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Abstract

Objectives: Biomarkers of major depressive disorder (MDD), its phases and forms

have long been sought. Objectives were to examine whether the complexity of EEG

activity, measured by Higuchi's fractal dimension (HFD) and sample entropy

(SampEn), differs between healthy subjects, patients in remission, and in episode

phase of the recurrent depression and whether the changes are differentially distrib-

uted between hemispheres and cortical regions.

Methods: Resting state EEG with eyes closed was recorded from 22 patients suffer-

ing from recurrent depression (11 in remission, 11 in the episode), and 20 age and

sex-matched healthy control subjects. Artifact-free EEG epochs were analyzed by in-

house developed programs running HFD and SampEn algorithms.

Results: Depressed patients had higher HFD and SampEn complexity compared to

healthy subjects. The complexity was higher in patients who were in remission than

in those in the acute episode. Altered complexity was present in the frontal and

centro-parietal regions when compared to control group. The complexity in frontal

and parietal regions differed between the two phases of depressive disorder.

Conclusions: Complexity measures of EEG distinguish between the healthy controls,

patients in remission and episode. Further studies are needed to establish whether

these measures carry a potential to aid clinically relevant decisions about depression.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a serious mental ill health associ-

ated with protracted personal suffering and significant social and

functional impairment. It has become the leading cause of ill health

and disability worldwide (World Health Organization, 2017). Depres-

sion has a strong tendency to reoccur—a significant number of

patients will suffer from at least one more episode after the first one,

reaching four episodes on average during the lifetime (Solomon et al.,

2000). In these patients, the risk of new episodes rises significantly

with each subsequent recurrence although the course of the disease

can be unique (Solomon et al., 2000). Hence, the decision to stop the

therapy, or to initiate the maintenance therapy to prevent a relapse in

patients with recurrent depression who have achieved remission,
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often presents a significant clinical challenge (Teasdale et al., 2000).

Therefore, finding accurate and reliable biomarkers that can help dif-

ferentiate MDD episode from remission is of considerable

importance.

Contrary to other specializations in medicine, psychiatry at the

moment does not use objective diagnostic tests (Gillan & Daw, 2016;

Shorter & Fink, 2010). Recently authors showed that relying on self-

report from the patient and personal experience of a clinician as the

sole basis for diagnosis did not show to be so accurate (Gillan &

Whelan, 2017; Rush et al., 2011). Also, psychiatry research online

showed that automatization of collecting the self-report from patients

anytime anywhere showed that the role of the educated interviewer

is not inevitable in the process (Berinsky, Huber, & Lenz, 2012). Com-

putational psychiatry is showing many fruits already as a novel avenue

of research. Our, as well as studies of other researchers, showed that

automated detection of depression is possible and in the last decade

many studies showed it to be the accurate and feasible methodology

(Acharya et al., 2015; Ahmadlou, Adeli, & Adeli, 2012; Bachmann,

Lass, Suhhova, & Hinrikus, 2013; Bachmann et al., 2018; Čuki�c et al.,

2018; Faust, Chuan, Ang, Puthankattil, & Joseph, 2014; Hosseinifard,

Moradi, & Rostami, 2014; Puthankattil & Joseph 2012). There is a

need for data-driven changes to the system of psychiatric diagnostics.

Another separate avenue of research, namely physiological com-

plexity (based on Complex Dynamical Systems Theory) is also consid-

ered to be novel, but there is already sufficient evidence in the present

literature that in depression, elevated complexity of EEG can be mea-

sured (Ahmadlou et al., 2012; Bachmann et al., 2013, 2018; Čuki�c et al.,

2018; Čuki�c, Oommen, Mutavdzic, Jorgovanovic, & Ljubisavljevic,

2013; Lebiecka et al., 2018). Earlier research in MRI, fMRI, high-density

EEG graph-theory application, and fractional anisotropy showed that in

MDD a decreased functional connectivity can be observed

(de Kwaasteniet et al., 2013; Kim, Bolbecker, & Howell, 2013; Vederine,

Wessa, Leboyer, & Houenou, 2011) with a yet unknown cause. The

possible consequence of deep white matter tracts deficit (the second

part of uncinate fasciculus according to de Kwaasteniet et al. (2013))

