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Power spectra of sleep electroencephalograms (EEG) comprise two main

components: a decaying power-law corresponding to the aperiodic neural

background activity, and spectral peaks present due to neural oscillations.

“Traditional” band-based spectral methods ignore this fundamental structure

of the EEG spectra and thus are susceptible to misrepresenting the underlying

phenomena. A fitting method that attempts to separate and parameterize the

aperiodic and periodic spectral components called “fitting oscillations and

one over f” (FOOOF) was applied to a set of annotated whole-night sleep

EEG recordings of 251 subjects from a wide age range (4–69 years). Most

of the extracted parameters exhibited sleep stage sensitivity; significant main

e�ects and interactions of sleep stage, age, sex, and brain region were found.

The spectral slope (describing the steepness of the aperiodic component)

showed especially large and consistent variability between sleep stages (and

low variability between subjects),making it a candidate indicator of sleep states.

The limitations and arisen problems of the FOOOF method are also discussed,

possible solutions for some of them are suggested.
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1. Introduction

The observation that besides the oscillatory activity of the brain there is an aperiodic

background component that manifests itself as a power-law in the power spectra of

electroencephalography (EEG) signals is not a novelty (Matthis et al., 1981; Pritchard,

1992), however the approach to characterize the whole spectrum with only a small

number of parameters that describe the periodic and aperiodic spectral components

separately is becoming increasingly relevant (Donoghue et al., 2020; Bódizs et al., 2021b).
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Traditional methods in EEG analysis often define fixed

frequency bands and then search for differences in the spectral

power of these. The bands are supposed to correspond to neural

oscillations, however testing the sum power of a fixed frequency

band might be misleading as the emerging effect could indeed

reflect the changes in the power of the oscillatory activity, but

also a shift in the oscillation frequency or a change in the a-

periodic background activity. Another drawback of the band-

based methods is that the spectral power of the bands can be

significantly correlated (due to the fact that in lack of oscillations

they all represent a portion of the same overarching power-

law) and thus carry redundant information. By the independent

parametrization of the aperiodic and periodic power spectrum

components both of these problems are eliminated.

At the same time the significance of the so-called “spectral

slope” is also gaining focus in recent studies in the field

of electrophysiology and neuroscience. The power-law in the

power spectrum can be described in the form: P(f ) ∝ 1/f s, s >

0 or (where P is the power and f is the frequency, and the

exponent s), equivalently it can be written as P(f ) ∝ f x in

which case the exponent for the decaying case is negative x =

−s, plotting this type of relationship on a double logarithmic

scale results in a linear function with the slope being equal to

the power exponent x. Signals that typically present such scale-

free power spectra are “colored” or “1/f noises,” most famous

mathematical examples being the white noise (x = 0), pink

noise (x = −1), and brown noise (x = −2). Real-world

examples include shot-noise in electronic devices, but the 1/f

spectrum has been discovered on many different levels in the

nervous system and the brain: in the fluctuations of membrane

potentials, in local field potentials (LFP) (Baranauskas et al.,

2012), electrocorticography (ECoG) (Zempel et al., 2012), and

in electro- and magnetoencephalography signals (EEG, MEG)

(Bénar et al., 2019). Furthermore, the spectral slope exhibits

physiologically and medically relevant effects: it had been

found to change with aging (Voytek et al., 2015), proved to

be a significant marker of schizophrenia (Racz et al., 2021)

and attention deficit hyperactivity disorder (Karalunas et al.,

2022), and also an indicator of consciousness during anesthesia

(Colombo et al., 2019).

The most conspicuous physiological changes in brain

electrodynamics appear during the changes in wake-sleep states

(Lázár et al., 2022). Although there are a few reports on sleep-

related changes in scale-free, aperiodic EEG activity (Miskovic

et al., 2018; Lendner et al., 2020; Bódizs et al., 2021b), a

comprehensive depiction of sleep stage-dependent variation

in all scale-free and oscillatory parameters is still lacking.

In the present study we describe the oscillatory and scale-

free spectral parameters of sleep stages by applying a fitting

method to the power spectra of a large EEG data set and

show that many of these parameters show sleep stage, age

and sex effects, and interactions. Moreover, after correcting for

individual differences the spectral slope proves to be an effective

indicator of sleep stages.

