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Cellular ageing is one of the main drivers of organismal ageing and holds keys towards
improving the longevity and quality of the extended life. Elucidating mechanisms underlying
the emergence of the aged cells as well as their altered responses to the environment will
help understanding the evolutionarily defined longevity preferences across species with dif-
ferent strategies of survival. Much is understood about the role of alterations in the DNA,
including many epigenetic modifications such as methylation, in relation to the aged cell
phenotype. While transcriptomes of the aged cells are beginning to be better-charac-
terised, their translational responses remain under active investigation. Many of the transla-
tionally controlled homeostatic pathways are centred around mitigation of DNA damage,
cell stress response and regulation of the proliferative potential of the cells, and thus are
critical for the aged cell function. Translation profiling-type studies have boosted the oppor-
tunities in discovering the function of protein biosynthesis control and are starting to be
applied to the aged cells. Here, we provide a summary of the current knowledge about
translational mechanisms considered to be commonly altered in the aged cells, including
the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2
kinase-mediated pathways. We enlist and discuss findings of the recent works that use
broad profiling-type approaches to investigate the age-related translational pathways. We
outline the limitations of the methods and the remaining unknowns in the established
ageing-associated translation mechanisms, and flag translational mechanisms with high
prospective importance in ageing, for future studies.

Introduction
Cellular ageing refers to the progressive deterioration of cellular functions over time, often leading to
cell cycle arrest (senescence) or cell death [1–3]. Ageing is characterised by several well-defined hall-
marks including loss of proteostasis, telomeric shortening, mitochondrial dysfunction and changes to
gene expression between young and aged cells [2–4]. Cellular ageing is one of the major contributors
to organismal ageing and is thought to define the longevity of species [5,6]. In this review, we first
introduce known epigenetic, transcriptional, and proteomic changes of aged cells. We then link these
changes with the translational dynamics of aged cells and review the three key translation control
pathways implicated in cellular ageing. We further highlight important future directions and
unanswered questions to be explored regarding translational control and ageing.
Epigenetic effects of cell ageing are best characterised and include DNA methylation at certain CpG

sites that almost linearly correlates with cell senescence (passaging). Overall, the number of methy-
lated sites decreases in aged human cells, however, this trend is site-dependent, with 60% of the sites
hypomethylated and 40% hypermethylated in ageing [7]. The directionality of these shifts is reliable
across sites, forming the foundation of epigenetic molecular clock models. In such models, CpG sites
with high correlation to the ageing are pooled and can be used to predict ages of tissue samples [8,9].
Other prominent alterations include general transcriptional amplification due to the loss of histones
from the chromatin, up-regulation of cryptic promoters and ‘transcriptional noise’, and alterations of
histone modifications that lead to chromatin remodelling [10–13].
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Epigenetic molecular clock models have been successful in the prediction of average age, but other levels of
gene expression (e.g. transcription) exhibit inconsistencies in age-related signatures dependent on individual,
tissue and cell type. Gene expression signatures in natural aged samples are influenced by numerous factors,
including historic exposures to radiation, infectious agents, disease and (bio)chemicals [14,15]. Controlled
laboratory studies using representative cell lines and model organisms are commonly used to alleviate historic
variability, but carry limitations of the in vitro culture and evolutionary or longevity differences across the
typical model species (e.g. Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Mus
musculus) [5]. Perhaps the soundest approach to age-related research is an integrative one, studying across a
range of organismal and cellular models, and potentially small human cohorts, to characterise the common
and cell-specific signatures of ageing at various levels of gene expression [16,17].
Integrative sampling approaches are, to some extent, being implemented through the study of transcriptional

and proteomic changes in the aged cells. Microarray and RNA sequencing have been conducted across various
species and cell types, including in vitro studies of human fibroblastic cell lines and in vivo studies of human
peripheral blood cells and mouse endothelial cells [18–21]. Several transcriptomic signatures are found to be
conserved across the aged cells, such as down-regulation of mitochondrial and cell division genes and
up-regulation of extracellular matrix (ECM) components and apoptosis signalling genes (Figure 1) [14,18–21].
Some of the most archetypal aged transcriptome traits observed in human cell lines, multicellular models such
as mouse and rat tissues and human cohorts, are the increased expression of immune response factors and
reduction in the abundance of ribosome protein and ribosome biogenesis factor mRNAs (Figure 1; Table 1).
Proteomic fluctuations in aged cells have been broadly studied, including in rat brain and liver tissues, mice

lung tissue, human bone marrow and skeletal muscle and comprehensively in Caenorhabditis elegans [24–28].
In the aged tissues, increase in oxidoreductive (components of peroxisomes) [24,27] and immune response
[25,26,28] proteins are commonly observed, alongside the decrease in ribosomal proteins, the latter mirroring
transcriptomic alterations [25,27,28] (Table 2).

Figure 1. Overview of the cell age-related alterations in the different stages of gene expression control.