may contribute to abnormal functional connectivity within fronto-

lymbic network. We can hypothesize that this confirmed structural

change might lead to elevated excitability on the cortex. Several

authors clearly stated in their work that this kind of increased physio-

logical complexity can be measured in all the positions on standard EEG

cap (Bachmann et al., 2013; Čuki�c et al., 2018; Hosseinifard et al.,

2014). This is also in line with the research utilizing only classical spec-

tral analysis (Fingelkruis et al., 2014; Fingelkurts et al., 2006; Fin-

gelkurts & Fingelkurts, 2015). DeBattista et al. (2011) showed that EEG

markers outperform clinical-determined treatment plans for depression.

There is almost a kind of the consensus among researchers that any of

the fractal and nonlinear methods we use, can confirm an elevated

complexity in patients diagnosed with depression.

One of the first studies about changes in complexity in depression

(Nandrino et al., 1994) found that EEG in MDD can be more predictive

using a correlation dimension (attractor reconstruction) analysis. How-

ever, they could not detect the changes between patients in

the episode and remission. Ahmadlou et al. (2012) compared the

detection performance of two different algorithms for the fractal

dimension, showing Higuchi to be better when compared to Katz's

algorithm. It needs to be mentioned that they used just prefrontal elec-

trodes. Hosseinifard et al. (2014), among other nonlinear measures as

features for further machine learning, used Higuchi fractal dimension

showing elevated complexity as well. Bachmann et al. (2013) also

detected elevated HFD in depression (the only exclusively female sam-

ple) mentioning that they confirmed it on all electrode positions, but

opted to use just four electrodes for the sake of detection. The only

study we are aware of to probe nonlinear measure (Lempel-Ziv com-

plexity) and stated not to find the differences with healthy controls was

a study by Arns, Cerquera, Gutiérrez, Hasselman, and Freund (2014).

Bachmann et al. (2018) applied the same algorithm finding significant

results on a similar sample. The difference between these two studies

was in choosing broadband signal instead of standard sub-bands of

EEG in the study of Bachmann et al. Puthankattil and Joseph (2012) as

well as Akar, Kara, Agambayev, and Bilgic (2015) applied wavelet-chaos

methodology to explore complexity in both parietal and frontal regions

in MDD patient's EEG. Both studies found an increased complexity in

parietal and frontal regions in MDD patients' EEG compared to healthy

control. Faust et al. (2014) compared several entropy measures for the

same detection of complexity changes showing it to be highly useful

for accurate machine learning. In our recent study, we applied HFD and

sample entropy as features for depression detection task (Čuki�c et al.,

2018) showing that high accuracy is possible. Previously we compared

those two measures in methodological senses to compare their differ-

ence concerning frequent content of the signal (Čuki�c et al., 2018).

Higuchi's fractal dimension (HFD) measures complexity directly in the

time-domain, and sample entropy (SampEn) is irregularity statistic, mea-

suring the predictability of the signal under study. Consequently, we

can interpret both measures in terms of complexity. In Complex

Dynamical Systems Theory there are vast families of measures we

could apply for this analysis, due to their different mathematical origin,

but we opted to use this specific pair due to their applicability in real

time. All electrophysiological signals are representing underlying pro-

cesses that are typically nonlinear, nonstationary, and nonequilibrium in

nature. Conventional analyses like applying means, standard deviations,

and classical power spectrum analysis are simply not capable to detect

the subtle changes in such a complex signal. Hence, nonlinear analysis

is a better method for that. de la Torre-Luque and Bornas (2017) in

their review about the detection of complexity changes in depression

concluded that “EEG dynamics for depressive patients appear more

complex but might be more random than the dynamics of healthy non-

depressed individuals.”

Complexity analysis is still considered “novel” because the classi-

cal spectral analysis is deeply rooted in electrophysiology and

nonlinear analysis is not (Klonowski, 2007). Contrary to our previous

research where we used nonlinear measures in combination with

machine learning methodology. With present work, we aimed to show

that the utilization of two simple nonlinear measures might be suffi-

cient. This methodological couple of two nonlinear measures can yield

additional test to clinicians to make better decisions on further thera-

peutic steps informed about the present physiological status of the
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patient. We analyzed anonymized data which is also one of General

Data Protection Regulation (GDPR) requirements for a possible later

web-based application.