2. Materials and equipment

The Budapest-Munich database of sleep records contains

whole night EEG/polygraphy signals derived from 251 healthy

subjects, 122 females in the age range of 4–69 years, and

were divided into age-groups of children (4–10 years, N =

31), teenagers (10–20 years, N = 36), young adults (20–40

years, N = 150), and middle-aged adults (40–69 years, N

= 34) (Bódizs et al., 2021a). The standard 10-20 electrode

placement was used, out of which 10 channels were used in

this study (Fp1, Fp2, F3, F4, P3, P4, C3, C4, O1, O2; see

Figure 1). The database is a collection of records performed in

multiple laboratories with different sampling rates, precisions,

and filter settings (see Supplementary Table 1), but common

in terms of covering a whole night of undisturbed sleep

following an adaptation night (the latter was not used in

the present study). Besides the hardware filtering specified

in Supplementary Table 1, no additional preprocessing was

performed. The differences between analog filters were corrected

by measuring the amplitude reduction rate of the recording

devices in the 0.05–100 Hz frequency range and dividing

the power spectral densities by the squared reduction rate

values at the corresponding frequencies (for more details, see

Materials and methods in Ujma et al., 2017). EEG records were

offline re-referenced to the mathematically-linked mastoids

before being subjected to quantitative analyses. The recordings

were scored according to the American Academy of Sleep

Medicine (AASM) coding rules (Berry, 2018), except the epoch

length was set to 20 s which was optional in the R&K

system (Rechtschaffen and Kales, 1968). Artifacts annotated

visually on a 4 s basis using previously published guidelines

(Attarian and Undevia, 2012).

3. Methods

3.1. Power spectrum calculation

The signals of every EEG channel had been segmented by

a 4 s sliding window with a 2 s step (50% overlap). Windows

that included artifacts were ignored. Each windowwas Hanning-

tapered before their fast Fourier transform (FFT) was computed

by the use of a mixed-radix procedure, an FFT algorithm variant

that can be applied to windows containing an arbitrary number

of samples (Cooley and Tukey, 1965), so no zero-padding was

needed. The number of samples in each window was four

times the sampling rate, in order to keep the time length of

the window constant 4 s. As this constant window time length

had been used for all recordings, the difference in sampling
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FIGURE 1

Schematic outline of the fitting process: (A) EEG is recorded with electrodes placed according to the 10–20 system, out of which 10 are used,

covering 5 brain regions on both left and right hemispheres. (B) Time domain signals are segmented into 20 s windows and grouped by sleep

stages for each EEG channel. (C) Average power-spectral density is calculated for each sleep stage per channel. (D) The FOOOF model is fitted

to the average power spectra, and the model parameters are extracted: spectral slope [x = tan(α)], intercept (b), peak central frequency (fc), and

peak power (pp).

rates had no influence on the frequency resolution (1/4 Hz)

or on the power in our region of interest of 2–48 Hz. For

every subject and channel the segments were grouped by sleep

stage, then Welch’s method was applied to obtain the average

power-spectral density.

3.2. Model fitting

The “fitting oscillations and one over f” (FOOOF) method

was used to extract the parameters of the spectra, namely: the

spectral slope and intercept and for each spectral peak their

central frequency, power, and bandwidth. The FOOOF method

introduces a physiologically-informed model that attempts to

describe neural power spectra (Equation 1) as the compound

of a power-law representing the aperiodic component (Equation

2), and any number of Gaussian functions approximating the

oscillatory peaks (Equation 3).

NPS(f ) = L(f )+ G(f )n (1)

L(f ) = b− log10(f
s) = b+ log10(f

x) (2)

G(f )n = a ∗ exp(
−(f − fc)

2

2w
) (3)

The method calculates a first approximation of the aperiodic

components and subtracts the power-law from the original

spectrum to achieve a flattened version of the spectrum exposing

the spectral peaks. In the next phase in order to find the periodic

components Gaussians are iteratively fitted and subtracted from
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FIGURE 2

Spectral slopes as functions of sleep stage, brain region, and age group. Note the gradual decrease of slope values (decreasing spectral

exponents, increasing steepness) during the course of deepening of NREM sleep, as well as a relatively increased slope in REM sleep (but still

below the NREM1 values). Vertical bars denote 95% confidence intervals.

the flattened spectrum. Finally the total periodic component

is removed from the original spectrum resulting in a peak-

removed spectrum and the aperiodic component is fitted again.

