other congregate living settings, military basic training has been subject to outbreaks of

COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting

using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our

analysis revealed unique aspects of basic training that require customized approaches to

outbreak prevention, which draws attention to the possibility that customized approaches

may be necessary in other settings, too. In particular, we showed that introductions by train-

ers and support staff may be a major vulnerability, given that those individuals remain at risk

of community exposure throughout the training period. We also found that increased testing

of trainees upon arrival could actually increase the risk of outbreaks, given the potential for

false-positive test results to lead to susceptible individuals becoming infected in group isola-

tion and seeding outbreaks in training units upon release. Until an effective transmission-

blocking vaccine is adopted at high coverage by individuals involved with basic training,

need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic

training. Ongoing uncertainties about virus variants and breakthrough infections necessitate

continued vigilance in this setting, even as vaccination coverage increases.

Author summary

COVID-19 has presented enormous disruptions to society. Militaries are not immune to

these disruptions, with outbreaks in those settings posing threats to national security. We

present a simulation model of COVID-19 outbreaks in a U.S. Army basic training setting

to inform improved approaches to prevention there. Counterintuitively, we found that

outbreak risk is driven more by virus introductions from trainers than the large number
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of trainees, and that outbreak risk is highly sensitive to false-positive results during entry

testing. These findings suggest practical ways to improve prevention of COVID-19 out-

breaks in basic training and, as a result, maintain the flow of new soldiers into the military.

This work highlights the need for bespoke modeling to inform prevention in diverse insti-

tutional settings.

Introduction

In addition to the widespread societal and economic harms caused by the COVID-19 pan-

demic, operations in numerous institutional settings have experienced disruptions and neces-

sitated major adjustments. As one example, colleges and universities have adopted a variety of

testing strategies to reduce transmission, including pre-matriculation testing and up to twice-

weekly testing to survey for asymptomatic and pre-symptomatic infections [1–3]. Some sport-

ing leagues and workplaces have made similar adjustments to their operations [4, 5]. In situa-

tions where adjustments have been more minimal, such as relying solely on symptom-based

surveillance, large outbreaks have occurred, requiring the suspension of operations until the

outbreak has run its course [6–9]. These failures indicate that symptom-based surveillance is

inadequate as the primary intervention for preventing the introduction and spread of SARS-

CoV-2 in these settings [10–13].

Beyond the aforementioned institutional settings, COVID-19 has also caused disruption in

military settings [14–16]. On the USS Theodore Roosevelt, an outbreak of COVID-19 infected

at least 1,331 out of 4,779 sailors and forced the diversion of the ship to the U.S. Naval base on

Guam [14,15]. In several basic training settings, COVID-19 outbreaks have occurred shortly

after trainees arrived, despite the fact that they were tested on arrival and isolated if positive

[16,17]. Outbreaks in basic training settings are of concern because they disrupt the flow of

new soldiers into the military, which is essential to maintaining force strength as retirements

and expiring enlistments continue despite interruptions to basic training.

The fact that outbreaks have occurred in basic training despite efforts to prevent them sug-

gests that there is room for improvement with prevention in this setting [18,19]. There are a

number of unique challenges to preventing outbreaks during basic training, however. First,

new recruits to the military are generally in good health and young, making it likely that they

develop only mild symptoms or none at all [20,21]. Second, basic training involves groups of

hundreds of people training in close quarters (e.g. first aid, partner-based strength and condi-

tioning) and spending nearly all of their time together for 70 days, including in situations that

present prime opportunities for transmission, such as dining, sleeping, exercising, and per-

forming personal hygiene. Third, reverse-transcriptase polymerase chain reaction (RT-PCR)

testing at the time of arrival leaves open the possibility of missing infections among trainees

who were infected shortly before arrival or en route [22,23]. In addition, the current lack of

regular testing of trainers and support staff leaves open the possibility that they could intro-

duce the virus into this setting.

We used an agent-based simulation model developed around a hypothetical basic training

setting (Fig 1) to investigate the potential to reduce the risk and extent of COVID-19 outbreaks

in this unique setting. We calibrated the model to data from testing upon arrival and 18–22

days later at two U.S. Army posts that experienced COVID-19 outbreaks. The calibration

informed the model’s assumptions about the initial prevalence of infection among recruits and

transmission potential in a basic training setting, as represented by the basic reproduction

number, R0. Using this model, we examined how effective four interventions might be in
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reducing the probability and size of outbreaks in this setting: 1) reducing introductions of the

virus into the basic training setting by trainers and support staff, 2) increasing rounds of arrival

testing of trainees, 3) increasing compliance with wearing face masks and practicing physical

distancing, and 4) increasing immunity among trainees through pre-arrival vaccination.

Results

Model calibration

We assumed values of most parameters based on the literature (Table 1) and calibrated two

others (initial prevalence of infection, p, and the basic reproduction number, R0) for each of

two U.S. Army posts with known outbreaks during basic training: Fort Benning (FB) and Fort

Fig 1. Model schematic. Trainees arrive in a three-day window (blue), progress to cocoons of 60 trainees each for 14 days (yellow), and then progress to companies

of 240 trainees each for 56 days (green). Trainees have contact with other trainees in their cocoon or company, with trainers (brown) assigned to their unit (two per

cocoon, eight per company), and with support staff (gray). Trainees who test positive following arrival testing or presentation with symptoms are placed in the sick

bay (red) for ten days before returning to their unit. Trainers and support staff who test positive following presentation with symptoms isolate from home for ten

days. New cohorts like the one depicted here enter training posts on a weekly basis, but we model only one given that cohorts do not interact with one another. All

processes in the model are defined on a daily time step.

https://doi.org/10.1371/journal.pcbi.1010489.g001
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Leonard Wood (FLW). Upon arrival, 4/640 recruits were positive at FB and 0/500 at FLW.