To the best of our knowledge, there is no similar publication

regarding this particular differentiation between episode and remis-

sion phase in depression. The precise question of this research is not

whether we can detect MDD from EEG (because it has been repeat-

edly shown to be possible) but to explore the possibility to differenti-

ate between two phases of the disease based on nonlinear

biomarkers extracted from EEG.

2 | METHODS

2.1 | Participants

EEG data were recorded at the Institute for Mental Health in Bel-

grade, Serbia. The initial sample comprised 26 patients (17 females

and nine male) suffering from recurrent depression, 25–68 years old

(mean 32.40, SD 10.16). However, the final sample comprised

22 patients due to excessive artefacts in EEG recordings of four

patients. As a control, we used EEG recordings of 20 age-matched

(mean 30.14, SD 8.94) healthy controls (10 males, 10 females) with

no history of any neurological or psychiatric disorders, recorded at

the Institute for Experimental Phonetic and Speech Pathology in

Belgrade, Serbia. All participants were right-handed, according to

Edinburgh Handedness Inventory. The participants were informed

about the experimental protocol and signed informed consent. The

protocol was approved by the Ethical Committees of the participating

institutions. All participants with depression were on medications and

under the supervision of an experienced specialist in clinical psychia-

try. Their diagnoses were made according to ICD-10 scale. The study

compared three groups: healthy controls (C), and depressed patients

(D) in an episode (E), and in remission (R). Half of the patients were

recorded while they were in an acute episode, while the other half

were in remission phase of the disease. Participants' data are given in

Table 1.

2.2 | Data acquisition

EEG was recorded in the resting state with 10/20 International sys-

tem for electrode placement, using NicoletOne Digital EEG Amplifier

(VIAYSYS Healthcare Inc. NeuroCare Group), with closed eyes with-

out any stimulus (resting state EEG). EEGs were recorded from

19 electrodes in a monopolar montage (Electro-cap International Inc.,

Eaton, OH). The sampling rate was 1 kHz. The resistance was kept less

than 5 kΩ. A bandpass filter was 0.5–70 Hz. The same setup was used

for the control group, using Nihon Kohden Inc. apparatus. Since the

protocol of recordings was the same, the fact that we used recordings

from two different EEG producers' apparata did not introduce the dif-

ference between the groups (Pivik et al., 1993).

Participants were instructed to reduce any movement, staying in

a comfortable sitting position with eyes closed. Each recording session

lasted for 3 min (180 s—180,000 samples). The EEG records of four

subjects were discarded from further analyses because of the high

level of muscle activity or blinking artifacts. Further, we used records

from 22 patients and 20 healthy controls for this study.

2.3 | EEG data preprocessing

From each recording a 5-s segment for the analyses was selected

from the beginning (25,000–30,000 samples), middle (85,000–90,000

samples), and the end of the recording (145,000–150,000 samples).

Each epoch comprises of 5,000 samples. For preprocessing of the

obtained EEG data, we have used infomax independent component

analysis (ICA) with the use of EEGLAB (Delorme & Makeig, 2004)

working under MATLAB. Those components that correlated with eye-

movement and eye-blink artifacts were removed.

TABLE 1 Participants' data

C E R

N 20 11 11

Sex

Male 10 4 5

Female 10 7 6

Age 30.14 (8.94) 40.1 (10.94) 44.64 (10.87)

Education

Low (primary) 0 0 0

Medium (high school) 6 (30%) 4 (36.36%) 5 (45.45%)

High (BS, MS, PhD) 14 (70%) 7 (63.64%) 6 (54.54%)

ICD-10 (MDI) score – 36.27 (5.41) 31.73 (3.80)

Note: C, control group; E, patients in an acute episode; R, patients in remission phase, age is given in years (standard deviation); MDI, Major Depression

Inventory (ICD-10), the mean (standard deviation) is present.
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Therefore, for each subject, epoch, and electrode, two nonlinear

measures were calculated.