Arrows on the left indicate the relative increase or decrease in the gene expression or protein abundance associated with the

ageing, as compared with the non-aged cells. Select representative review work references are shown in the bottom of the

panels.
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Numerous studies have shown that the correlation between mRNA and protein levels becomes progressively
decoupled in ageing [22,29]. In young and aged mouse kidney samples, it was observed that several nutrient
re-uptake membrane transporters showed decreased mRNA abundances compared with protein levels, whilst
RNA splicing genes displayed the reverse effect [22]. Discordance between mRNA and proteins levels is also
observable in aged killfish [4], macaque [30] and human brains [30,31]. This progressive decoupling is
mediated by several post-transcriptional regulators including micro RNAs (miRNAs) and RNA binding pro-
teins (RBPs), and the reduced proteostasis. In killfish and human brain, several differentially abundant proteins
were found to have miRNA target sites in the transcripts encoding them. In human brains, the RBPs
SFRS1, TIAL1 and AGO2 were associated with driving discordant mRNA–protein levels [4,30]. Reduction in
protein degradation machinery component abundance, such as proteasomal subunits, ubiquitination proteins

Table 1 Summary of recent works investigating transcriptional changes to gene expression in aged cells

Model
system

Tissues
studied Method Up-regulated Down-regulated Reference

C57BL6
mice (10–
12 weeks
vs. 14
months)

Brain, heart,
kidney

Illumina short read
total RNA-seq

Glutathione
metabolism,
Insulin signalling

Oxidative
phosphorylation

[18]

Mouse,
Human,
Rats

Human: brain,
kidney,
muscle;
Mouse:
muscle,
kidney, brain,
heart, liver,
lung, bone
marrow; Rat:
heart, muscle,
brain, bone
marrow,
spinal cord

Data from 12 mice,
11 rat and 4
human microarrray
studies was
downloaded and
used for
meta-analysis

Glutathione
metabolism,
Immune
response,
Lysosome,
Negative
regulation of
apoptosis

Oxidative
phosphorylation,
Mitochondrial
proteins, Collagen

[19]

Human
fibroblast
cell lines
(MRC-5,
BJ,
IMR-90,
WI-38 and
HFF)

- Illumina short read
RNA-seq on cells
of various
passages with
β-galactosidase
assays and
immunoblotting
used to confirm
senescence

Lysosome,
Immune
response

DNA repair, RNA
degradation,
Oxidative
phosphorylation,
DNA replication,
Ribosome
biogenesis,
Spliceosome
expression

[20]

C57BL6
mice (8
weeks vs.
18 months)

Vascular
endothelial

Illumina short read
RNA-seq

PI3K/Akt
signalling, ECM
receptor
interactions,
Apoptosis

Mitotic division,
Angiogenesis

[21]

Diversity
outbred
mice (6, 12
and 18
months)

Kidney tissue Illumina short read
RNA-seq

Immune and
inflammatory
response, DNA
repair,
Apoptosis
regulation

Heat shock proteins [22]

Human Peripheral
blood

Illumina short read
RNA-seq data from
7074 human
peripheral blood
samples

Immune
response, ECM
formation,
Lysosome

Mitochondrial
proteins, DNA
replication, DNA
repair, Ribosome
biogenesis

[23]
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and Unfolded Protein Response (UPR) pathway proteins in aged human brain, is also a suggested contributor
to the discordant mRNA and protein levels [4,31].
The incomplete correlation between mRNA and protein content has provoked research into translational sig-

natures of aged cells, particularly with respect to the known translation control pathways [32–35]. Translation
control mechanisms may suppress or incite the protein biosynthesis of certain mRNAs, as well as globally
control protein output of the cell [32,36–47]. Translational control is rapid in nature [32,48] and common in
stress response signalling, such as in hypoxic stress [49,50], heat shock [51,52], oxidative stress [52,53] and
nutrient deprivation [52,54]. The control mechanisms can be enacted at any phase of translation (initiation
[32,48], elongation [55,56], termination [55,57] and recycling [57]), with the phosphorylation of translation ini-
tiation or elongation factors, or their interacting proteins, being a common means of response mediation
[29,32,35,38,39,55,58,59].
Rapidly accumulating ribosome profiling works begin to bring new insights into the translational control of

aged cells [60–62]. Universal characteristics of translation-level responses from these works have emerged
across aged (replicatively) yeast [63], mouse [64,65] and human cells [46,66], where reduced translational
engagement and elongation rates were observed. Ribosome profiling studies in mouse liver, kidney [65] and
skeletal muscle [64], and human skeletal muscle [66], revealed reduced translation of mitochondrial, ribosomal
and translation factor transcripts in the aged tissues (Table 3). Human heart tissue also exhibited reduced
translation of nuclear-encoded mitochondrial proteins, whilst translation of cytosolic ribosome components,
including 14 Ribosomal Protein Small subunit (RPS) and 18 Ribosomal Protein Large subunit (RPL) transcripts,
increased [46]. Studies in replicatively aged yeast [63] and rat liver [25] displayed increased translation of stress

Table 2 Summary of recent works investigating protein-level changes to gene expression in aged cells