After accounting for the possibility of false negatives and false positives consistent with our

model’s assumptions about test sensitivity and specificity, we obtained median estimates of p
of 1.9% at FB (95% credible interval: 0.3–2.9%) and 0.9% at FLW (95% CrI:0.2–1.5%). Simulat-

ing the model forward until the next testing day on each post, we found that a median R0 value

of 5.0 (95% CrI: 3.9–6.1) best matched the 142/636 positive tests on day 22 at FB and that a

median R0 value of 4.9 (95% CrI: 3.9–6.2) best matched the 70/500 positive tests on day 18 at

FLW (Figs 2 and S1). Given that these outbreaks were exceptional events rather than common

occurrences, we focused our baseline scenario on a value of R0 equal to the average of the 0.1%

quantiles of the R0 estimates from FB and FLW (3.4).

Model behavior under baseline scenario

Following the calibration procedure, simulations of our model tracked a cohort of 1,200 train-

ees who spent their first two weeks of basic training in 20 cocoons of 60 and the next eight

weeks in five companies of 240 (Fig 1). Under the baseline scenario, testing occurred upon

arrival and 14 days later, compliance with face masks and physical distancing was assumed as

30%, the proportion immune at the time of arrival was 2.6%, and trainers and support staff

had a 1% chance of becoming infected in the community over the 70-day period of basic train-

ing. Given that calibrated values of p and R0 from FB and FLW were similar, we used the aver-

ages of their medians for p (1.3%) and 0.1% quantiles for R0 (6.1) in our baseline scenario. We

chose the 0.1% quantile for R0 because the outbreaks at FB and FLW were unusually large and

because values of R0 within this range resulted in model behavior with greater sensitivity to

changes in other model parameters than higher values of R0 did.

Under this scenario, cumulative infections over the 70-day training period were distributed

multimodally across 1,000 replicate simulations, with many resulting in very few infections

Table 1. Model parameters. For parameters for which references are cited, baseline values correspond to median estimates, and low and high values correspond to 2.5%

and 97.5% quantiles, respectively. Isolation length is the only exception, which was chosen to span a range of values that have been considered at different points.

Parameter Baseline value Low value High value Reference

Parameters calibrated to outbreak data
Basic reproduction number 5.0 4.0 6.0 Calibrated, +/- 1

Initial prevalence of infection 0.014 0.0025 0.022 Calibrated

Parameters explored in intervention analysis
Probability of community exposure to trainers and support staff over the 70 days of basic training 0.01 0 0.10 Pei et al. [24]

Compliance with masks and distancing 0.3 0.1 0.5 Chu et al. [25]

Proportion immune upon arrival 0.026 0.018 0.033 Pei et al. [24]

Parameters explored in sensitivity analysis
Incubation period (shape) 5.807 3.585 13.865 Lauer et al. [22]

Incubation period (scale) 0.948 0.368 1.696 Lauer et al. [22]

Duration of symptoms 10 d 8 d 11 d Chen et al. [26]

Proportion symptomatic 0.57 0.54 0.60 Kasper et al. [14]

Generation interval (shape) 2.89 1.7 4.7 Ferretti et al. [27]

Generation interval (scale) 5.67 4.6 6.9 Ferretti et al. [27]

Test specificity 0.998 0.992 0.999 Perkins et al. [28]

Test sensitivity 0.859 0.547 0.994 Perkins et al. [28]

Protection from face masks (odds ratio) 0.3 0.2 0.5 Payne et al. [15]

Isolation length 10 d 7 d 14 d CDC [29]

Relative infectiousness of asymptomatics 0.8 0.5 1.0 Assumed

https://doi.org/10.1371/journal.pcbi.1010489.t001
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and some resulting in outbreaks in one or more companies (Fig 3A). This multimodal pattern

was driven by stochasticity in the number of companies that experienced an outbreak affecting

many individuals within the company but few outside it, consistent with the structure of con-

tacts assumed in the model. Based on this distribution, we defined an outbreak as a simulation

in which 100 or more infections occurred over the training period. According to this definition

(which we refer to as an outbreak hereafter), 71% of simulations resulted in an outbreak, and

the median size of an outbreak was 427 (25–75% interval: 220–639) in the event that one

occurred (Fig 3B). When all interventions in the baseline scenario were relaxed (i.e., no arrival

testing, no symptom-based surveillance and isolation, and no masks or distancing), the proba-

bility of an outbreak increased to 0.95, and the median size of an outbreak increased to 663

(25–75% interval: 444–882) (Fig 3C and 3D). Thus, our model predicts that even though inter-

ventions under our baseline scenario allowed for outbreaks, they made them less frequent and

less severe than they would have been otherwise. Still, results from the baseline scenario indi-

cate that there is scope for further reducing outbreak risk.

Impact of interventions

Reducing introductions by trainers and support staff. When introductions by trainers

and support staff were eliminated completely, the probability of an outbreak decreased from

0.73 to 0.48 under our model (Fig 4). The size of outbreaks was also reduced, with median

cumulative infections decreasing from 428 to 406 and the 75th quantile decreasing from 636 to

435. This pattern reflects a decrease in the number of companies experiencing an outbreak,

consistent with the multimodal nature of how cumulative infections were distributed across

replicate simulations (Fig 3A and 3C). When the probability of community exposure for train-

ers and support staff increased from 0.01 to 0.10 over the course of the training period,

Fig 2. Model calibration to data from outbreaks in basic training settings. Functional boxplots show model predictions from

1,000 replicate simulations for Fort Benning (left) and Fort Leonard Wood (right) based on median parameter values calibrated

to data from each (red circles). The functional boxplot shows the median estimate (black line), 50% central region (25–75%)

(blue band), 1.5 times the central region (blue lines), and outliers defined as lines outside of 1.5 times the central region (dashed

green lines). These results demonstrate agreement between the data and the central tendency of the model but also highlight the

degree of stochasticity in the model’s behavior.

https://doi.org/10.1371/journal.pcbi.1010489.g002
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outbreaks happened in all 1,000 (100%) replicate simulations and had a large magnitude

(median: 1,049 infections; 25–75% interval: 863–1,082).

Arrival testing of trainees. To isolate the effects of different strategies for arrival testing

of trainees, we focused our analysis of testing strategies for trainees on a scenario in which

there were no introductions by trainers (Fig 5A and 5B). Compared with no arrival testing of

trainees, our baseline scenario of testing on arrival and day 14 reduced the probability of an

outbreak from 0.87 (95% confidence interval: 0.85–0.89) to 0.47 (95% CI: 0.44–0.51) (Fig 5A).