2.4 | Data analysis

Initially, the classical spectral analysis was performed by constructing

spectral power maps (EEGLAB program; Delorme & Makeig, 2004).

Further HFD and SampEn analyses were performed by algorithms

written in Java programming language. PCA was performed in

MATLAB. Thereon, for all EEG epochs, HFD and SampEn were calcu-

lated. Fractal and SampEn maps were constructed on the whole spec-

trum, not dividing the signal into bands. The analysis was adopted as it

has been shown that the Fourier analysis is redundant to fractal ana-

lyses (Kalauzi, Boji�c, & Vuckovic, 2012). The fractal dimension of EEG

was calculated by using Higuchi's algorithm (Higuchi, 1988), demon-

strated to be the most appropriate for electrophysiological data

(Esteller, Vachtsevanos, Echauz, & Litt, 2001). This method provides a

reasonable estimate of the fractal dimension even if short signal seg-

ments are analyzed and it is computationally fast. HFD was also cho-

sen because it is widespread in the EEG literature facilitating

comparison of the results. We performed the Higuchi's algorithm

(Higuchi, 1988), with the maximal length of an epoch kmax = 8, shown

to perform the best for this type of signals (Spasic, Kalauzi, Grbic,

Martac, & Culic, 2005). HFD of a time series is a measure of its com-

plexity and self-similarity in the time domain. HFD is not an integer,

and the value of fractal dimension (FD) of waveforms (e.g., EEG) can

range between 1 and 2. Higher self-similarity and complexity results in

higher HFD (Eke, Herman, Kocsis, & Kozak, 2002). SampEn was com-

puted according to the procedure by Richman and Moorman (2000).

SampEn estimates the signal complexity by computing the conditional

probability that two sequences of a given length n, similar for m points,

remain similar within tolerance r at the next data point (when self-

matches are not included). SampEn measures the irregularity of the

data (the higher the values, the less regular signal) that is related to sig-

nal complexity (Pincus, 2006). SampEn was calculated using tolerance

level of r = 0.15 times the standard deviation of the time series and

m = 2, shown to be optimal for EEG (Molina-Picó et al., 2011). Both

HFD and SampEn were calculated for each electrode for the duration

of signal (the epochs of artifact-free recorded EEG; three epochs from

each recording), using the in-house written algorithm in Java program-

ming language. It should also be noted that correlations with any medi-

cal data were not explored since the main aim of the study was to find

independent nonlinear markers based on analysis of the EEG signal,

which could be utilized as an additional tool in clinical practice.

2.5 | Statistical analyses

Both HFD and SampEn values were used as an ensemble for analysis

of variance (ANOVA with post hoc Bonferroni correction, SPSS Statis-

tics version 20.0, SPSS Inc.). The Kolmogorov Smirnov test showed

that HFD and SampEn data were not normally distributed. To obtain

data with normal distribution and to include it in the analysis of the

difference in complexity in resting state EEG data, normalized values

of SampEn and HFD obtained from epochs of recorded EEG were cal-

culated as log10 normalization in SPSS. Normalized SampEn and HFD

data were compared using ANOVA with factors state (Controls

vs. Depression, and Controls vs. Episode vs. Remissions) and position

of the electrode (1–19). For every electrode, ANOVA was repeated

for each measure independently. Bonferroni correction was used

where appropriate. For all analyses, probability values p = 0.05 were

considered as statistically significant.

2.6 | Principal component analysis (PCA)

To reduce the dimensionality of the problem and decorrelate the mea-

sures (HFD and SampEn calculated from the same epochs extracted

from the raw EEG signal), we utilized PCA (Jolliffe, 1986) in order to

obtain three principal components (PCs) corresponding to largest

eigenvalues of the sample covariance matrix. We defined percentage

of the explained variance by first three PCs as ratio between sums of

variances of three PCs and original variables. Here we wanted to dem-

onstrate the possibility of classification of previously calculated

nonlinear measures, by utilizing only the first three components in

order to see whether the data were separable. We used Matlab 15b

for this calculation (MathWorks, MA).

3 | RESULTS

3.1 | Spectral power maps

The first level of analysis was to compare spectral power maps of low

alpha (8–10 Hz), high alpha (10–12 Hz), and beta (13-30 Hz) bands

between healthy controls (C) and patients in a different phase of the

disease (i.e., episode—E or remission—R) (Figure 1).

