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Infantile-onset Pompe disease (IOPD) is a rare, severe disorder of lysosomal

storage of glycogen that leads to progressive cardiac and skeletal myopathy.

IOPD is a fatal disease in childhood unless treated with enzyme replacement

therapy (ERT) from an early age. Sickle cell anemia (SCA) is a relatively

common hemoglobinopathy caused by a specific variant in the hemoglobin

beta-chain. Here we report a case of a male newborn of African ancestry

diagnosed and treated for IOPD and SCA. Molecular testing confirmed two

GAA variants, NM_000152.5: c.842G>C, p.(Arg281Pro) and NM_000152.5:

c.2560C>T, p.(Arg854∗) in trans, and homozygosity for the HBB variant

causative of SCA, consistent with his diagnosis. An acute neonatal presentation

of hypotonia and cardiomyopathy required ERT with alglucosidase alfa

infusions preceded by immune tolerance induction (ITI), as well as chronic red

blood cell transfusions and penicillin V potassium prophylaxis for treatment

of IOPD and SCA. Clinical course was further complicated by multiple

respiratory infections. We review the current guidelines and interventions

taken to optimize his care and the pitfalls of those guidelines when treating

patients with concomitant conditions. To the best of our knowledge, no other

case reports of the concomitance of these two disorders was found. This

report emphasizes the importance of newborn screening, early intervention,

and treatment considerations for this complex patient presentation of IOPD

and SCA.
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Introduction

Pompe disease (MIM #232300), also known as “glycogen

storage disease type II”, is an autosomal recessive inborn

error of glycogen metabolism that leads to lysosomal storage

of undigested glycogen in muscle tissues. It is caused by

a deficiency of acid alpha-glucosidase (GAA; EC 3.2.1.20),

coded by GAA on chromosome 17q25.3. Pompe disease

is generally categorized according to the age of onset of

clinical manifestations: infantile-onset Pompe disease (IOPD) is

characterized by onset of generalized hypotonia, macroglossia,

and left ventricular hypertrophy before 12 months of age,

and it generally leads to death by respiratory and cardiac

failure before the second year of age unless early enzyme

replacement therapy (ERT) is instituted (1, 2). Late-onset

Pompe disease (LOPD), on the other hand, presents as

proximal skeletal muscle weakness that progresses to involve

bulbar, respiratory, and distal skeletal musculature as well as

visceral smooth muscle, with relative sparing of cardiac muscle

(3). Alglucosidase alfa, a recombinant form of acid alpha-

glucosidase, is the only ERT modality currently available for

the treatment of IOPD and has been shown to increase overall

survival and ventilator-free survival, as well as to decrease

left ventricular mass and increase left ventricular ejection

fraction in patients with classic IOPD (4). The standard, FDA-

approved alglucosidase alfa dose is 20 mg/kg every 2 weeks (4),

although there is increasing evidence of improved outcomes

with administration of higher doses (5–7). Before starting ERT
for IOPD patients, the cross-reactive immunological material
(CRIM), which is the presence of protein epitopes derived

from acid alpha-glucosidase remnants in peripheral blood,

needs to be ascertained as CRIM-negative individuals are at

higher risk for developing sustained titers of anti-alglucosidase

alpha neutralizing antibodies which can lead to treatment

resistance and poorer outcomes (8). To prevent the development

of anti-ERT antibodies, different immune tolerance induction

protocols are used for CRIM-negative (9) and CRIM-positive

(10) patients.

Sickle cell anemia (SCA, MIM #603903) is an autosomal

recessive disorder of hemoglobin structure caused by the

common HBB pathogenic variant (NM_000518.5):c.20A>T,

p.(Glu7Val) which causes polymerization of deoxyhemoglobin,

resulting in chronic intravascular hemolysis and intercurrent

vaso-occlusive episodes. The chronic anemia of SCA requires

cardiovascular adaptation with increased cardiac output

to maintain tissue oxygen delivery, and individuals with

SCA demonstrate increased stroke volume, left ventricle

dilatation, and left ventricular hypertrophy starting in

childhood and proportional to the severity of anemia (11, 12).

Individuals with SCA also demonstrate decreased muscle

microvascular oxygen delivery, decreased growth velocity,

and lower muscle mass compared with healthy children

(12, 13).