The final result is the combination of the aperiodic and periodic

components.

After testing the FOOOF method on a subset of our data, it

could be observed that using the default setting values provided

by the method leaded to over- or underfitted results in multiple

cases (see details in Supplementary material). After looking at

the problematic cases individually and assessing the underlying

causes for the faulty fits we found a combination of setting values

that yielded adequate results (goodness of fit R-squared values

min.: 0.6401, mean: 0.9908, max.: 0.9999). The fitting range was

set to the 2–48 Hz frequency interval, the bandwidth of the

accepted peaks to the 0.7–4 Hz range and the peak threshold

lowered to 1.

3.3. Parameter extraction and statistical
analysis

After having all the fitted parameters a number of them were

selected for analysis: the spectral slope, the center frequency and

power of the spectral peak that had the highest power. As the

spectral intercept calculated by the FOOOF method is heavily

correlated with the slope and does not provide substantially

more information, we included in our analysis an alternative

spectral intercept also described here (Bódizs et al., 2021b) that

is defined as the y-axis intersection of the fitted power-law

at the frequency location of the largest oscillatory peak (see

Supplementary material for more details).

General linear model analysis (repeated measures ANOVA

with sigma restricted parametrization) had been carried out

for each extracted spectral parameter as the dependent variable

with the categorical factors of sex (female and male) and

age group (child, teenager, young adult, middle aged adult).

The within-effects considered were sleep stage [wake (AASM

stage: W)], non-rapid eye movement sleep 1 & 2 (NREM1

and NREM2 indicating the AASM categories of N1 and N2,

respectively), slow-wave sleep (SWS, AASM category: N3) and

rapid-eye movement sleep (REM, AASM stage: R), brain region

(frontopolar, frontal, central, parietal, occipital) and laterality

(left and right). Several main and interaction effects were

found, in the following subsections we highlight the most

significant ones, for the complete statistical report, see the

Supplementary material.

4. Results

4.1. Spectral slope

EEG spectral slopes strongly depended on sleep stages

[F(4,824) = 770.29, p < 0.00001, η2p = 0.788; see Figure 2].

The average slope value was highest in the wake state and

decreased as the sleep deepened through the NREM sleep

stages, reaching its lowest value during SWS. Also the main

effect of age was significant indicating steeper slopes in younger

subjects [F(3,206) = 6.47, p < 0.0001, η2p = 0.086]. Reliable

topographical differences in spectral slopes were evidenced by

the main effect of brain region [F(4,824) = 113.33, p <

0.00001, η2p = 0.355]. The latter findings indicate steeper

slopes in more anterior recording sites. The most significant

interactions were the stage-region [F(16,3296) = 55.23, p <

0.00001, η2p = 0.211] and the stage-region-age interaction

[F(48,32) = 4.95, p < 0.00001, η2p = 0.067; see Figure 2], where

the age effect is also depicted. The spectral slope increases with

age, reflecting a shallower sleep especially in the SWS stage,

being consistent with the known phenomenon of sleep quality

deterioration of middle-aged and older adults.

4.2. Intercept

As the intercept parameter provided by the FOOOF method

is correlated to the slope parameter, we adopted an alternative

intercept measure calculated at the frequency of the largest peak,
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FIGURE 3

Modified spectral intercepts as functions of sleep stage, brain region, and age group. Note the particularly high intercepts in children, indicating

high overall EEG amplitude values. Furthermore, the modified intercepts of SWS stage, especially the ones measured over the frontopolar

recording regions, exceed other stages and regions. Vertical bars denote 95% confidence intervals.

for which we also found a sleep stage main effect [F(4,836) =

35.73, p < 0.00001, η2p = 0.15] indicating increased intercepts

in the slow-wave sleep stages, an age main effect [F(3,209) =

26.37, η2p = 0.27] the intercept being higher in children,

furthermore a stage-region interaction [F(16,3344) = 9.18, p <

0.00001, η2p = 00.04, see Figure 3] showing the increase being

more pronounced in the frontopolar and frontal regions.