Spectral power maps in low alpha band showed an overall

decrease in both E and R groups in posterior regions (maximum at C3,

C4, Cz, P3, P4, Pz, and T3) when compared to C group. In E and R

groups, there was an increase in low alpha spectral power in the right

prefrontal region (Fp2) and lateral right frontal region (F8) when com-

pared to C group. Spectral power maps in high alpha band showed a

decrease of high alpha spectral power in right prefrontal (Fp2), left tem-

poral (T3), and central (C3, Cz) regions in E and R groups when com-

pared to C group. Spectral power maps in beta band showed a

decrease of beta (13–30 Hz) spectral power at frontal (Fz, Fp1, Fp2, F3,

F4, F7, F8), and central-temporal (C3, T3) regions in E and R groups

when compared to C group. In contrast, there was an increase of beta

spectral power in posterior regions (P3, P4, Pz, T5, T6, O1, O2) in E and

R groups when compared to C group. In the E group only there was a

frontal (F3 > F4) and temporal-occipital (T5/O1 < T6/O2) asymmetry.

The results of ANOVA test for analysis of the group effect on the

spectral power for each electrode location and frequency band are

given in Table 2.
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3.2 | HFD and sSampEn

Figure 2 summarizes the difference in HFD and SampEn values in all

three groups averaged across all electrodes. HFD values for healthy con-

trols ranged from 1.0334 to 1.15 (mean 1.064), for patients in the epi-

sode from 1.0586 to 1.3978 (mean 1.1664), and for those in remission

from 1.0579 to 1.4938 (mean 1.2299). SampEn values for healthy

controls were 0.14–0.32 (mean 0.2066), in the episode group 0.27–0.71

(mean 0.4783) and in remission group 0.34–0.74 (mean 0.5626).

ANOVA showed a significant effect of group on HFD (F

[2,123] = 53.545, p < 0.001) and on SampEn values (F[2,123] = 190.864,

p < 0.001). The post hoc test showed that both HFD and SampEn values

were lowest in the C group, followed by participants in the E group. Par-

ticipants in the R group had the highest HFD and SampEn values

F IGURE 1 Spectral power maps are showing the difference between healthy persons (C) and those in the acute episode (E) and remission (R)

ČUKI�c ET AL. 5 of 11



(HFDControl < HFDEpisode < HFDRemission, p < 0.01 for each comparison;

SampEnControl < SampEnEpisode < SampEnRemission, p < 0.01 for each

comparison).

The final level of analysis was to determine the possible effect of

a group on HFD and SampEn values for each electrode. Figure 3a

shows that for both measures there is a significant difference

between the patient and control group (both E and R together).

ANOVA showed a significant effect of Group (C, E, R) on HFD values

for each electrode (p < 0.01).

However, post hoc test showed that significant difference between

each group was found for electrodes Fp1, Fp2, F3, F7, Fz, C3, Cz, P4, Pz,

T4, T5, T6, and O2 (p < 0.05) (Figure 3b). Post hoc Bonferroni correction

showed that for each electrode HFDControl < HFDEpisode < HFDRemission,

p < 0.05 for each comparison. A similar result was found for SampEn

TABLE 2 Results of ANOVA test
probing the effect of group on spectral
power within low alpha, high alpha, and
beta band for each electrode location

Electrode location

Low alpha (8–10 Hz) High alpha (10–12 Hz) Beta (13–30 Hz)

F(2,40) p F(2,40) p F(2,40) p

Fp1 * * * * 7.207 0.02

Fp2 * * 9.211 0.01 8.107 0.01

F3 * * * * 12.342 0.01

F4 * * * * 18.674 0.01

F7 * * * * 4.922 0.04

F8 * * * * 6.817 0.03

Fz * * * * 7.997 0.02

T3 * * 8.633 0.01 * *

T4 * * * * * *

T5 * * * * 13.207 0.01

T6 * * * * 14.338 0.01

C3 8.748 0.02 4.096 0.05 * *

C4 5.168 0.04 * * * *

Cz 6.381 0.03 10.734 0.01 * *

P3 5.748 0.02 * * 7.002 0.02

P4 4.286 0.05 * * 6.699 0.03

Pz * * * * 14.361 0.01

O1 * * * * 16.189 0.01

O2 * * * * 16.917 0.01

*not significant difference.