Model
system Tissues studied Method Up-regulated Down-regulated Reference

Nematodes - Liquid chromatography
mass spectrometry was
conducted on protein
isolates from organisms at
ages 1 day, 5 days and 10
days

Stress response,
Unfolded protein
response, mTOR
signalling, Insulin
signalling

Fatty acid, amino acid,
carbohydrate metabolism,
Peroxisome proteins,
Oxidation reduction

[24]

Rats (6
months vs. 24
months old)

Brain and liver Shotgun mass
spectrometry was
conducted on subcellular
fractions including nuclear,
post-nuclear fractions 1 and
2, and soluble cytosolic
proteins

Extracellular matrix
binding, RNA
transport,
Peroxisome
organisation, TCA
cycle

NADH dehydrogenase
activity, Protein kinase
activity

[25]

Human Haemato-poietic
stem and
progenitor cells

Liquid chromatography
mass spectrometry

ECM organisation,
Insulin processing,
Metabolic
processes,
Mitochondrial
function

Cell cycle and DNA repair,
Mitochondrial translation
factors, Lymphoid
development

[27]

Human Skeletal muscle Muscle biopsies from 58
participants aged between
20 to 87 years were
analysed using liquid
chromatography mass
spectrometry

Immune response,
Proteostasis,
Alternative splicing

Mitochondrial functional
proteins, Ribosomal
proteins, Energy
metabolism, Glycolysis

[28]

Diversity
outbred mice
(6, 12 and 18
months)

Kidney tissue Mass spectrometry Apical transporters,
Immune response,
Sodium reabsorption

Oxidative
phosphorylation,
Mitochondrial autophagy
proteins, Endoplasmic
reticulum membrane,
Histones

[22]
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response transcripts such as MT2A, SGK1 and HSPB1. Mouse liver and kidney [65] and human heart tissues
[46] displayed significant increases in extracellular matrix (ECM) component translation [64–66]. Overall,
decreases in translation fidelity and efficiency have also been commonly observed in the aged cells across yeast,
mice and humans [46,63,64].
Several key translation control pathways are emerging in the highlights of age-associated translation control

research, boosted by the global profiling methods. Understanding the full evolutionary role, biological potential,
and the exact mechanisms of action of translation-mediated control pathways of the aged cells is important for
outlining the routes to longevity and synthetic biology developments with specific lifespan design. In this
review, we update and reflect on the Integrated Stress Response (ISR), mechanistic (mammalian) Target of
Rapamycin (mTOR) and eukaryotic Elongation Factor 2 (eEF2) translation control pathways of cellular ageing.
We also point out the less explored avenues of translational involvement in aged cell homeostasis and outline
several priority directions for future research.

Role of the integrated stress response (ISR) in ageing
The Integrated Stress Response (ISR) is a translation control pathway effecting the initiation stage of translation.
In this pathway, stress signals promote the action of stress kinases, which phosphorylate eIF2 on its alpha
subunit [67]. eIF2 is the main Met-tRNAi

Met carrier and a translation factor responsible for the assembly of a

Table 3 Summary of recent works investigating translation-level changes to gene expression in aged cells

Model
system

Tissues
studied Method Up-regulated Down-regulated Reference

Rats (6
months vs.
24 months
old)

Brain and
liver

Ribosome profiling was
conducted as per Ingolia et al.
[60,61] using Illumina HiSeq
technologies

Immune and
inflammatory response,
Lipid oxidation, Stress
response, Translation

Ion channel activity,
Neuronal action potential,
Lipid biosynthesis, Amine
catabolic processes

[25]

Yeast - Replicatively aged yeast
cultures were harvested at 15
and 30 hrs and underwent
cycloheximide treatment before
subsequent polysome and
ribosome profiling

Stress response,
Translation repressors

Ribosome biogenesis,
Translational regulators

[63]

Mice Liver,
kidney and
skeletal
muscle

Assessed translation efficiency
of specific classes of mRNAs
using ribosome profiling in 3-
month- and 18-month-old mice

TCA cycle, Oxidative
phosphorylation, Fatty
acid metabolism,
Glycolysis

mTOR signalling, MAP
kinase signalling, Insulin
signalling, Translation
components

[64]

Mice Liver and
kidney

Liver and kidney samples were
taken across various timepoints
with three biological replicates
(in all except one condition)
undergoing Ribo-seq

Inflammation and
immune response,
Lysosome, ECM
organisation

Mitochondrial proteins,
Redox homeostasis,
Translation components

[65]

Human Skeletal
Muscle

Skeletal muscle biopsies were
performed on three individuals
aged between 40–45 and two
individuals aged 80+ and the
tissues were subjected to
ribosome profiling with Illumina
HiSeq 2500 short read
sequencing

- Mitochondrial proteins,
Oxidative phosphorylation

[66]

Human Heart
tissue

65 left ventricle samples from
dilated cardiomyopathy (DCM)
and 15 non-DCM controls
were used for ribosome
profiling. Footprint libraries were
sequenced with Illumina HiSeq
2500

