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The succinate receptor (also known as GPR91) is a G protein-coupled receptor that is closely
related to the family of P2Y purinoreceptors. It is expressed in a variety of tissues, including
blood cells, adipose tissue, the liver, retina, and kidney. In these tissues, this receptor and
its ligand succinate have recently emerged as novel mediators in local stress situations,
including ischemia, hypoxia, toxicity, and hyperglycemia. Amongst others, the succinate
receptor is involved in recruitment of immune cells to transplanted tissues. Moreover, it
was shown to play a key role in the development of diabetic retinopathy. However, most
prominently, the role of locally increased succinate levels and succinate receptor activation
in the kidney, stimulating the systemic and local renin–angiotensin system, starts to unfold:
the succinate receptor is a key mediator in the development of hypertension and possibly
fibrosis in diabetes mellitus and metabolic syndrome.This makes the succinate receptor a
promising drug target to counteract or prevent cardiovascular and fibrotic defects in these
expanding disorders. Recent development of SUCNR1-specific antagonists opens novel
possibilities for research in models for these disorders and may eventually provide novel
opportunities for the treatment of patients.
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INTRODUCTION
The sequencing of the human genome lead to the cloning, de-
orphanization, and characterization of many novel G protein-
coupled receptors. In 2001, a cluster of six GPCRs was iden-
tified on chromosome 3q24–3q25, including the four orphan
receptors GPR86, GPR87, H963, and GPR91 (Wittenberger et al.,
2001). Of these receptors, the latter shares high sequence homol-
ogy with the family of P2Y purinoreceptors. Thus, GPR91 was
expected to be activated by purinergic compounds. Surpris-
ingly, however, He et al. (2004) showed that this GPCR was
specifically activated by succinate, a citric acid cycle interme-
diate. Therefore, the gene encoding GPR91 was re-named suc-
cinate receptor 1 (SUCNR1). At the same time, a second and
structurally related receptor, GPR99, was shown to be acti-
vated by another citric acid cycle intermediate α-ketoglutarate
(or oxoglutarate). As such, this receptor was re-named oxog-
lutarate receptor 1 (OXGR1). However, 7 years after its de-
orphanization, the (patho)physiological function of this receptor
remains unknown.

Over the last years, the involvement of SUCNR1 in multiple
(patho)physiological processes and its potential as a drug target has
become increasingly evident. The tissue distribution of SUCNR1
revealed high expression in the kidney, but also in other tissues
(He et al., 2004; Regard et al., 2008). In this review, we will discuss
ligand specificity of agonists and recently developed antagonists
on this receptor, its downstream signaling pathways and the cur-
rent knowledge on the role of this receptor in various tissues in
(patho)physiology.

SUCNR1 LIGANDS AND RECEPTOR STRUCTURE
According to most database entries, the human SUCNR1 (e.g.,Acc.
No. EAW78789) encodes a protein of 334 amino acids. However,
within this sequence, a methionine residue is present at position
5 (Figure 1). Analysis of the Kozak sequence of this area point to
this second methionine being the actual start site, resulting in a
330 amino acid receptor (Wittenberger et al., 2001). The SUCNR1
sequence has a high degree of homology between human, rat
(Acc. No. NP_001001518),and mouse (Acc. No. NP_115776),with
exception of the C-terminus, which is 12 amino acids shorter in
rodents (Figure 1). Whether and how this affects receptor signal-
ing has not been studied in detail, but succinate shows slightly
reduced potency on the rat and mouse receptor, compared to the
human SUCNR1 (He et al., 2004).

At present, our knowledge of the regulation of SUCNR1 on the
molecular and cellular level is still limited. It is clear that SUCNR1
is a plasma membrane receptor (He et al., 2004; Robben et al.,
2009), where it acts as a sensor for extracellular succinate. As for
all GPCRs, SUCNR1 has an extracellularly located N-terminus,
which contains a consensus sequence for N-linked glycosylation
at Asn4. A second consensus sequence for N-linked glycosylation is
contained within extracellular loop 2 at position 164. Although we
demonstrated that SUCNR1 is subject to complex N-glycosylation
(Robben et al., 2009), the precise role of this posttranslational
modification remains to be determined.