4.3. Peak central frequency

The central frequency of the peak with the highest power

was more increased in the frontal and frontopolar regions

[main effect of region: F(4,824) = 58.138, p < 0.00001, η2p =

0.22]. There were main effects of age [F(3,206) = 17.2, p <

0.00001, η2p = 0.2] and sleep stage [F(4,824) = 15.584, p <

0.00001, η2p = 0.07] as well. It can be observed that the

dominant peak frequencies converge to the characteristic

sleep spindle frequency in the NREM2 stage, becoming the

most consistent in teenagers. While looking at the peak

frequencies on Figure 4 one should keep in mind that the fitting

interval had been restricted to 2–48 Hz, so in SWS the most

dominant peaks appeared at the spindle frequencies, despite

the fact that generally delta activity (≈0.75–1 Hz) was the most

prominent throughout the whole power spectrum in this stage.

Furthermore, faster delta (above 2 Hz) power could still be

the highest but did not appear as a distinct oscillatory peak,

and was considered to be part of the aperiodic component.

Similarly in NREM1 increased theta activity can be observed

due to changes in the aperiodic component, but the dominating

peaks were results of alpha oscillations, as also mentioned in

Riedner et al. (2016) and Cakan et al. (2022).

4.4. Peak power

Similarly to the previous parameters, significant main effects

of sleep stage [F(4,824) = 88.765, p < 0.00001, η2p = 0.301]

and brain region [F(4,824) = 97.645, p < 0.00001, η2p =

0.321] were found for the power of the strongest spectral

peak as well. Stage-region and stage-region-age interactions also

occurred. On Figure 5 it is interesting to note how the power

of the spectral peak in the NREM2 stage becomes prominent in

teenagers/young adults and then declines with aging.

4.5. Adjusted spectral slope

Recent findings suggest that the spectral slope is subject-

specific, and characterized by high individual-specificity and

repeatability (Demuru and Fraschini, 2020). Furthermore, we

found that the slopes of sleep stages are also significantly

correlated within subjects. In an attempt to remove this

specificity and obtain a subject-independent measure that

reflects the sleep stages even more clearly, we introduce the

adjusted spectral slope, which takes the slope value of the

wake state as the individual reference value by subtracting the

slope of the wake stage from all other stages of the subject.

In other words the adjusted spectral slope is the deviation

from the baseline slope of the wake stage. This new measure

showed an even stronger sleep stage main effect [F(3,627) =

1198.56, p < 0.00001, η2p = 0.85], and also a stage-region

interaction [F(12,2508) = 62.99, p < 0.00001, η2p = 0.23, see

Figure 6].

5. Discussion

The application of quantitative EEGmethods are widespread

and have a long history in the field of sleep research (Cox and

Fell, 2020), however there are core aspects of sleep that still lack

proper quantifiability [e.g., the scoring of EEG recordings is

done (semi-)manually, precisely because no reliable objective

measure yet exists that is comparable between subjects and from

which a hypnogram could be derived directly]. In the present

study we have found that the parameters fitted to the spectra
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FIGURE 4

Central peak frequencies as functions of sleep stage, brain region, and age group. Note the high intersubject variability of central peak

frequencies in WAKE, NREM1, and REM stages, as compared to NREM2 and SWS frequencies. This pattern indicates the presence of multiple

oscillators with individually variable dominance in WAKE, NREM1, and REM stages, as well as a reliable dominance of sleep spindle waves (11–16

Hz) in NREM2 and SWS. Vertical bars denote 95% confidence intervals.