ECM production, mTOR
signalling, Translation
components

Mitochondrial processes [46]

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 2857

Biochemical Society Transactions (2021) 49 2853–2869
https://doi.org/10.1042/BST20210844

https://creativecommons.org/licenses/by-nc-nd/4.0/


functional scanning complex. eIF2 is required for start codon recognition in most cases. Phosphorylation of
eIF2α (to form eIF2α-P) reduces the instance of translation initiation by stabilising eIF2 interaction with its
GTP exchange factor eIF2B, and thus, decreases global translation rates [32,48].
In mammals, there are four known stress kinases capable of eIF2 phosphorylation, each triggered by distinct

stress stimuli. These kinases include Heme-Regulated Inhibitor (HRI), Protein Kinase R (PKR), PKR-like
Endoplasmic Reticulum Kinase (PERK) and Eukaryotic translation initiation factor 2-alpha kinase 4
(EIF2AK4) (its yeast homologue is the General Control Non-depressible 2 or GCN2), which are activated
under heme deprivation, viral infection, Endoplasmic Reticulum (ER) stress and amino acid deprivation,
respectively [68].
It is evident that ISR activation stimulates global repression of translation, which may be favourable for

increasing lifespan (Figure 2) [69,70]. An example of the protective effect of translation repression on lifespan
is known from the increased longevity of Caenorhabditis elegans upon eIF2 knock-down, as well as knock-
down of many other important initiation factors (notably, eIF4G) and ribosomal proteins [70].
Alongside the global repression of translation observed under high eIF2α-P, ISR also induces translation of

specific mRNAs involved in the stress response. Selective translation is thought to be mostly regulated via
upstream Open Reading Frames (uORFs) in this case. The placement, length and amino acid sequence of the
uORFs determines if main ORF engagement increases or decreases [71]. In mammals, eIF2α-P triggers
increased translational expression of Activating Transcription Factor 4 mRNA (ATF4; also in yeast with its
orthologue GCN4 where uORF control mechanism was discovered) [72–74], which transcriptionally induces
expression of CCAAT/enhancer binding protein (C/EBP) homologous protein gene (CHOP). CHOP subse-
quently increases apoptotic signalling [72,73,75].

Figure 2. Integrated Stress Response (ISR) pathways are implicated in the aged cell phenotype.

Highlighted factors (blue) are more abundant in the aged cells and exert specific activation of transcript translation (red arrow)

and global reduction in protein synthesis (blue block) [48,67,71,72].
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Activation of the ISR via the ER stress kinase PERK is regulated by the upstream UPR pathway. The UPR is
activated in response to the accumulation of unfolded and misfolded proteins (ER stress) [76]. Localised within
the ER are several ER chaperones, required for the folding and secretion of newly formed proteins, critical to
assuring protein functionality. The UPR is activated in response to decreased protein folding efficiency, which
activates PERK, increasing the eIF2α phosphorylation and decreasing the global protein synthesis [77]. In aged
cells, the production of ER chaperone proteins is reduced, leading to the increased accumulation of unfolded or
misfolded proteins. This activates PERK, stimulating ISR-mediated reduction in the protein synthesis and
selective up-regulation of ER stress proteins via the dependence of their mRNAs on the uORF-controlled trans-
lation [78].
In several eukaryotic ageing models, phosphorylation of eIF2α by both PERK and GCN2/EIF2AK4 is preva-

lent [2,76]. In lower eukaryotes such as replicatively aged yeast (e.g. Saccharomyces cerevisiae and
Schizosaccharomyces pombe), depletion of eIF2α-P negatively influenced lifespan, whilst its induction positively
regulated autophagy and increased lifespan [63,79,80]. In contrast and somewhat surprisingly, in
Caenorhabditis elegans, activation of the ISR was detrimental to longevity, with both pharmacological ISR
inhibition and phosphorylation-defective eIF2α mutant extending the lifespan [81]. Ribosome profiling in yeast
and rat brain and liver have indicated increase in the stress response transcripts translation in the aged tissues
[25,63]. These results suggest ISR functions are complex and extend beyond translational down-regulation.
In the brain, low-level activation of the ISR is essential for memory formation and development. Excessive

and/or chronic activation of ISR in the brain, in contrast, is associated with neurodegeneration [43,82].
Prolonged activation of the ISR is linked to Parkinson’s Disease, Huntingdon’s Disease, and Alzheimer’s
Disease (AD). This ISR involvement is not always correlative: for instance, in AD mouse models, reduction in
the ISR by knock-out of eIF2α kinases PERK and EIF2AK4 partially alleviated the disease phenotype, improv-
ing synaptic plasticity and spatial memory. In addition, inhibition of the ISR via ISR inhibitor (ISRIB) has been
shown to improve spatial and working memory deficits in aged mice [83–85]. ISR inhibition is a therapeutic
target for neurodegenerative conditions which are often associated with organismal ageing, but the role of ele-
vated ISR in the aged cells of higher metazoa remains unclear.
Overall it can be concluded that ISR functions may be mostly beneficial in the ageing of single-cell organ-

isms. Substantial ISR activation and dysregulation can be detrimental to the lifespan and stimulate disease in
complex multicellular animals [86]. In this regard, ISR functions in ageing may be linked to carcinogenesis,
where ‘unicellular’ genes are known to be exaggerated in the transcription profile [87]. It remains unclear to
what extent ISR is beneficial to the various types of aged cells of multicellular organisms, an important future
direction of research that needs to be investigated across different stressors and mitotic and post-mitotic cell
types.