The second test on day 14 resulted in a modest benefit, with testing on arrival only resulting in

an outbreak probability of 0.49 (95% CI: 0.47–0.53). Adding a third test on day seven (median:

0.415; 95% CI: 0.38–0.45) or using an alternative strategy of testing on arrival and days three

and five (median: 0.43; 95% CI: 0.39–0.46) resulted in slightly lower outbreak probabilities

Fig 3. Outbreaks under the baseline scenario (top) and a scenario with no interventions (bottom). Left: Distributions of cumulative infections

over the 70-day training period across 1,000 replicate simulations. Right: The functional boxplot shows the median estimate (black line), 50%

central region (25–75%) (blue band), 1.5 times central region (blue lines), and outliers defined as lines outside of the 1.5 times the central region

(dashed green lines). Based on A, we defined an outbreak as 100 or more total infections (vertical dashed lines in A and C). The probability of an

outbreak and the median and 25–75% interval of outbreak sizes are printed in B and D.

https://doi.org/10.1371/journal.pcbi.1010489.g003
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Fig 4. Outbreaks in basic training as a function of community exposure of trainers and support staff. From left to right, columns show

increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the virus in the community over the course of

the 70-day training period. Each panel contains a functional boxplot of the daily incidence of new infections across 1,000 replicate simulations

showing the median estimate (black line), 50% central region (25–75%) (blue band), 1.5 times the 50% central region (blue lines), and outliers

defined as curves outside of the 1.5 times the central region (dashed green lines). The probability of an outbreak and the median and 25–75%

interval of outbreak sizes are printed in each panel.

https://doi.org/10.1371/journal.pcbi.1010489.g004

Fig 5. Outbreak probability (top) and size (bottom) in basic training as a function of alternative scenarios for testing trainees upon

arrival (x-axis). Testing scenarios are labeled according to the day on which a test was administered to trainees following their arrival. From

left to right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the virus in the

community over the course of the 70-day training period. Error bars for outbreak probability indicate 95% Pearson-Clopper confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1010489.g005
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than the baseline scenario. Outbreak size was reduced similarly under all scenarios that made

use of one or more arrival tests for trainees (Fig 5B). Under a scenario in which trainers and

support staff had a 1% chance of community exposure, the relative effects of different strategies

for testing trainees were similar, but somewhat less pronounced (Fig 5C and 5D). Under a sce-

nario with 10% community exposure of trainers and support staff, the effects of different test-

ing strategies were minimal, given that introductions by trainers and support staff were the

primary driver of outbreaks (Fig 5E and 5F).

Compliance with face masks and physical distancing. Across the full range of 0 to 100%

compliance with face masks and physical distancing, there was three-fold variation in the

probability of an outbreak when there were no introductions by trainers or support staff (Fig

6A). At baseline levels of community exposure to trainers and support staff, this was reduced

to less than two-fold variation in outbreak probability (Fig 6C), and to around the same out-

break probability when community exposure to trainers and support staff was high (Fig 6E).

The effect of compliance on outbreak size was approximately linear, with reductions being

highest under a scenario with high levels of introductions by trainers and support staff, given

that outbreaks were so large in that scenario when compliance was zero (Fig 6F). When com-

pliance changed over the course of the training period, outbreak probability was affected mini-

mally (S2A–S2C Fig). At the highest level of community exposure to trainers and support staff,

a modest effect of changes in compliance over time could be seen for outbreak size, with higher

final compliance reducing outbreak size somewhat (S2F Fig). In addition to outbreak probabil-

ity and size, high compliance with face masks and physical distancing resulted in outbreaks

with lower peak incidence but that were more prolonged (S3 Fig).

Fig 6. Outbreak probability (top) and size (bottom) in basic training as a function of compliance with face masks and physical

distancing (x-axis). From left to right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were

exposed to the virus in the community over the course of the 70-day training period. Error bars for outbreak probability indicate 95%

Pearson-Clopper confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010489.g006

PLOS COMPUTATIONAL BIOLOGY Preventing COVID-19 outbreaks in military basic training

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010489 October 7, 2022 8 / 23

https://doi.org/10.1371/journal.pcbi.1010489.g006
https://doi.org/10.1371/journal.pcbi.1010489


Pre-arrival vaccination. Given the continually changing nature of the landscape of

COVID-19 vaccine uptake and effectiveness, we chose to model vaccination in a simple way:

by varying the proportion of agents immune at the beginning of the simulation. This corre-

sponds to an all-or-none model of vaccination [30] in which the product of coverage and effi-

cacy against infection equals our parameter for proportion immune. For example, 80%

efficacy against infection and 80% coverage would correspond to 64% immune. As the propor-

tion immune in our model increased from 0.10 to 0.90, outbreak probability dropped steeply,

with very few outbreaks occurring once the proportion immune at the beginning of the train-

ing period reached around 0.40–0.60 (Fig 7A and 7C and 7E). When outbreaks did occur, they

were smaller when the proportion immune was higher (Figs 7B and 7D and 7F, and S4). That

was particularly so when the rate of virus introduction from trainers and support staff was

high, given that immunity reduced the number of companies in which outbreaks occurred.

When compliance with face masks and physical distancing was set to zero (S5 Fig), slightly

higher levels of immunity were required to achieve the same benefits achieved by lower immu-

nity in the presence of 30% compliance with face masks and physical distancing. In general,

for high levels of compliance with facemasks, the levels of immunity required for the probabil-

ity of an outbreak to be zero was lower (S11 Fig). For instance, assuming high levels of intro-

ductions and 100% compliance with facemasks, previous immunity would need to be 40% to

result in the probability of an outbreak to be zero. In contrast, at no compliance with face-

masks, previous immunity would need to be 70% to achieve the same benefits (S11E Fig).

Fig 7. Outbreak probability (top) and size (bottom) in basic training as a function of the proportion immune upon arrival (x-axis).

From left to right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the virus in

the community over the course of the 70-day training period. Error bars for outbreak probability indicate 95% Pearson-Clopper confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1010489.g007
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Sensitivity analysis

For model parameters not evaluated in our analysis of interventions, we performed a sensitiv-

ity analysis to understand how variability in those parameters could affect outbreak probability

and size. Under the parameter ranges that we explored, most resulted in outbreak probabilities

within 0.2 of baseline and outbreak sizes within 200 infections of baseline (Fig 8).