F IGURE 2 Values of HFD (left) and SampEn (right) averaged across all 19 electrodes, for all three groups (C: control; E: episode; and R:
remission). Note the difference in scale for HFD and SampEn. ***p < 0.01. HFD, Higuchi's fractal dimension
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values. ANOVA showed a significant effect of group (C, E, R) on SampEn

values for each electrode (p < 0.01). Post hoc showed that this differ-

ence is driven by significantly lower SampEn values in C group when

compared to E and R groups. However, the post hoc test showed that

significant difference between each group was found for electrodes Fp1,

Fp2, F3, F7, Fz, C3, Cz, P3, P4, Pz, T4, T5, T6, O1, and O2 (p < 0.05) and

that for each electrode SampEnControl < SampEnEpisode < SampEnRemission,

p < 0.05 for each comparison.

SampEn showed to discriminate R and E groups on more elec-

trodes compared to HFD. SampEn differed between R and E groups

on Fp1, Fp2, F3, F7, Fz, C3, Cz, P3, P4, Pz, T4, T5, T6, and O2 elec-

trodes, while HFD was different on Fp1, Fp2, F7, Fz, C3, Cz, P3, P4,

T4, T5, T6, and O2 electrodes (p < 0.05 for each significant difference)

(Figure 3c). For each comparison, patients in an acute episode

had lower HFD and SampEn values compared to patients in a remis-

sion phase.

F IGURE 3 The spatial representation of significant differences in HFD and SampEn. In orange, electrodes from which SampEn values showed
a significant difference in comparison to controls, and in green electrodes where HFD had a significant difference. The left panel (A) shows the
difference between the whole group of patients (without splitting into E and R group) compared to controls. The middle panel (B) shows the
comparison of all three groups (C vs. E vs. R); electrodes with statistically significant difference between each of three groups are marked
(HFD/SampEn(C) < HFD/SampEn (E) < HFD/SampEn (R)). A significant difference was found on Fp1, Fp2, F7, F3, Fz, Cz, C3, P3, P4, Pz, T4, T5,
T6, O1, and O2 electrodes for SampEn, and on Fp1, Fp2, F7, F3, Fz, Cz, C3, P4, Pz, T4, T5, T6, and O2 electrodes for HFD. Right panel (C) shows
the comparison of E and R groups. SampEn values were significantly different on Fp1, Fp2, F7, F3, Fz, C3, Cz, P3, P4, Pz, T4, T5, T6, and O2
electrodes. HFD values were significantly different on Fp1, Fp2, F7, Fz, C3, Cz, P3, P4, T4, T5, T6, and O2 electrodes. p < 0.05. HFD, Higuchi's
fractal dimension

F IGURE 4 Results of (ANOVA) comparison of calculated sample entropy for certain electrodes which are particularly well discriminative: left,
the values of SampEn for position Fp1 (fronto-parietal), and right, the values of calculated SampEn for EEG recorded from position T5 (temporal).
The significant difference between participants with depression and healthy control is particularly pronounced, and the difference between
exacerbation (acute episode) and remission is also found
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Figure 4 shows a representative result of a SampEn trend for Fp1

and T5 region in all three groups (C < E < R).

3.3 | Principal component analysis (PCA)

With only the first three PCs we want here to illustrate that those cal-

culated values are separable. Again, SampEn gave more clear separa-

tion of the data when compared to HFD (in Figure 5, SampEn results

are on the left and HFD on the right picture). In this study, we did not

intend to deal with further classification, although a high accuracy

could be obtained for several machine learning algorithms.

4 | DISCUSSION

Our results show that both HFD and SampEn nonlinear measures of

resting state EEG signal discriminate between healthy controls and

depressed patients. These differences are widely distributed and

include frontal, midline (vertex), and temporal–parietal–occipital

regions. Furthermore, the complexity differs significantly between

episode and remission, being higher in remission than in the episode

phase of the disease.