Deciphering the role of mTOR in longevity
The mechanistic (mammalian) Target of Rapamycin (mTOR) pathway is a critical translation control mechan-
ism regulating cell growth and proliferation. The pathway is stimulated by hormones, growth factors and
amino acid availability, which positively regulate the activity of mTOR complexes 1 and 2 (mTORC1 and
mTORC2) [37]. mTOR complexes contain a catalytic subunit that acts as a serine/threonine protein kinase.
The activation of mTOR complexes effects numerous intracellular processes, including mRNA translation,
metabolism, protein degradation and cell migration [40,88,89].
mTOR1 regulates translation via two main mechanisms. In the first mechanism, mTOR1 activates ribosomal

S6 kinases by phosphorylation, allowing S6K1 to activate several facilitators of translation initiation [88,90].
Among these activation targets is eIF4B, a ubiquitous component of initiation with broad mRNA scanning
stimulation activity [39,88,90]. In the second mechanism, mTOR complexes phosphorylate eIF4E-Binding
Proteins (4EBPs), triggering their dissociation from the sequestered eIF4E and consequent eIF4E’s return to the
translation-accessible pool [88,91]. The released eIF4E associates with other initiation factors, including eIF4G,
and through its binding to the 50 mRNA cap facilitates cap-dependent translation [88,92].
Adding to the overall translation stimulation effect, translational control by mTOR incites increased expres-

sion of select transcripts, in some similarity to the global and specific effects of the ISR. Terminal
Oligopyrimidine (TOP) tracts have been suggested as a feature of mRNAs specifically responsive to the mTOR
activation. Notable examples of TOP mRNAs include translation-related eEF1A, eEF2 and ribosomal protein
S6 [40,88].
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mRNAs with long-and-structured 50UTRs have also been considered as ‘eIF4E-sensitive’ and thus more
responsive to the mTOR signalling. Importantly, these transcripts include mRNAs coding for cell cycle and
proliferation regulators, such as cyclins, Vascular Endothelial Growth Factor (VEGF) and MYC [88,92].
mTOR is an extensively regulated pathway, which is suppressed in various circumstances. Under stress con-

ditions including DNA damage and hypoxia, signalling molecules including p53, AMP-activated protein kinase
(AMPK) and Regulated in Development and DNA Damage responses protein 1 (REDD1) suppress mTOR
complex activity through the Tuberous Sclerosis Complex (TSC) [88]. The TSC targets mTOR activating mol-
ecule, Ras homologue enriched in brain (Rheb), hydrolysing attached GTP to GDP, to disrupt its signalling
properties [93].
In recent years, interest into the role of mTOR in the context of ageing has substantially grown. Studies

across Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Mus musculus have indi-
cated that mTOR is more active in ageing, with its activation negatively correlating with longevity [89,94–96].
Genetic knock-out of the S6K homologue gene SCH9 in replicatively aged yeast caused extensions in lifespan,
firmly establishing the link between mTOR and longevity [97]. Similarly, in Caenorhabditis elegans, RNA inter-
ference (RNAi) inhibition of the Regulatory-Associated Protein of mTOR (RAPTOR) expression positively
increased the animals’ lifespan [98,99]. Reduction in mTOR activity by caloric restriction or the canonical
mTOR1 inhibitor, Rapamycin, has increased longevity in several model organisms, including Caenorhabditis
elegans [100,101], Drosophila melanogaster [102,103] and Mus Musculus (Figure 3) [104,105].
Ribosome profiling studies in numerous tissues and organisms have highlighted discrepancies in translational

up-regulation of mTOR signalling components within aged samples. For example, ribosome profiling of human
heart tissue revealed translational enrichment of mTOR signalling components [46], whilst their down-
regulation was observed in mouse kidney and liver [64]. These data imply that mTOR activation at the

Figure 3. mTORC1 translational control and its link to the aged cell phenotype.