With respect to outbreak probability, sensitivity was greatest to lower values of the initial

prevalence of infection among trainees, as well as the parameters for the generation interval

distribution and test sensitivity (Fig 8A). Those parameters all influence the probability that

infections among arriving trainees are missed and go on to produce secondary infections.

There was also considerable sensitivity to low values of test specificity (Fig 8A). Investigating

this further, we found that testing three times (either on days 1, 7, 14 or 1, 3, 5) increased out-

break probability when test specificity was low (S6A and S6C and S6E Fig), whereas those

additional tests decreased outbreak probability under baseline test specificity (Fig 5A and 5C

and 5E). This suggests that, as a result of lower specificity, additional individuals with false pos-

itive test results go on to become infected in group isolation and then return to training, where

they contribute to the development of outbreaks. As a potential remedy to this problem, we

assessed the impact of testing upon exit from group isolation. Under a scenario with low speci-

ficity and no introductions by trainers or support staff, we found that testing reduced outbreak

Fig 8. Univariate sensitivity analysis. Changes in outbreak probability (top) and outbreak size (bottom) relative to the baseline scenario are

shown by the width of each bar. From left to right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support

staff were exposed to the virus in the community over the course of the 70-day training period.

https://doi.org/10.1371/journal.pcbi.1010489.g008
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probability from 0.83 (95% CI: 0.81–0.85) to 0.55 (95% CI: 0.52–0.58) (S7 Fig). This brought

outbreak probability back within the range expected under higher values of test specificity

(median: 0.55; 95% CI: 0.52–0.59). Even when test specificity was at its baseline value to begin

with, testing upon exit from group isolation further reduced outbreak probability (S7 Fig).

While this form of testing could unnecessarily prolong the time spent by individuals in group

isolation who may no longer be infectious, we found that testing upon exit from group isola-

tion did not significantly increase the total person-days in group isolation (S8 Fig, top). In fact,

when test specificity was low, testing upon exit from group isolation reduced total person-days

in group isolation, given that there were fewer infections who entered group isolation in the

first place (S8 Fig, bottom).

The parameters to which outbreak size was sensitive differed according to the extent of

community exposure for trainers and support staff. When there were no introductions from

trainers or support staff, the greatest sensitivities were to low values of test specificity and lon-

ger isolation periods (Fig 8B). As for outbreak probability, this behavior was attributable to

false positives becoming infected in group isolation and seeding outbreaks upon return to

training, which happened more when specificity was low and a longer isolation period pro-

longed exposure in group isolation. Likewise, this problem was mitigated by testing upon exit

from group isolation (S9 Fig). At our baseline level of community exposure for trainers and

support staff, there was moderately high sensitivity to several parameters (Fig 8D). At the high-

est level of community exposure, sensitivity of outbreak size was greatest to low values of R0

and high compliance with face masks and physical distancing, with smaller outbreak sizes in

both cases (Fig 8F).

Discussion

Calibration of our model to data from two known outbreaks in military basic training settings

resulted in a point estimate of initial prevalence among recruits of around 1% at that time,

with testing from one of those outbreaks yielding zero positive tests upon arrival and implying

one or more false-negative test results. Despite the implication of this result that there should

be a steady stream of infections among incoming trainees, our results showed that outbreaks

are not an inevitability under these circumstances, with more than half of simulations under

our baseline scenario resulting in no outbreak. Accordingly, chance is likely to play a role in

why more outbreaks in basic training have not been reported during the pandemic. Higher

compliance with face masks and physical distancing than we assumed in our baseline scenario

(30%) could also contribute to the prevention of outbreaks in some cases. At the same time,

changes in the prevalence of SARS-CoV-2 in communities across the United States [24] are

likely to make the risk of undetected introductions by trainees highly dynamic over the course

of the pandemic, as they affect the prevalence of infection among trainees. Similar concerns

about community transmission for risk of COVID-19 outbreaks in institutional settings have

also been raised for K-12 schools [31–35].

Although introductions of SARS-CoV-2 by trainees have been implicated in high-profile

outbreaks such as the ones we used to calibrate our model, our analysis predicts that trainers

and support staff could play an even greater role in introducing the virus into basic training

settings. Whereas trainees enter the training post once, are tested upon arrival, and do not

interact with the surrounding community until completion of training, trainers and support

staff come and go on a nightly basis over the entire period of training and are not tested unless

they present with symptoms. Thus, even though trainees considerably outnumber trainers and

support staff, the latter have a much greater chance of becoming infected at some point during

the training period and are also more likely to be present on days on which they are maximally
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infectious. Trainees, on the other hand, are only likely to transmit appreciably if infected

within a few days prior to arrival [22,23]. Our results suggest that the risk of outbreaks in basic

training could be reduced considerably if introductions by trainers and support staff could be

prevented. In the absence of vaccination, one means of doing so could be to have them remain

on post during the training period. Another could be to test them frequently to screen for

asymptomatic and presymptomatic infections [36,37]. Once vaccines did become available, a

strategy was adopted at one Army basic training post in response to this study whereby train-

ers and support staff were categorized as Front Line Essential Workers and prioritized for

vaccination.

One unique feature of how COVID-19 is managed in basic training that strongly influenced

our results is the fact that individuals who test positive are placed into isolation as a group

along with others who test positive. In theory, individual versus group isolation should not be

of much consequence if everyone in group isolation has already been infected, but in practice

this could lead to new infections for individuals who enter group isolation as a result of a false-

positive test result. Our results showed that this possibility means that increasing rounds of

testing after arrival could come with the downside of producing more false-positive test results

and seeding outbreaks once those individuals return to training units. Likewise, our sensitivity

analysis showed that seemingly minor imperfections in test specificity can exacerbate this phe-

nomenon. As long as group isolation remains logistically necessary, our results indicate that

testing upon exit from group isolation is a promising strategy for mitigating this risk. Impor-

tantly, our results also demonstrate that this form of testing appears to be a practical solution,

as it does not substantially increase the time that trainees spend in isolation and, under some

scenarios, may actually reduce it.