In this article, we report a patient diagnosed with IOPD and

SCA. Although treated with ERT since the first month of life, his

clinical course was complicated by left ventricular hypertrophy

followed by early-onset dilation in infancy. This is a unique case

where both conditions co-occurred in a patient with a severe

clinical presentation and course.

Case report

A male newborn of African American ethnicity was

born at 39 weeks gestational age from non-consanguineous

parents, both previously diagnosed as heterozygous carriers

for the HBB c.20A>T, p.(Glu7Val) variant. The pregnancy

was otherwise uncomplicated. Shortly after birth, he developed

respiratory distress requiring transient non-invasive respiratory

support and admission to the neonatal intensive care unit. A

chest radiograph exhibited marked cardiomegaly (Figure 1A)

and physical exam was significant for hypotonia and mild

macroglossia. An echocardiogram showed severe left ventricular

hypertrophy (Figure 1B). Further studies revealed elevated pro

B-type natriuretic peptide (pro-BNP) at 25,701 pg/mL (normal

<10,000 pg/mL), creatine-kinase (CK) at 1,374 U/L (normal

<300 U/L), and aldolase at 37.8 U/L (normal 0.1−8 U/L).

Work-up for other metabolic and genetic diseases, including

acylcarnitine profile, total and free carnitine, ammonia, lactate,

serum amino acids, and urine organic acids, was non-

contributory. Karyotype and chromosomal microarray did

not detect abnormalities. A cardiomyopathy next-generation

sequencing (NGS) panel analyzing the coding regions of

163 genes associated with cardiac disease was performed at

the Washington University Genomic and Pathology Services.

Two GAA variants, NM_000152.5: c.842G>C, p.(Arg281Pro)

and NM_000152.5: c.2560C>T, p.(Arg854∗) were found in

compound heterozygosity. While the genetic panel was pending,

newborn screening (NBS) showed a decreased GAA enzyme

activity at 4% (normal >22%). The hemoglobinopathy portion

of the NBS showed absence of Hb A and presence of Hb

F and S, consistent with SCA. Confirmatory GAA enzyme

activity was low at 0.8 pmol/punch/h (normal >3.88) and urine

glucotetrasaccharide (Hex4) was elevated at 29.2 mmol/mol

creatinine (normal <20) on day of life (DOL) 14. CRIM status

determined by Western blotting was positive. The patient was

started on alglucosidase alfa infusions (20 mg/kg every 2 weeks)

with an immune tolerance induction protocol comprised of

methotrexate at 0.4 mg/kg for three consecutive days, starting on

the day prior to the infusion, on DOL 30. This protocol was used

for the first three enzyme replacement therapy (ERT) infusions

(total of 9 doses of methotrexate), as previously described (10).

The SCA diagnosis was confirmed by HBB sequencing

showing homozygosity for c.20A>T and negative HBB

duplication/deletion analysis, ruling out hereditary persistence

of fetal hemoglobin. He was started on penicillin V potassium
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FIGURE 1

Evolution of cardiac hypertrophy and dilation. (A) Chest radiograph showing marked cardiomegaly in the neonatal period. (B) Echocardiogram

showing hypertrophic left ventricle in the neonatal period. (C) Echocardiogram showing mixed left ventricular hypertrophy and dilation at 2

months of age. (D) Echocardiogram showing resolution of left ventricular hypertrophy with worsening of dilation at 7 months of age. IVS,

interventricular septum; LA, left atrium; LV, left ventricle.

prophylaxis at 1 month old. Due to concern that chronic anemia

would adversely impact his cardiac function, and that any SCA

vaso-occlusive complications such as acute chest syndrome

or splenic sequestration in infancy would be poorly tolerated,

chronic red blood cell transfusion therapy was chosen as his

primary disease-modifying therapy. His first transfusion was

administered at 2 months of age when Hb decreased to 8.4 g/dl.

His transfusion therapy goal is to maintain Hb >9.5 g/dl to

minimize the physiological stress of anemia. At 2 months of

life, the patient was noticed to have new-onset left ventricular

dilation in addition to cardiac hypertrophy (Figure 1C). Due to

concerns for a decrease in left ventricular systolic function the

patient was started on enalapril to prevent cardiac remodeling.