In order to prevent prolonged signaling, most GPCRs are
subject to desensitization followed by sequestration, followed by
recycling or degradation (Kohout and Lefkowitz, 2003). Indeed,
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FIGURE 1 | Sequence alignment of human, rat, and mouse SUCNR1. Yellow residues are conserved between species. Predicted transmembrane (TM)
domains I–VII are indicated by black lines. Residues important for succinate binding (Arg99, His103, Arg252, and Arg281) are indicated with red arrows.

in HEK293 cells, SUCNR1 was shown to internalize into endo-
somes/lysosomes upon stimulation with succinate (He et al.,
2004). In contrast, in polarized renal Madin–Darby Canine Kidney
(MDCK) cells, we found that succinate-induced temporal desen-
sitization of the receptor, but that this did not involve significant
internalization of the receptor from the plasma membrane. In line
with this, resensitization of the receptor occurred within 15 min
upon washout of succinate (Robben et al., 2009).

Succinate was identified as a ligand for the then orphan GPCR
GPR91 using an ion-exchange size-exclusion and reversed-phase,
fast performance liquid chromatography, combined with mass
spectrometry. EC50 values for receptor activation were in the
20–50 μM range, depending on the assay used. It was unequiv-
ocally shown that succinate was the endogenous ligand for this
receptor by testing 800 pharmacologically active compounds and
known GPCR ligands, as well as 200 carboxylic acids and com-
pounds structurally related to succinate, including the citric acid
cycle intermediates α-ketoglutarate, citrate, isocitrate, malate, and
oxaloacetate, and multiple purinergic compounds. Only maleate
and methylmalonate were able to activate SUCNR1, albeit with a 5-
to 10-fold lower potency compared to succinate (He et al., 2004).
The selectivity of SUCNR1 for succinate is mediated by four pos-
itively charged key residues in the binding cavity enclosed by the
receptor’s 7 transmembrane (TM) domains. Individual mutation
of Arg99 (3.29 according to the Ballesteros–Weinstein numbering
scheme), His103 (3.33),Arg252 (6.55), and Arg281 (7.39; Figure 1;
arrowheads) abolished receptor activation (He et al., 2004). Since
these residues are also present in OXGR1, they are likely involved
in the binding of the electrostatic binding to the dicarboxylate
headgroups of these compounds.

SUCCINATE ACCUMULATION AND RELEASE
As part of the citric acid – or Krebs – cycle in the mitochondrial
matrix, succinate is formed from succinyl-CoA by succinyl-CoA
synthetase and is subsequently converted by succinate dehydroge-
nase to generate fumarate (Figures 2A,B). As may be expected for
a component of the citric acid cycle, succinate is normally present

in the mitochondria, however, it can be released to the extracellular
space due to local energy metabolism disturbances (Krebs, 1970).
Plasma succinate concentrations measured by liquid chromatog-
raphy tandem mass spectrometry in rodents vary from 6 to 20 μM,
whereas in human succinate levels have been detected from 2 to
3 μM (Sadagopan et al.,2007) and 2 to 20 μM (Kushnir et al., 2001)
in serum and plasma, respectively. Moreover, the succinate concen-
tration in urine of mice is around 20–30 μM under physiological
conditions (Toma et al., 2008). Using an aequorin luminescence
assay, He et al. (2004) determined that the half-maximal response
concentration for succinate-induced activation of human and
mouse SUCNR1 was 56 ± 8 and 28 ± 5 μM, respectively, indi-
cating that under normal physiological conditions, plasma, and
urinary succinate levels are too low for receptor activation. How-
ever, since values under normal physiological conditions are only
approximately twofold lower than the level required for a half-
maximal response, only a slight elevation of the plasma or urinary
succinate concentration may be needed to fully active SUCNR1.