Our calibration resulted in estimates of the basic reproduction number, R0, of 11.3 (95%

CrI: 4.9–17.9) and 10.4 (95% CrI: 4.5–17.8) in the two outbreaks used in our calibration.

Although the central estimates were most consistent with the data from those outbreaks, we

opted for lower-bound estimates given our perception that these outbreaks were not represen-

tative of basic training experiences during the pandemic more generally. While even these

lower-bound estimates are higher than many R0 estimates in community settings [38,39], it is

common for R0 estimates from congregate living settings like basic training to be higher. For

example, R0 was estimated to be at least 6.7 for an outbreak on the Diamond Princess cruise

ship [40]. Other congregate living settings including homeless shelters [41,42], colleges and

universities [1,43], overnight summer camps [44,45], and prisons [46,47] have all experienced

high attack rates suggestive of high basic reproduction numbers. A relatively high R0 in basic

training makes preventing outbreaks with face masks and physical distancing more difficult,

particularly given that trainees sleep in group quarters. It also means that vaccines will need to

be highly effective at blocking transmission to prevent outbreaks in basic training settings.

Assuming that symptomatic individuals continue to be tested and isolated if positive well into

the future, our results suggest that half or more of trainees would need to be fully protected

from infection for outbreaks in basic training to be prevented altogether.

Consistent with a long history of research on military medicine translating into benefits for

civil society [19], our findings have implications for COVID-19 prevention in institutional set-

tings beyond military basic training. Some of the most visible work modeling COVID-19 in

relation to institutional settings has focused on surveillance screening in generic workplace

environments [36,37]. An aspect relevant to many institutional settings that generic models

neglect is the differential nature of how some classes of individuals interact with the institution.

In military basic training, there are two classes: one with a continuous risk of introducing the

virus into the institution (trainers and support staff) and another with a one-time risk of doing

so (trainees). Two-class structures apply in other institutional settings, as well—e.g., staff and
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students in a university, guards and inmates in a prison. In universities, imperfect entry testing

of students has been implicated as playing a role in COVID-19 outbreaks early in a new semes-

ter [9]. Our work suggests that more than one round of entry testing and individual, rather

than group, isolation may be important for mitigating such outbreaks. In prisons, our work

suggests that reducing introductions of SARS-CoV-2 by guards is likely to be a critical means

of prevention. As in military basic training, measures that are recommended in generic set-

tings (e.g., frequent testing, individual isolation) may not be practical, or even advisable, in pri-

sons. In this way, our work not only offers lessons for those settings, but points to the need for

additional work to devise solutions appropriate to them.

One limitation of our analysis is that we did not have detailed information on contact struc-

ture within training units. In the absence of this information, we made the simplifying

assumption that everyone within a training unit had equal contact with everyone else. There

are also details about sex segregation at certain stages of the basic training process that we did

not consider and could affect contact patterns. Because contact heterogeneity is thought to be

a primary driver of individual heterogeneity in transmission [48], our model was not well-

suited to addressing the potential role of superspreading in the basic training setting. In addi-

tion, there is also uncertainty regarding the extent and nature of contacts among trainees,

trainers, and support staff. Because outbreak probability was strongly influenced by the proba-

bility of introductions by trainers and support staff, studies of the relative strength of trainee-

trainee and trainer-trainee contacts could be important for refining understanding of outbreak

risk in basic training settings. We also did not evaluate the potential impact of contact tracing

in this setting. While contact tracing has proven effective in other settings [49], it may be diffi-

cult to implement effectively in this setting because the frequency and nature of contacts

within a relatively large group make standard definitions of close contacts uninformative [50].

There are uncertainties about some of our parameter values, such as mask effectiveness, base-

line immunity, and testing accuracy. We addressed these uncertainties through a sensitivity

analysis, which showed that outbreak probabilities remained similar to our baseline scenario

under a range of parameter values. The parameters that did significantly impact outbreak

probability (community exposure of trainers and support staff, pre-arrival immunity) are

likely to vary over the course of the pandemic, with our estimates offering intuition about how

outbreak probability and size could change as a result.

In conclusion, our results show that military basic training is a unique setting that requires

customized strategies for preventing COVID-19 outbreaks. Specifically, we show that while

testing of trainees upon arrival is important, frequent testing of trainers and support staff who

interact with trainees may be even more important. Likewise, it draws attention to the high

priority that should be placed on trainers and support staff for vaccination, which may be a

more actionable recommendation based on this work. Unlike other settings, our results show

that testing of trainees that is too frequent could come with the drawback of increasing the risk

of an outbreak. This counterintuitive result is a consequence of the fact that false positives

could result in susceptible trainees becoming infected in group isolation and then seeding an

outbreak in their training unit upon release from isolation. Like other settings, our results sug-

gest that compliance with face masks and physical distancing is important and that a transmis-

sion-blocking vaccine could be effective at preventing outbreaks. At the same time, the

relatively high values of R0 that we estimated from two outbreaks in basic training settings

imply that these interventions will be less impactful in basic training than in community set-

tings. In the event of other emerging respiratory viruses in the future, our model could serve as

a starting point for exploring the possible impacts of such a virus and how best to control it to

maintain basic training operations.
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Methods

Model description

We developed an agent-based model of SARS-CoV-2 transmission in a single cohort of train-

ees, their trainers, and associated support staff at a single U.S. Army training post, based on

informed hypothetical assumptions from the operations in this setting. In reality, new cohorts

enter a training post on a weekly basis. Although there is some possibility for an outbreak in

one cohort to spill over into another cohort, such outbreaks are likely to be mostly indepen-

dent of one another given limited contact among trainees and trainers from different weeks’

cohorts. As such, we viewed a model of a single cohort as sufficient to inform on the effects of

various prevention efforts, which was our primary goal in this study. Because of the rapid time-

scale of outbreaks in this setting, we modeled all processes on a daily time step. Below, the

model is described in general terms, with parameter values provided in Table 1.

The model was implemented in the R programming language version 4.0 [51] using the

packages scam [52] and igraph [53]. A single realization of the model takes around a second to

execute on a personal computer using Linux (Fedora 34) on a single thread. The simulation

analyses were performed using the supercomputing infrastructure of the Center for Research

Computing at Notre Dame (https://crc.nd.edu). Different realizations of the model were simu-

lated in parallel, but each simulation was performed on a single-thread computing node. All

code used in this analysis is available at https://github.com/confunguido/prioritizing_

interventions_basic_training.