He has had 3 readmissions for respiratory decompensation

due to viral infections: dual SARS-CoV-2 and respiratory

syncytial virus infection at 3 months old (requiring high-flow

nasal cannula), human metapneumovirus infection at 5 months

old (requiring high-flow nasal cannula in the ICU setting)

and rhino/enterovirus at 6 months old (requiring BiPAP in

the ICU setting). At 7 months old, his outpatient ERT dosing

was noted to having been based solely on birth weight, which

resulted in a progressively decreasing ERT dose per kg body

weight; on his most recently outpatient infusions this was

∼13 mg/kg, and was corrected to 20 mg/kg. He was admitted

subsequently at 7 months old due to respiratory failure with

concern for an aspiration event requiring admission to the

intensive care unit for non-invasive respiratory support. A

repeat echocardiogram showed resolution of left ventricular

hypertrophy with continuing dilation (Figure 1D). Evolution of

systolic function and cardiac indices are presented in Figure 2.

He has received a lifetime total of 10 pRBC transfusions at the

time of this report, with a hemoglobin nadir of 7.7 g/dL. He

remains gastrostomy-dependent. He continues to exhibit very

low axial and appendicular muscle tone. He has required∼150–

160 kcal/kg/day of enteral nutrition since birth for growth; non-

etheless, he was at<1% (Z-score=−2.53,WHOBoys 0–2 years)

for weight and <1% (Z-score = −3.57, WHO Boys 0–2 years)

for weight-for-length at his most recent admission.

Discussion

IOPD, with early onset and a lethal prognosis, can be

modified through intervention and therefore meets generally

accepted consensus criteria for inclusion in NBS programs (14).

In the United States of America, the inclusion of Pompe disease

in NBS was recommended in 2015, and currently more than 20

states have started the necessary implementation steps (15). The

incidence of Pompe disease is historically reported as∼1:40,000

live births Western countries (16); however, this epidemiology

has been calculatedmainly based on European populations, with

blind studies showing a higher incidence in other populations
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FIGURE 2

Evolution of cardiac indices in response to treatment. The dashed green line represents initiation of ERT. LV%fs, left ventricular percentual

fractional shortening; LVPWd, left ventricular posterior wall dimension; LV mass, left ventricular mass; LV mass/BSA, left ventricular mass/body

surface area.

including people of African ancestry (17). Moreover, after

implementation of universal screening through NBS there have

beenmany reports of an incidence up to 4x higher than expected

[as summarized by Davids et al. (18)], pointing to a substantial

amount of historically missed diagnoses. SCA, also an autosomal

recessive disorder included in NBS, contrasts with Pompe

disease by having a high populational prevalence, with∼100,000

diagnosed Americans, of whom ∼90% are of African ancestry

(19). Prenatal genetic diagnosis for SCA and IOPD, as for

most genetic disorders, is still incipient but may allow for even

swifter initiation of treatment in future patients. In this article,

we have presented a case of concomitant Pompe disease—

presenting as IOPD—and SCA. The lack of previous reports

of this co-incidence may reflect an epidemiological gap and

probable underdiagnosis of Pompe disease in people of African

ancestry, reinforcing previous studies (17) and underscoring the

importance of universal NBS for equanimity in healthcare.

Two heterozygous GAA variants were detected. The

p.(Arg854∗) variant is predicted to result in a premature stop

codon, nonsense-mediated decay, and has been demonstrated

to result in an absent gene product (20); this variant has been

observed in homozygous or compound heterozygous states in

CRIM-negative individuals diagnosed with Pompe disease (21,

22). Published functional studies of the p.(Arg845∗) variant have

shown negligible activity compared to wild-type protein (23).

This variant is commonly observed in individuals of African

descent with IOPD (24, 25). This variant meets criteria PVS1,

PM2, PM3, and PP4 of the American College of Medical

Genetics/Association for Molecular Pathology (ACMG/AMP)

guidelines for the interpretation of sequence variants (26)

and is thus classified as pathogenic. We also identified a

novel variant, c.842G>C, p.(Arg281Pro), in this patient, not

previously observed in individuals with Pompe disease. A

different amino acid change at the same codon, c.841C>T,

p.(Arg281Trp), has been reported as a known likely pathogenic

variant (27). Our patient’s variant is absent in gnomAD, and

multiple in silico prediction algorithms are in agreement that

this variant may have a deleterious/probably damaging effect on

protein function. Given the available evidence and in accordance

with the ACMG/AMP guidelines, as well as the ClinGen GAA

sequence analysis recommendations from ClinGen, the GAA

p.(Arg281Pro) variant meets criteria PM2, PM3, PM5, PP3, and

PP4 and was classified as likely pathogenic. Segregation studies

on parental sample further confirmed that the p.(Arg845∗)

and p.(Arg281Pro) are in trans configuration, consistent with

biallelic disruption of the gene product.