Although this last finding is counterintuitive (it would be expected

that the remission state is closer to the healthy one in every respect),

it might be in line with the observation of Willner, Scheel-Krüger, and

Belzung (2013): “It is evident that antidepressants do not normalize

brain activity: mood and behavior are restored to normal, but the

antidepressant-treated brain is in a different state from the nonde-

pressed brain.” In line with this is also a conclusion of a recent review

on complexity research in depression, that MDD dynamics might

“appear more complex but is actually more random,” which has a par-

ticularly supported meaning grounded in the theory of information

(de la Torre-Luque & Bornas, 2017). Now, it is even in a linguistic

sense complicated to explain what “complexity” means (Vargas,

Cuesta-Frau, Ruiz-Esteban, Cirugeda, & Varela, 2015). What is the dif-

ference between healthy complexity (the level of chaos inevitable to

adapt and survive) in contrast to pathological complexity (which is too

much or too low)? In one side of spectrum are very simple (usually

man-made) electrical signals like sine wave which are completely pre-

dictable; on the other side is totally random white noise. Everything

living is producing electrical signals which are somewhere in between

those two opposed values. We still have to learn what is the level of

complexity characteristic for many signals representing healthy pro-

cesses, and those which are characteristic for so called disorder (even

here we can see the trace of formerly dominant approach in physiol-

ogy, teaching that everything is in “order,” linear, regular, and in equi-

librium). There are scarce findings from other area of research

supporting the understanding of those results. Lebiecka et al. (2018)

examined (by applying HFD analysis) the levels of complexity in EEG

in persons who were treated with rTMS due to their treatment-

resistant depression (TRD). In those who showed to be responders to

the therapy increased physiological complexity fell significantly after

the treatment, illustrating that this particular modality of stimulation is

F IGURE 5 Principal component analysis was used to show the separability of the data. We used only first three principal components. Blue
diamonds are symbols for those who are diagnosed with depression and are in remission; green stars are depressed patients who are in
exacerbation and red squares are representing control group. Panel left represents how separable are the values of SampEn calculated from EEG
of subjects from these three groups; panel on the right represents the values of calculated. HFD, Higuchi's fractal dimension
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elevating their highly excitable (or perhaps, more random) dynamical

system. When comparing the results of varying methods probing the

complexity in depression, there are plenty of very different (in a math-

ematical sense) algorithms, but the common denominator is that

majority of them are pointing to an increased physiological complexity

as a characteristic of this functional disorder. In that sense, the two

nonlinear measures we chose to apply showed to be methodologically

a good pair capable of application in real time, because they are

computationally fast.

According to the research on the first-episode depression, such

brain is initially different from the nondepressed one and the differ-

ences are structural (Ramezani et al., 2015), as well as functional

(Bluhm et al., 2009; Zhang et al., 2011). In terms of nonlinear

dynamic systems, initial conditions of the depressed brain system

are different from the nondepressed. Even if the dynamics of infor-

mation processing were the same, these different initial conditions

would direct the system to steady states distinctive from normal.

However, the dynamics is probably also different due to compensa-

tory mechanisms. For example, functional neuroimaging revealed

reduced integrity of the uncinate fasciculus and enhanced func-

tional connectivity of anterior cingulate cortex and medial temporal

lobe in MDD (de Kwaasteniet et al., 2013). The higher severity of

depression, the more pronounced this negative structure–function

relation. The authors suggest that the increased functional connec-

tivity is a compensatory mechanism for decreased uncinate fascicu-

lus integrity. Willner et al. (2013) came to a similar conclusion that

decreased hippocampal functioning in depression causes an

increase in the activity of the ventral “affective” system. It is then

easy to suppose that the enrichment of fronto-limbic connectivity

and reorganization of circuits is accompanied by increment in

complexity.

The EEG hallmark of depression is the presence of stable hemi-

spheric asymmetry in the alpha spectral band, although the differ-

ences in other spectral bands were also demonstrated (Gold,

Fachner, Erkilla, & Erkkila, 2012). Interestingly, van der Vinne,

Vollebregt, van Putten, and Arns (2017) showed that frontal alpha

asymmetry cannot be used as biomarker. Other researchers relying

solely in spectral analysis also confirmed the existence of specific

spectral structures in depression contrary to controls (Fingelkruis

et al., 2014; Fingelkurts et al., 2006; Fingelkurts & Fingelkurts, 2015).