FIGURE 5

Power of the largest spectral peak as function of sleep stage, brain region, and age group. Note the high peak power in wakefulness and NREM2

sleep, known to be characterized by prominent alpha and sleep spindle oscillations, respectively. In addition, peak power is lower in children and

in middle aged adults, as compared to teenagers and young adults. This pattern coheres with the ontogeny of sleep spindle oscillation in

humans. Vertical bars denote 95% confidence intervals.

depended on the sleep stage and in many cases a large amount

of their variance could be explained by the effect of sleep

stage, indicating that the parametric description of the EEG

power spectrum which separates the scale-free and oscillatory

components is also meaningful when describing sleep states.

The spectral slope proved to be an especially strong indicator of

sleep stages, its consistency improved further by the suggested

adjustment (i.e., using wakefulness as a normalizing factor).

The nominal values of the EEG spectral slopes suggest that the

overall group mean specific to wakefulness is slightly above −2,

whereas sleep per se is below this border. The spectral slope

equalling the value of −2 is indicative of Brownian motion.

Above and below this value the antipersistent and the persistent

fractional Brownian motion are found, respectively. That

is, our findings suggest that the monopolar, linked-mastoid

referred EEG is characterized by antipersistent Brownian

motion during wakefulness (with successive increments

characterized by overall negative correlation), whereas sleep

is best described by persistent Brownian motion (successive

increments correlating positively). Former studies focusing on

the fractality and smoothness of the EEG signal as expressed

in terms of the Hurst-exponent reported similar findings

(Weiss et al., 2011).

Although a recent report revealed the individual-specificity

of EEG spectral slope values (McSweeney et al., 2021), no

former study focused on the between state consistency of this

effect. Here we report reliable positive correlations between

spectral slopes assessed in different sleep stages, which we

consider an important aspect of the individual fingerprint-

aspect of brain electrodynamics. Given the finding that within-

subject consistency of EEG spectral slopes transcend sleep stages,

we performed an adjustment of state-specific slope values by

normalizing them against resting wakefulness-derived values. As

regarding this adjusted deepening of sleep expressed by changes

in the spectral slope relative to wakefulness, our findings are

even more reliable than the outcomes based on the absolute

values of spectral slopes. Sleep stages can be characterized by

a fine-tuned decrease of the spectral exponent relative to the

wake state, the decrease ranging from −0.2 to −1 in the states

of NREM1 and SWS, respectively. The exceptionally high effect

size characterizing this stage-dependency suggests particularly

reliable differences and a predictable sequence of changes during
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FIGURE 6

Adjusted spectral slopes as functions of sleep stage, brain region, and age group. Slopes were expressed as deviations from individual-, sleep

stage-, and recording location-specific deviations from corresponding resting wakefulness values. (A) Overall group mean. (B)

age-group-specific means. Note the particularly reliable steepening of spectral slopes from NREM1 through NREM2 to SWS (indicated by

decreasing slope values), as well as a considerable flattening in REM sleep, slightly above NREM2, but below NREM1-specific values. Vertical bars

denote 95% confidence intervals.

the sleep process. Such findings suggest that well-fitted spectral

slopes are ideally suited to be the basis of an automated sleep

analysis and sleep staging procedure.

In addition to revealing sleep stage effects, our current

findings confirm the age- and region-dependency of scalp-

recorded EEG spectral slopes reported by former studies

(Voytek et al., 2015; Bódizs et al., 2021b; Pathania et al., 2022).

Spectra is steeper in younger subjects and in more anterior

recording locations. The first order interactions reported in

our current study suggest that the effects of age and region

on spectral steepness are unevenly distributed over different

sleep stages. Most conspicuous age-related EEG spectral

slope flattening is evident in SWS. Likewise, antero-posterior

differences in EEG spectral steepness are particularly prominent

in SWS. Moreover, these regional differences vary as a function

of age (significant region × age group interaction) indicating

relatively lower antero-posterior differences in EEG spectral

steepness of children and teenagers as compared to adults, as

well as unusually steep spectral slopes in the wake state of

teenagers.