Treatment of IOPD with alglucosidase alfa ERT has been

shown to improve survival, functionality, cardiomyopathy, and

weight gain of individuals with IOPD (28), with the better

outcomes observed in patients started on ERT in the first month

of life (29), as was the case in our patient. In contrast with

most other lysosomal diseases, the start of treatment in IOPD is

contingent upon determination of CRIM status for appropriate

immune tolerance induction as without immunomodulation,

virtually all CRIM-negative patients develop a high sustained

immune response to ERT that leads to dismal outcomes (9,
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30). Although approximately half of CRIM-positive patients

do not have significant antibody titers, 32–40% of CRIM-

positive patients who receive ERT without immune tolerance

induction can develop intermediate- or high sustained antibody

titers, leading to worse outcomes when compared to CRIM-

positive patients that received immunomodulating agents (8,

31). Currently, the validated immune tolerance induction

regimen for CRIM-positive patients contains methotrexate

(10), a potent myelotoxic folate antagonist that can lead to

myelosuppression. Although this regimen utilizes low-dose,

short-term methotrexate, which is generally welltolerated in

IOPD patients, this may not be the most suitable regimen for

a patient with concomitant bone marrow disease. Evidence for

the use of methotrexate in patients with SCA is scarce and

includes reports of transient cytopenia despite the concomitant

administration of folinic acid (32). In this case report, anemia—

which may have been exacerbated by the use of methotrexate—

may have led to worsening cardiac dilatation despite ERT,

highlighting the complexity of medical care in individuals with

a dual diagnosis. As the incidence of Pompe disease increases

as a result of universal NBS, more patients with concurrent

IOPD and SCA (or other hemoglobinopathies) are expected to

be diagnosed, and it becomes necessary to study novel immune

tolerance induction protocols without the use of methotrexate,

or with maximized support (with agents such as leucovorin

or with preventive blood transfusions) for safe ERT initiation

in this population. As newer recombinant enzymes and gene

therapies are being tested, it will be important that ITI regimens

are also validated for co-morbid populations.

Finally, decisions about SCA management were made based

on knowledge that growth and cardiac function are more

normal in children with SCA who have higher hemoglobin

concentrations. Typically, chronic red blood cell transfusion

therapy is utilized in SCA for stroke prevention with a primary

goal of maintaining Hb S <30%, which may result in a nadir

Hb pre-transfusion of <8 g/dl (33). In the current case, since

this degree of anemia may compromise growth and increase

the risk of cardiac stress, a transfusion strategy similar to that

utilized in children with beta-thalassemia major was chosen,

in which total hemoglobin concentration is maintained at 9–

10 g/dl to minimize anemia-related organ dysfunction (34).

Chronic transfusions will cause iron overload, which over many

years can increase risk of heart failure but is manageable with

iron chelating drugs (34). Hydroxyurea is another option for

disease-modifying therapy, but it is not recommended until

age 9 months. Patients with SCA have varying response to

hydroxyurea, but in general the Hb remains higher on chronic

red blood cell transfusion therapy than on this medication (33).

Converting to hydroxyurea therapy from transfusion therapy

may be a possibility if cardiac function remains stable and his

strength is improving as he gets older, with careful monitoring

of cardiac and skeletal muscle function. Hematopoietic stem cell

transplantation can be curative for sickle cell disease; however, it

has a delicate risk/benefit balance and requires a good functional

status, thus not being a feasible option for this patient.

Conclusion

We have presented a unique case of concomitant IOPD

and SCA leading to complex initiation of ERT and need for

aggressive transfusion support to prevent cardiomyopathy due

to anemia. Asmore locations implement NBS for Pompe disease,

it is expected that such cases will become more common, and

novel protocols that take the myelotoxicity of immune tolerance

induction regimens into account will become necessary.
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