Changes in the energy balance may affect the production and
release of succinate. As discussed in more detail below, this was
demonstrated in animal models for diabetes mellitus (Toma et al.,
2008), metabolic disease (Sadagopan et al., 2007), and liver damage
(Correa et al., 2007). In hyperglycemia, as with diabetes melli-
tus and metabolic syndrome, high activity of the Krebs cycle due
to high substrate availability may increase the H+ gradient over
the mitochondrial membrane (Figure 2A), leading to inhibition
of enzymatic steps mediated by complexes within the electron
transport chain, including succinate dehydrogenase (Complex II;
Figure 2A; Brownlee, 2005). This may then lead to intracellular
accumulation, and eventually, release of succinate into the blood
stream. As the succinate dehydrogenase complex is involved in the
electron transport chain over the mitochondrial membrane, its
activity indirectly depends on the availability of oxygen. As such,
in situations when pO2 is low, succinate will accumulate due to
low activity of succinate dehydrogenase or other enzymes in the
electron transport chain that affect its activity (Weinberg et al.,
2000; Jassem and Heaton, 2004; Brownlee, 2005).
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FIGURE 2 | Generation of succinate in mitochondria. (A) Succinate is
an intermediate in the citric acid cycle, and is converted by succinate
dehydrogenase (also called complex II) to fumarate. When high H+

gradients over the inner membrane are present, or when the oxygen
pressure is low, complex I, II, III, and IV will be inhibited, leading to

accumulation of succinate. (B) Overview of the citric acid cycle under
normal physiological conditions. (C) Cellular stress such as hypoxia may
affect normal functioning of the citric acid cycle and induce a part of the
cycle to run in reverse, ultimately leading to increased succinate
production. See text for more details and references.

Increased production of succinate in low oxygen states may
also be caused by alteration of the flux in the normal citric acid
cycle (Figure 2B) to an alternative, partially inverted citric acid
cycle (Figure 2C) as demonstrated by Weinberg et al. (2000).
In addition, succinate formation may occur non-enzymatically
(Fedotcheva et al., 2006). Indeed, low oxygen states, such as with
ischemia (Hems and Brosnan, 1970), or exercise (Hochachka
and Dressendorfer, 1976; Lewis et al., 2010), have been shown
to increase circulating succinate levels. Using the one-legged
knee extension exercise model, Gibala et al. (1998) demonstrated
that succinate intramuscular concentrations increased more than
threefold after maximal dynamic knee extensor exercise. Simi-
lar results were obtained in plasma from subjects at the peak
of diagnostic treadmill or bicycle ergometry cardiopulmonary
exercise testing. The effect of low oxygen states on increased suc-
cinate levels was also obvious in rats anesthetized with 100% CO2

instead of oxygenized isoflurane, succinate levels increased from
7 to 40 μM in left ventricle, and even 173 μM when (low oxy-
gen) blood was collected from the vena cava (Sadagopan et al.,
2007).

Since under normal physiological pH, succinate is a charged
molecule, it is unable to efficiently diffuse through membranes.