Intercepts of the spectra in the log-log plane were shown to

strongly reflect spectral slopes, with higher intercepts reflecting

steeper slopes. This interdependence was hypothesized to reflect

the phenomenon of non-zero intercepts, meaning that the

spectral slopes are revolving around specific frequencies not

equalling ln1 = 0. In order to detect the location of these

slope-independent intercepts, we run a series of correlational

analyses in our former study, revealing that NREM sleep EEG

spindle frequencies (ln12.2 and ln13.5) are ideal candidates for

these points, as they resulted in intercepts which are statistically

unconnected the spectral steepness (Bódizs et al., 2021b). Given

the unequivocality of spectral peak emergence in the spindle

range of NREM sleep EEG, we intended to determine the

spectral intercepts at the center peak frequency in the current

study (assuming that slope-independency of spectral intercepts

can be found under this peaked sections of the spectra).
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Our findings indicate the independence of this alternative and

adaptive spectral intercept from the slope, which contrasts the

correlations of classical intercepts and slopes. That is, we can

provide non-redundant sleep stage-effects when analyzing these

alternative spectral intercepts.

Central peak frequencies were assumed to reflect the neural

oscillatory peculiarities of different sleep stages, indicating

specific oscillatory mechanisms known to be operative in

specific behavioral states: alpha activity (8–12 Hz) in resting

wakefulness, sleep spindle frequency activity (11–16 Hz) in

NREM sleep stages and perhaps SWS as well, and theta (4–8

Hz) or beta (16–30 Hz) in REM sleep. In addition, we tested

if FOOOF is instrumental in differentiating slower anterior

sleep spindle oscillations from faster, more posterior ones. Our

initial findings lead us to readjust the standard settings of the

FOOOF procedure in order to avoid the amalgamation of two

adjacent spectral peaks into a single one, with broader frequency

dispersion. After this correction we obtained significant sleep

stage and region effects, as well as an interaction of these

two factors. Thus, findings indicate reasonable state and

localizational effects in oscillatory EEG frequencies. However,

the nominal frequencies in the wake state vary as a function

of age and provide a stable alpha frequency in children only.

In turn, NREM 2 and SWS sleep stages are characterized by

prominent sleep spindle frequencies, with detectable antero-

posterior differences. NREM1 and REM sleep are characterized

by beta oscillatory frequencies, with striking antero-posterior

differences: in contrast with NREM2 and SWS faster oscillations

are peculiar to anterior sites in these states. The similarities

of NREM1 and REM sleep EEG spectra were reported earlier

(Bódizs et al., 2008). Our current findings indicate that besides

band-limited power values, the similarity of NREM1 and REM

sleep stages is evident in terms of the regional distribution of

oscillatory peak frequencies as well.

High peak power values were found to be characteristic

features of wakefulness and NREM2 sleep, lowest values in

NREM1 and REM, as well as intermediate ones in SWS.

These findings fit the knowledge on the prominent alpha and

sleep spindle oscillations in wakefulness and NREM2 sleep,

respectively. Sleep spindles were also termed as hallmarks of

stage 2 sleep. This assertion coheres well with our current

findings. Age-related changes in peak power indicate a biphasic

change in NREM2 sleep spindle frequencies: initial increase

peaking in teenage/young adult years, followed by a decrease in

middle aged adults. Again this finding coheres well with reported

age-dependent changes in sleep spindle activity (Purcell et al.,

2017).

Although our results are promising, there are several

limitations, implying the need for further studies, specifically

designed to fix these issues and strengthen, clarify or refine

some of the statements we made in our current report.

Among the limitations of the current study we emphasize

the missing age ranges (no subjects below the age of 4 and

above the age of 69 years were involved in the current

study), the difference in sleep scoring rules in children and

adult polysomnography records (which could lead to above

age effects in the derived spectral parameters), the unequal

number of subjects in some specific age ranges, the assumption

of Gaussian spectral peaks, which was not directly tested in

this sample.

Based on the above findings we conclude that the spectral

parameters derived from the fine-grained differentiation of

scale-free and oscillatory activities of the EEG are potentially

suited to serve as objective measures characterizing sleep states

paving the way toward an automatic evaluation of the process of

human sleep. Future investigations have to reveal the potential

computational and physiological relevance of parameterizing

aperiodic and oscillatory activity during the course of the

human sleep-wake cycle (i.e., by transcending epoch-based

expert scoring). We consider the current findings as a promising

first step toward an automatic and objective characterization of

sleep-wake dynamics.
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