Our spectral analysis shows that the power was decreased in alpha

and high-alpha bands in majority of the cortical regions, but

increased in beta bands in posterior regions in patients. This may

point towards the presence of hyperactivity in posterior regions

(alpha desynchronization) of the right hemisphere, which is known to

process the negative emotional content (Coan & Allen, 2004).

How we can compare our results to other researchers' findings?

When it is so simple, why everyone is not using it already? One

important aspect pertains to methodological differences between

the studies, related to signal acquisition (number of EEG electrodes

used, sampling frequency, pre-processing of raw signal, that is,

decomposition on bands and filtering), as well as experimental design

(probing the emotional content, using different stimuli, performing

cognitive task, etc.). The eyes-closed condition, unlike the eyes-open

condition, allows measurement of the resting state arousal without

the influence of cortical processing of the visual input in other bands

on the complexity of brain dynamics. Also, it should be noted that

we did not divide the spectrum of the signal to standard bands, but

observed the changes in broadband. This is important as it has been

shown that signal decomposition like Fourier, Wavelet, or cosine

transformation can impact the result of a subsequent nonlinear anal-

ysis yielding erroneous results (Klonowski, 2007; Rabinovich,

Varona, Selverston, & Abarbanel, 2006). Other reasons may relate to

inherent differences between nonlinear algorithms that are based on

different theoretical frameworks (Goldberger, Peng, & Lipsitz, 2002;

Pincus & Goldberger, 1994). Our results are in line with studies that

also used HFD (Ahmadlou et al., 2012; Bachmann et al., 2013; Acha-

rya et al., 2015). The difference in complexity values between

depressed and healthy subjects in our study was much larger than

those reported in Bachmann et al., 2013. Another possible source of

difference is choosing different values for k in Higuchi's FD algo-

rithm; Bachmann et al. (2013) used 50 for their k value in that partic-

ular research (and ours was eight) making the comparison difficult.

The results of Fractal and SampEn maps are in line with previous

electrophysiological studies demonstrating the presence of stable

frontal asymmetry (Allen, Urry, Hitt, & Coan, 2004; Davidson, 2004)

in MDD. However, in this study the signal was not divided to standard

bands, hindering conclusion that current findings are directly related

to the alpha band asymmetry. The results point to elevated complex-

ity in frontal, central and right parieto-temporal regions. This is also in

line with earlier EEG studies (Haase et al., 2014), which reported simi-

lar topographical changes in distribution.

It should be noted that we used HFD and SampEn, two nonlinear

measures able to detect differential aspects of the signal under analy-

sis. While HFD examines the complexity in the time domain, SampEn

can characterize the irregularity of a signal or its predictability (indi-

cated indirectly as complexity changes in physical sense). They both

showed higher complexity in patients with depression when com-

pared to healthy control subjects. The difference was more pro-

nounced when examined by SampEn suggesting increased variability,

or “irregularity” or unpredictability or even randomness of the signal.

Further study of this paritcular difference is needed on a larger sam-

ple. But the presented result is showing that this possible differentia-

tion which can be utilized in real-time situations holds a promisse for

future clinical application.

5 | CONCLUSIONS

The idea of EEG-based classification of depression is not entirely

novel. Our study confirmed that it is possible to quantify the differ-

ence between depressed patients and controls by employing two

complexity measures—HFD and SampEn, on resting state EEG. Fur-

thermore, it showed, for the first time, that both measures could

detect a statistically significant difference between depressed

patients who were in episode and remission. Whether these and
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other nonlinear measures may be used as potential clinical markers

of disease stage or of the effectiveness of various treatments in

MDD remains to be confirmed on larger groups of patients. Finally,

we are well aware of the need for further thorough probing of the

research methodology. It is always possible, when dealing with the

human EEG in psychiatric disorders, that some uncontrolled variable

could make false positive/negative results. Comparing different

methods together with more rigorous sample selection criteria, in

the EEG signal analysis would shed more light on this important

problem.
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