Structuring of agents and their contacts. Our model included a total of 1,200 trainees,

40 trainers, and 60 support staff (Fig 1). Trainees arrived over a three-day window and pro-

ceeded to one of 20 cocoons of 60 recruits each. After 14 days, five companies of 240 recruits

each were formed by pooling together four cocoons. Pooling of individuals into cocoons and

cocoons into companies was done randomly in the model and not with respect to vaccination

status, gender, or any other factor. Trainees remained in their company for an additional 56

days until training was completed. Throughout the 70-day training period, trainees were in

contact with other trainees in their unit (initial cocoon and then company) and with trainers

assigned to their unit: two trainers for each cocoon and eight for each company. Trainees also

came into contact with a set of 60 support staff, which includes staff providing support for din-

ing, shooting ranges, equipment, and first aid. In the event that trainees tested positive for

SARS-CoV-2, they were separated from their unit and placed in the sick bay, where they had

contact with everyone else in the sick bay. Trainers and support staff who tested positive iso-

lated at home, meaning that they had no contact with any other agents in the model during

that time.

SARS-CoV-2 infection and transmission. Introduction of SARS-CoV-2 into the cohort

occurred by two means: through trainees upon arrival or through trainers or support staff at

any point over the training period. Whereas trainees are restricted to the training setting once

they arrive, trainers and support staff go home at night and engage in day-to-day activities in

the community in their time away from work. We simulated initial infections among trainees

according to a binomial random variable based on their initial prevalence of infection and sim-

ulated the timing of any initially infected trainee’s infection as a uniform random variable

between one and 39 days prior to arrival. This period was chosen based on the period in which

test sensitivity was assumed to exceed zero under our model, which also encompasses the

period of infectiousness. Because trainers and support staff could become infected at any point

during the training period in the community surrounding the training post, we simulated

community-acquired infections with a daily probability consistent with a given infection

attack rate over the 70-day period of training. We chose values for this probability consistent
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with infection attack rates over a 70-day period spanning a range of estimates by Pei et al. [24]

from the four states with U.S. Army basic training posts from May through July, 2020 (S10

Fig). At the same time, trainers and support staff could also become infected within the train-

ing environment and were subject to the same model parameters as trainees pertaining to that

environment.

The course of each agent’s infection was defined on a daily basis relative to their day of

exposure. In terms of infectiousness, the probability that an infected agent transmits to a sus-

ceptible contact on a given day of infection is proportional to the value of the generation inter-

val distribution for that day, which we modeled with a Weibull distribution [27]. Because our

model operates on a daily time step, we used a discretized version of this distribution wherein

the probability of an interval of length t was p(t) = F(t+1)−F(t), where F(t) is the distribution

function. The magnitude of infectiousness was captured by a parameter that was multiplied

with the generation interval distribution value on a given day of infection, resulting in a daily

probability of transmitting to a given susceptible contact. The sum of those daily probabilities

across all days of infection multiplied by the average number of contacts was equivalent to R0.

Only a subset of agents develop symptoms, with that outcome determined by a Bernoulli trial

for each infected agent. For those who do, symptoms manifest according to an incubation

period drawn from a discretized gamma distribution [22], and symptoms conclude a number

of days later drawn from a Poisson distribution [26]. For agents who remain asymptomatic,

their probability of transmitting to one of their contacts is lower than for their symptomatic

counterparts.

We assumed that a small proportion of individuals in the model were previously infected

prior to arrival of trainees, consistent with the timing of reported outbreaks at two U.S. Army

training posts in spring 2020. Given that those outbreaks were reported on May 31, 2020 and

were based on testing on days 18 and 22 of training [17,54], we assumed that those trainees

likely arrived during the week of May 3, 2020. Thus, estimates of cumulative incidence of

infection prior to that time should provide a reasonable approximation of previous exposure

and immunity. Based on estimates from a study [24] that modeled cumulative infections in the

U.S. population over the course of the epidemic, a median estimate of immunity among train-

ees as of May 3, 2020 was 2.6% (95% CrI: 1.8–3.3%). These estimates are national averages of

state-level estimates weighted by state-level Army recruitment rates [55]. We used the median

estimate in the model calibration and baseline scenario, and we explored the lower and upper

values in a sensitivity analysis.

Interventions. The primary means of preventing transmission in the model involved test-

ing for active infection and isolating test-positives. In our baseline scenario, trainees were

tested upon arrival and 14 days later, as well as any time they developed symptoms. Trainers

and support staff were also tested if they displayed symptoms. There was a modest delay of one

day between the time that a test was administered and when results were available. Individuals

continued with their normal activities while awaiting test results, entering isolation in the

event of a positive result and remaining there for ten days [29].

Test sensitivity varied by day of infection according to a piecewise model of daily test sensi-

tivity proposed by Grassly et al. [37]. In days one through six after infection, daily test sensitiv-

ity is proportional to daily infectiousness. In days seven and after, daily test sensitivity declines

according to a curve estimated with a generalized additive model by Wikramaratna et al. [56].

To allow for flexibility in the magnitude of sensitivity, we multiplied the curve for daily test

sensitivity by a scalar such that an average of daily test sensitivity weighted by the incubation

period distribution equaled a parameter for overall test sensitivity. This approach to calculating

a weighted average of daily test sensitivity resulted in the sensitivity of tests applied to

PLOS COMPUTATIONAL BIOLOGY Preventing COVID-19 outbreaks in military basic training

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010489 October 7, 2022 15 / 23

https://doi.org/10.1371/journal.pcbi.1010489


individuals presenting with symptoms being equal to the parameter for overall test sensitivity,

on average. For specificity, we assumed a constant value.