Highlighted factors (blue) are more abundant in the aged cells and enhance overall translation, with some specific stimulatory

effects on mRNAs with 50 Terminal Oligopyrimidine (TOP) tracts and long-and-structured (highly cap-and-scanning-dependent)

50UTRs (red arrows) [88,89,92].
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translational level may vary across tissues, complicating the concept of blanket mTOR up-regulation accom-
panying ageing.
With the general knowledge that mTOR restriction positively influences lifespan in model organisms, the

question has arisen whether these findings are applicable in humans. Initially, this was investigated in cell
samples from patients with Hutchinson-Gilford Progeria Syndrome (HGPS), a condition characterised by pre-
mature ageing [106,107]. The study found that Rapamycin treatment effectively delayed the onset of senescence
in HGPS cells and aided in dissolving progerin aggregates, which are a central attribute of the disease. The
results suggest that Rapamycin treatment may be clinically beneficial for children with HGPS and may posi-
tively influence longevity, but any longer-term effects and those across tissues in an organismal setting need to
be investigated.
A concern regarding the use of Rapamycin as an ageing intervention is its ability to effect mTORC2 signal-

ling. Whilst mTORC2 is not typically susceptible to Rapamycin inhibition, chronic exposure to the compound
can lead to its inhibition, as exhibited in several studies on mice [108]. mTORC2 is known to contribute to
cytoskeleton organisation and insulin signalling [89]. Studies in both mice and nematodes have shown that the
suppression of mTORC2 reduces lifespan [108–111], likely due to consequently-formed insulin resistance
[108]. These findings indicate that caution should be taken in administering Rapamycin or analogues of the
compound (rapalogs) which are capable of inhibiting both mTORC1 and mTORC2, as mTORC2 inhibition
can induce detrimental effects on lifespan [89].
Treatment with Rapamycin or rapalogs for other clinical purposes such as immunosuppression has led to

prolific side effects, including neutropenia, thrombocytopenia, hyperglycemia, and pneumonitis [112]. A clin-
ical trial utilising the rapalog RAD001, which should not affect mTORC2 functionality, in elderly individuals
(over 65 years), has shown an improved immune response to influenza vaccines, exhibited by increases in anti-
body titers compared with placebo conditions and decreases in percentages of pro-apoptotic CD4 and CD8
T-cells. Few individuals experienced adverse side effects to the low dosages (0.5 mg daily or 5 mg weekly), indi-
cating that RAD001 may be appropriate for clinical use in older individuals [113].
To conclude, while the positive correlative link to the mTOR activation in the aged cells seems to be well-

established and supported by diverse biological evidence, we are still far away from the understanding of the
functional role of mTOR in ageing. Some common-sense choices are that mTOR activation can be a compensa-
tory response of the cells required to overcome the age-related transcriptional and DNA deficiencies, or it is an
inevitable consequence of the altered transcriptome of the aged cells. Cancer cells exploit the mTOR-driven
activation of Rat sarcoma virus (Ras) proteins which are important for the elevated production of the onco-
genes and forming the proliferative outfit of the cells, but the mTOR-induced suppression of the autophagy
was also demonstrated to render the malignant cells more vulnerable by increasing the chances of ‘energy
crisis’ [114,115]. Thus, the existing evidence supports a view that age-related mTOR activation can be func-
tional in some but not all cell type contexts and the evolutionary fine-tuning of the mTOR activity has been to
provide the balance fit for the species-specific environment and lifespan. Consequently, it would be impossible
to broadly suppress (or activate) mTOR for an overall beneficial effect on longevity, but a targeted approach
accounting for the cell type and transcriptome profile would be necessary. Therefore, more detailed information
on the involvement and the purpose of mTOR pathway across the aged cells of different types and in diverse
environments is required in the future, a task incorporating investigations of rapid translation-based cell
responses to stress factors.

Translational control by eEF2 phosphorylation in ageing
eEF2 is an elongation factor that facilitates ribosomal translocation across the codons of mRNA Open Reading
Frames (ORFs). The main eEF2 regulator, eEF2 kinase (eEF2K), is activated by autophosphorylation (Thr-348
in human protein) in response to eEF2K interaction with the calcium:calmodulin complex. eEF2K can also
autophosphorylate independently of calcium (Ser-500 in human protein) to become active in the calmodulin
presence. Active eEF2K then phosphorylates eEF2, preventing its binding to elongating ribosomes [116,117].
By suppressing eEF2 participation in elongation, the overall rate of elongation is slowed [55,56]. eEF2K phos-
phorylation level is regulated by various signalling cascades. Phosphorylation of eEF2K, promoting its engage-
ment with eEF2, is enhanced by AMPK pathway. Dephosphorylation of eEF2K is mediated by mTOR and
Extracellular signal-regulated kinase (ERK) signalling [56,118].
Like the ISR, eEF2K pathway is active in stress, with eEF2K activity positively correlating with cell survival

during adverse conditions. This has been observed in response to several stress stimuli, including nutrient
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[119], temperature [59] and genotoxic stress [120]. eEF2K activity is thought to be beneficial under stress, as it
is hypothesised that the decreasing elongation rate conserves energy and improves the accuracy and fidelity of
protein synthesis [56].
It has become apparent that eEF2 and its regulator eEF2K are implicated in cellular ageing (Figure 4). A