We chose values of overall test sensitivity and specificity based on data from an analysis of

more than 800 individuals tested two to three times each on the same day with a combination

of PCR tests of nasal swab specimens, PCR tests of saliva specimens, and antigen tests of nasal

swab specimens [28]. A Bayesian latent class analysis of those data obviated the need to define

any one of those tests as a gold standard by simultaneously accounting for imperfect sensitivity

and specificity of each test. The majority of individuals in that data set were college students

tested for surveillance purposes, meaning that their detectability of infection should be very

similar to surveillance testing in a military basic training population. We used median values

of estimates for PCR tests of nasal swab specimens, which were 0.859 (95% CrI: 0.547–0.994)

for sensitivity and 0.998 (95% CrI: 0.992–0.999) for specificity. These values of sensitivity were

similar to estimates from a meta-analysis of 16 published studies (median: 0.848; 95% CrI:

0.768–0.924) [57]. We were unable to find other studies on the specificity of clinical testing

with PCR tests, but similar ranges were found in a meta-analysis that evaluated data from

2004–2019 on 43 studies of PCR tests for other RNA viruses [58].

In addition to testing, we assumed that agents made use of face masks and physical distanc-

ing, when possible, to reduce transmission. These interventions impacted transmission by

reducing the probability of transmission between an infectious agent and one of their contacts

proportional to the probability that either or both agents were in compliance with face-mask

and physical-distancing guidelines at the time of contact and the per-contact reduction in the

probability of transmission from these interventions.

Model calibration

We calibrated the model to two known outbreaks in U.S. Army training posts: Fort Benning

(FB) [54] and Fort Leonard Wood (FLW) [17]. In both cases, we made use of reports of posi-

tive tests upon arrival (FB: 4/640; FLW: 0/500) and following an initial period of group quaran-

tine (FB: 142/636 on day 22; FLW: 70/500 on day 18). We used a two-step approach that

leveraged the information at these time points in a sequential manner. Because no information

about infections among trainers or support staff were provided in these reports, we limited the

calibration to infections among trainees only. We performed this calibration procedure sepa-

rately on the data from FB and FLW.

In the first step, we used data on the number of positive tests upon arrival, PositiveArrival, to

inform an initial estimate of the prevalence of infection among trainees upon arrival, p.

According to our assumptions about test sensitivity as a function of day of infection, 99% of

positive tests should have resulted from individuals infected within 39 days of arrival, assum-

ing a constant rate of infection over that period. Given the average test sensitivity, Se, over this

39-day period and the test specificity, Sp, we defined the likelihood of p according to

LðpjPositiveArrivalÞ ¼ BinomialðPositiveArrivaljTestedArrival; p� Seþ ð1 � pÞ � ð1 � SpÞÞ;

where p x Se + (1—p) x (1—Sp) is the probability of a trainee testing positive when accounting

for imperfect test performance. We defined the posterior probability density of p as

Pr pjPositiveArrivalð Þ ¼
LðpjPositiveArrivalÞ

R 1

0
LðpjPositiveArrivalÞdp

;

which assumes a uniform prior on p.

In the second step, we used approximate Bayesian computation to select combinations of p
and R0 that were consistent with data on the number of positive tests following group
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quarantine, PositiveLater. The posterior distribution of p from the first step served as a prior dis-

tribution of p in the second step. The initial set of particles were comprised of draws of p from

the estimated distribution combined with draws of R0 from a normal prior distribution (mean

9.6; 95% CI: 6.9–12.4) obtained from three different estimates from the literature [40,44,59].

Each of 200,000 of these particles was used to simulate forward under the model one time until

day 22 at FB and day 18 at FLW. In these simulations, the timing of infection of trainees infected

upon arrival was drawn uniformly from one to 39 days prior to arrival, given that this was the

period of time over which test sensitivity was allowed to exceed zero under our model. For a

given particle i, TestedLater trainees were tested (FB: 636; FLW: 500), and the number positive,

PositiveiLater, was recorded. Particles for which PositiveiLater equaled the observed PositiveLater
(FB: 142; FLW: 70) were retained, the set of which comprised our approximation of the poste-

rior distribution of p and R0 for each of FB and FLW. Given that the observed outbreaks were

likely exceptional events rather than common occurrences, we focused our baseline scenario on

a value of R0 equal to the average of the lower bounds of the R0 estimates from FB and FLW.

Analyses

Model behavior under baseline scenario. Following calibration of the model, we added aver-

age values of initial prevalence and R0 to the list of baseline parameter assumptions in Table 1.

Under this baseline scenario, we performed 1,000 replicate simulations with the hypothetical

cohort portrayed in Fig 1, examining the time course of the outbreak across replicates, the probabil-

ity of a large outbreak, and the size of a large outbreak, if one occurred. We evaluated these same

three model outputs under varying levels of four factors that could be altered by interventions.

Reducing introductions by trainers and support staff. On the one hand, community

exposure of trainers and staff could go up or down depending on the prevalence of SARS-

CoV-2 in the community at any given time. On the other hand, introductions from this source

could potentially be reduced by regularly testing trainers and support staff [36] or by having

them remain on base for the duration of the training period. To understand the implications

of different rates of introduction by trainers and support staff, we performed simulations

under three different levels of introduction (0, 1%, 10%), defined as the proportion of trainers

and support staff infected in the community over the course of the 70-day training period.

This broad range of variation should cover the full range of possible exposure during this time

window, including periods of low and high levels of community transmission.

Arrival testing of recruits. In addition to the baseline scenario of PCR tests on days 0 and

14, we considered a scenario without the test on day 14, a scenario with an additional test on

day 7, a scenario with tests on arrival and days 3 and 5, and a scenario with no arrival testing.

Compliance with face masks and physical distancing. Our default assumption was that

compliance with face masks and physical distancing was relatively low (30%) due to the physi-

cally intense nature of training and the fact that training entails large groups of people spend-

ing prolonged periods of time together. Given uncertainty about the appropriateness of our

baseline assumption of 30% and the potential for compliance with these measures to be either

disregarded completely or enforced strictly, we explored scenarios in which compliance ran-

ged from 0 to 100%. We also explored scenarios in which compliance began at the baseline

value of 30% and either decreased or increased linearly over the course of the training period

(to 10%, 20%, 40%, or 50%). The purpose of these scenarios was to understand the possible

impact of behavioral change over the course of the training period, were trainees to relax their

precautions or heighten them.