ribosome profiling study in aged mouse liver showed that ribosomal occupancy in eEF2 transcripts was signifi-
cantly reduced [65]. At the protein level, rat muscle samples exhibited linear decreases in eEF2 abundance
across 3, 6, 12, 18 and 24 months of the animals’ age [121]. This reduced abundance of eEF2 is thought to par-
tially contribute to the lowered translation rates in aged organisms. In addition, mTOR signalling, which is
often active in ageing, to some extent regulates the activity of eEF2. mTOR signalling decreases the phosphoryl-
ation rates of eEF2K, which in turn prevents phosphorylation of eEF2, increasing its availability for translation
elongation [56,89]. It thus has been proposed that suppression of eEF2K phosphorylation by mTOR signalling
in ageing may negatively influence lifespan. For example, in the model organism Caenorhabditis elegans, knock-
out of eEF2K orthologue efk-1 via CRISPR/Cas9 gene editing reduced translation fidelity and negatively
impacted lifespan. Conversely, suppression of mTOR via Rapamycin treatment, which increased eEF2K activity,
has increased translation fidelity, and extended lifespan [122]. The latter study highlights the importance of
preserving translation fidelity in ageing and the likely biological function of eEF2K in the fidelity maintenance.
Yet in certain circumstances, it has been prominently demonstrated that eEF2K-induced reduction in the

protein synthesis rates can be detrimental to the survivability of the cells or multicellular organisms. A pivotal
study on eEF2K function in germ cells has shown that its reduced function is allowing the production of anti-
apoptotic proteins and excessive survival of oocytes [123]. The increased oocyte survival in the context of
species is a highly negative event, potentially leading to germline instability and embryonic defects. In contrast,
in the context of neuronal function and reprogramming, it was shown that eEF2K suppression greatly reduces
the Alzheimer’s disease phenotype in model mice, promoting memory formation and translation-depended
synaptic activity [124].
Overall, an exploration into the role of eEF2K in cellular ageing is a relatively recent research interest. Current

data indicate that eEF2K activation is generally beneficial for longevity and species genetic stability, highlighting
eEF2K induction as a potential therapeutic target of ageing. However, eEF2K reduces the cell capacity to rapidly

Figure 4. eEF2 Kinase- (eEF2K) and mTOR-mediated translational control and its link to the aged cell phenotype.

Highlighted factors and pathways (blue) are more abundant or prominent in the aged cells and generally result in the

suppression of translation by reducing the translation elongation rate [56,116,117].
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respond to the stress factors, which can lead to cell death and accelerated ageing, and can be hypothesised to
incur excessive DNA damage and instability and thus contribute to the carcinogenic pathways [123,124].

Future research directions and areas of interest
Evidence related to the contribution of translational dynamics to cellular ageing is becoming increasingly
apparent, with several avenues prompting further exploration. Numerous examples of ribosome profiling
studies have effectively characterised the aged cell translatome [63–65]. However, many of these studies took
place using model organisms, with few studies conducted in humans. Existing works in human musculoskeletal
tissue [66] and heart tissues [46] have highlighted aspects of the translational environment of aged cells, such
as decreases in mitochondrial proteins and increases in ECM production, but there is still opportunity to
broaden the range of tissues explored. There is also an increasing opportunity to utilise new techniques for
investigating translation in ageing. Recent methodological advancements such as Translation Complex Profile
Sequencing (TCP-seq; or its factor-selective Sel-TCP-seq variant) [125–127] may offer more detailed insight
into translational control at the initiation stage for the aged cells. The TCP-seq pipeline allows for the study of
50UTRs to characterise transcript-specific features of scanning by the small ribosomal subunits. Using TCP-seq,
stalling of SSUs was observable, particularly in transcripts with long, structured 50UTRs or uORFs, which may
be of an interest to the cases of the age-related ISR and mTOR regulation [125].
In addition to the highlighted major pathways, recent studies have identified translational control through

eIF5A hypusination apparent in cellular ageing. eIF5A is an elongation factor that contains a unique amino acid
hypusine, synthesised by a transfer of the aminobutyl moiety from spermidine (a polyamine) to lysine 50 (human)
of eIF5A [128,129]. Hypusinated eIF5A can alleviate ribosome stalling in ‘hard-to-translate’ mRNA motifs, includ-
ing polyproline tracts [129,130]. Importantly, this feature of hypusinated eIF5A has been prominent in the transla-
tion of autophagic factors, such as ATG3 [130] and TFEB [131], translationally increasing their abundance.
Because in ageing levels of spermidine decrease, hypusinated eIF5A becomes less available, and the autophagy is
suppressed [131,132]. It is noteworthy, that a mere supplementation of spermidine in aged Drosophila brains has
improved mitochondrial function and memory [128]. In aged mice, spermidine supplementation improved B-cell
responses [131]. Additionally, prolonged spermidine supplementation in aged mice (6 months) improved lifespan
[133]. These studies highlight the potential of spermidine as an alternative anti-ageing intervention.
Another area of interest in the field of translational control and ageing is the role of the translation rate. It

has previously been shown that rates of translation decrease in cellular ageing and that the genetic knock-down
of translational components is often beneficial for longevity [65,70]. Decrease of the translation rates is thought
to be beneficial for several reasons. The first proposed reason is that translation is a highly energetically expen-
sive process. By reducing translation rate in ageing, cells can redistribute energetic resources to the other pro-
cesses like DNA maintenance, increasing longevity [29]. Another benefit of the reduced translation rates is the
increased translation fidelity, which is considered extremely important in improving longevity [65,134].
Reducing translation rates directly rather than targeting translational control elements may be an appropriate
therapeutic intervention for increasing lifespan. However, this approach is somewhat more complex, as transla-
tion must not be fully inhibited and the translation of certain genes essential for continued cellular survival
must be maintained, as well as cell and tissue type-optimal translation rates must be respected.
Relating to the translation control mechanisms, another avenue of potential exploration is the therapeutic

induction or reduction in the age-specific pathway mechanisms, and developments towards cell-type specific or
specific stress-activated drugs. It is exciting that in all, mTOR [100,102,105], ISR [84,136] and eEF2K-based
[122] age-related regulation small molecules have been successfully used to affect the pathway and increase lon-
gevity in certain circumstances (Table 4). As it becomes more apparent that the translational control has been
carefully balanced by the evolution to fit the optimal longevity of the species’ individuals, cell type-selective
translation effectors could be used to increase the stress resistance or decrease the proliferation programs and
carcinogenicity in the critical cell types. Further research into translational control of the aged cells is needed to
understand what cell types and tissues require which adjustments to extend the lifespan with minimal adverse
side effects.

Conclusions
Cellular ageing is a complex process which elicits alterations in gene expression at all levels. Recent research
into the translation-level responses has revealed several translation control pathways implicated in lifespan and
longevity. In the case of mTOR and ISR, prolonged, chronic activation of these mechanisms is detrimental to
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lifespan, with their inactivation by inhibitors being a potential avenue for anti-ageing therapeutics. Conversely,
induction of the eEF2 inhibitor eEF2K by phosphorylation is reportedly beneficial for longevity, with its activa-
tion increasing the accuracy of protein synthesis, slowing translation rates and prolonging lifespan. Potentially,
activation of this pathway may be a suitable therapeutic anti-ageing target, however more research is required
in model species to comment further. In all cases, directly countering the age-specific translational alterations
may not be universally beneficial, and cell type, stress and homeostatic environment, as well as the species-
specific lifespan need to be carefully considered. Overall, translation control pathways are an integral part of
gene expression control in aged cells and present an excellent opportunity for non-genetic correction of longev-
ity and age-related deterioration of function or disease.

Perspectives
• Cellular ageing is accompanied by the activation of several translation control pathways which

regulate gene expression to affect cell survival during stress, DNA damage and proliferative
rate. Translational control of the aged cells can underpin the evolutionary preferences of the
species towards longevity, which is a biological function of high importance but insufficient
understanding.

• In the aged cells, activation of ISR and mTOR is demonstrated to impede longevity, whilst
inhibition of these pathways increases lifespan. Translational control by eEF2 phosphorylation
with eEF2 Kinase increases lifespan in eukaryotes such as nematodes, but its effects on more
complex multicellular organisms remain uncertain.

Table 4 Summary of recent works utilising small molecule inhibitors targeting translation control pathways to
increase lifespan and ameliorate age-related functional declines

Intervention
compound

Target
pathway Effect Model Outcome Reference

ISRIB (Integrated
stress response
inhibitor)

ISR (specifically
eIF2B)

Inhibition Healthy normal aged mice Reversed spatial memory deficits,
Improved working memory

[84]

Prion-infected mice Prevented neuronal loss,
Increased survival

[135]

Rapamycin mTOR
(specifically
mTORC1)

Inhibition Human Hutchinson-Gilford
Progeria Syndrome skin cells

Delayed onset of senescence,
Dissolved progerin aggregates

[106,107]

Normal nematodes Increased stress resistance,
Lifespan extension

[100]

Normal fruit fly Increased stress resistance,
Reduced fecundity, Increased
lipid levels, Lifespan extension

[102]

Genetically heterogenous
mice

Lifespan extension [105]

eEF2K Activation Normal nematodes Lifespan extension [122]

RAD001
(Everolimus)

mTOR
(specifically
mTORC1)

Inhibition Elderly human blood samples
(65 and over) post-influenza
vaccine

Increased antibody titres,
Decreases in pro-apoptotic CD4
and CD8T-cells, Improved
immune function

[113]

Spermidine eIF5A
hypusination

Activation Normal fruit fly brain samples Improved mitochondrial function
and memory

[128]

Healthy normal mice Improved B-cell responses,
Reduced B-cell senescence

[131]

Healthy normal aged mice Delayed cardiac ageing, Improved
mitochondrial function, Lifespan
extension

[133]
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• Artificial suppression or activation of the age-specific translation control pathways has high
potential for anti-ageing therapeutics. As in-depth investigation of translational responses of
the cells became more universally accessible with the advent of translation profiling-type
experiments, it is increasingly important to define the details of the stress and survival
mechanisms of the aged cells across cell types and species with different lifespan.
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