Pre-arrival vaccination. Immunity among trainees, trainers, and support staff varies nat-

urally depending on the history of the epidemic in communities that these individuals come
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from and the time in the epidemic when they arrive. Similarly, vaccination coverage varies

across communities, as well. For both forms of immunity, waning can compound variability in

protection against infection at different points of time in different groups of people. To cover

this wide range of possible scenarios, we varied the proportion immune upon arrival from 0 to

90% in increments of 10%.

Sensitivity analysis. To understand sensitivities of the model’s behavior to parameters

not explored in the intervention analyses, we conducted a univariate sensitivity analysis for all

other model parameters. These parameters, and the alternative low and high values that we

explored, are listed in Table 1. For each alternative parameterization, we ran 1,000 simulations

and calculated the probability of an outbreak and the size of one, if it occurred.

Wherever possible, we selected high and low values based on upper and lower bounds of

95% confidence or credible intervals from studies that estimated those parameters. Our rea-

soning for doing so was to convey the extent to which model outputs might change within a

plausible range of uncertainty about a given parameter. At the same time, we note that a limita-

tion of this approach is that it does not convey the full uncertainty in model outputs attribut-

able to parameter uncertainty, which would require a fuller accounting of joint uncertainty

across all model parameters (e.g., as in [60]). Accordingly, this analysis is intended to aid in the

building of intuition of decision makers rather than to provide quantitative projections.

For three parameters, we chose values based on our judgement about what constituted rea-

sonable ranges, due to difficulty in identifying reliable descriptions of uncertainty for those

parameters. The first of those parameters was R0, which had extremely wide ranges of uncer-

tainty in our model calibration that likely exceed the true range of uncertainty about this

parameter. The second of those parameters was the probability of community exposure to

trainers and support staff, values of which were loosely based on estimates of time-varying

prevalence of infection in the four states with U.S. Army training posts in May 2020 (S10 Fig).

The third of those parameters was the relative infectiousness of asymptomatics, which we per-

ceive to be generally viewed as somewhat less than that of symptomatic infections but not to a

great extent [61].
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Supporting information

S1 Fig. Simulation results used for the model calibration. We simulated 200,000 replicate

outbreaks for values of R0 evenly spaced between 2 and 20. The horizontal line shows the

observed data.

(TIF)

S2 Fig. Outbreak probability (top) and size (bottom) in basic training as a function of final

proportion of compliance with face masks and physical distancing (x-axis). The starting

proportion of compliance was set to the baseline value of 0.3, which linearly increased or

decreased over time to its final value by the end of the training period. From left to right, col-

umns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff

were exposed to the virus in the community over the course of the 70-day training period.
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Error bars for outbreak probability indicate 95% Pearson-Clopper confidence intervals.

(TIF)

S3 Fig. Outbreaks in basic training as a function of compliance with face masks and physical

distancing. From left to right, columns show increases in the proportion of time that individuals

comply with face masks and physical distancing. From top to bottom, rows show increases from 0

to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the virus in the com-

munity over the course of the 70-day training period. Each panel shows a functional boxplot of the

daily incidence of new infections across 1,000 replicate simulations, showing the median estimate

(black line), 50% central region (25–75%)(blue area), 1.5 times the central region (blue lines), and

outliers defined as curves outside of the 1.5 times the central region (dashed green lines).

(TIF)

S4 Fig. Outbreaks in basic training as a function of the proportion immune upon arrival.

From left to right, columns show increases in the proportion immune upon arrival. From top

to bottom, rows show increases from 0 to 0.01 to 0.10 of the probability that trainers and sup-

port staff were exposed to the virus in the community over the course of the 70-day training

period. Each panel shows a functional boxplot of the daily incidence of new infections across

1,000 replicate simulations, showing the median estimate (black line), 50% central region (25–

75%)(blue area), 1.5 times the central region (blue lines), and outliers defined as curves outside

of the 1.5 times the central region (dashed green lines).

(TIF)

S5 Fig. Outbreak probability (top) and size (bottom) in basic training as a function of the

proportion immune upon arrival (x-axis) when there is zero compliance with face masks

and physical distancing. From left to right, columns show increases from 0 to 0.01 to 0.10 of

the probability that trainers and support staff were exposed to the virus in the community over

the course of the 70-day training period. Error bars for outbreak probability indicate 95%

Pearson-Clopper confidence intervals.

(TIF)

S6 Fig. Outbreak probability (top) and size (bottom) in basic training as a function of

alternative scenarios for testing trainees upon arrival (x-axis) when test specificity is low

(0.992). Testing scenarios are labeled according to the day on which a test was administered to

trainees following their arrival. From left to right, columns show increases from 0 to 0.01 to

0.10 of the probability that trainers and support staff were exposed to the virus in the commu-

nity over the course of the 70-day training period. Error bars for outbreak probability indicate

95% Pearson-Clopper confidence intervals.

(TIF)

S7 Fig. Outbreak probability as a function of testing upon exit from group isolation (x-

axis). Rows show results for different values of test specificity. From left to right, columns

show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were

exposed to the virus in the community over the course of the 70-day training period. Error

bars indicate 95% Pearson-Clopper confidence intervals.

(TIF)

S8 Fig. Total person-days in group isolation as a function of testing upon exit from group

isolation (x-axis). Rows show results for different values of test specificity. From left to right,

columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff

were exposed to the virus in the community over the course of the 70-day training period.

(TIF)
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S9 Fig. Outbreak size as a function of testing upon exit from group isolation (x-axis). Rows

show results for different values of test specificity. From left to right, columns show increases

from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the

virus in the community over the course of the 70-day training period.

(TIF)

S10 Fig. Community exposure over time in states with U.S. Army basic training posts. This

measure of exposure is defined as infection attack rate over a 70-day period commencing on

the date indicated on the x-axis in 2020, as estimated by Pei et al. (24). Solid lines show medi-

ans, and bands show 95% credible intervals.

(TIFF)

S11 Fig. Outbreak probability (top) and size (bottom) in basic training as a function of the

proportion immune upon arrival (x-axis) and compliance with facemasks and physical dis-

tancing (colors). From left to right, columns show increases from 0 to 0.01 to 0.10 of the prob-

ability that trainers and support staff were exposed to the virus in the community over the

course of the 70-day training period. Each point reflects a proportion or median across 1,000

replicate simulations.

(TIFF)
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