Thus, following its accumulation within the mitochondrial matrix,
succinate requires specific transporters or exchangers to facili-
tate its transport from within the mitochondria to the cytosol,
and subsequently across the plasma membrane to the extracellu-
lar environment. The inner mitochondrial membrane contains a
number of dicarboxylate transporters and exchangers, of which
the succinate–fumarate/malate transporter SLC25A10 (Oswald
et al., 2007) is the most likely candidate to facilitate transport of
accumulated succinate. Transport of succinate across the outer
mitochondrial membrane likely occurs through porins, which
are large channels that are permeable to most molecules under
1.5 kDa. Candidate proteins for succinate transport across the
plasma membrane will likely be tissue or cell type-specific, as
no ubiquitously expressed plasma membrane dicarboxylate trans-
porters exist. Likely candidates, however, are members of the
organic anion transporter families, multidrug resistance proteins,
and sodium–dicarboxylate exchangers (Markovich and Murer,
2004; Pajor, 2006). However, no data is currently available regard-
ing their role in succinate accumulation in oxidative or metabolic
stress. In the future, the use of specific antagonists or knockout
mice for these cotransporters may reveal pathways involved in
pathological states due to succinate accumulation.
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TISSUE DISTRIBUTION AND (PATHO)PHYSIOLOGICAL ROLES
OF SUCNR1
Initially, Q-RT-PCR showed SUCNR1 expression in kidney, liver,
and spleen (He et al., 2004). A later study confirmed expression in
kidney and liver, and in addition demonstrated expression in white
adipose tissue (Regard et al., 2008). Subsequently, several studies
described the presence and function of SUCNR1 in specific cell
types of these tissues, and aimed to elucidate its role, as described
in more detail below. Although its function remains to be estab-
lished in most tissues, it is clear that this receptor is a detector of
disturbances in the body’s energy balance.

When the body is a hypoglycemic state, hormones such as
glucagon trigger adipocytes in white adipose tissue to degrade
triglycerides into free fatty acids for energy production. In
SUCNR1-positive adipocytes, succinate inhibits lipolysis (Regard
et al., 2008) and may thus prevent the release of fatty acids from
adipocyte for energy consumption. As increased succinate levels
are found in rodent models for diabetes mellitus and metabolic
syndrome (Sadagopan et al., 2007; Toma et al., 2008), high suc-
cinate levels may prevent lipolysis in states when fuel molecules
such as glucose and free fatty acids are abundant.

The liver is crucial for regulating the body’s metabolism by
storing fuel molecules such as glycogen, and plays a major role in
lipid and amino acid conversion and synthesis. Besides, it plays
a major role in the degradation of toxic compounds. Likely, this
organ is subject to multiple and various stress factors, often caused
by an unhealthy lifestyle. In the liver, the SUCNR1 is exclusively
expressed in quiescent hepatic stellate cells (HSC). Application of
ischemia in a perfused liver model increased succinate levels of
the perfusate 14-fold to approximately 1 mM (Correa et al., 2007).
Moreover, HSC cells treated with succinate showed increased lev-
els of myofibroblastic markers compared to activated control cells,
indicating that succinate independently enhances HSC activation.
However, upon activation of HSC, the expression of SUCNR1
decreased rapidly (Correa et al., 2007; De Minicis et al., 2007),
suggesting that SUCNR1 serves as an early detector of hepatic
stress or damage. Together, this suggests that SUCNR1 signaling
plays an enhancing role in HSC activation to restore damaged tis-
sue in the ischemic liver, but may thereby also contribute to the
formation of fibrosis.

Although no SUCNR1 mRNA was detected in the heart by
RT-PCR experiments (He et al., 2004; Regard et al., 2008), a
recent study by Aguiar et al. (2010) demonstrated the presence
of SUCNR1 mRNA and protein in freshly isolated preparations
of ventricular cardiomyocytes, where it is localized in the sar-
colemmal membrane and the T-tubules. In these cardiomyocytes,
succinate administration may affect cell contraction. Importantly,
prolonged incubation of cardiomyocytes with high concentrations
(10 mM) succinate-induced apoptosis (Aguiar et al., 2010). As
such, SUCNR1 may regulate apoptosis in the heart in states of
ischemia and hypoxia.

Although also not initially identified in tissue panels (He
et al., 2004; Regard et al., 2008), it has now become evident
that the SUCNR1 is also expressed in hematopoietic precursor
cells and multiple types of blood and immune cells (Macaulay
et al., 2007; Hakak et al., 2009). When administered to platelets,
succinate potentiates platelet activation and aggregation in a

dose-dependent manner, increasing the maximum aggregation
compared to controls without succinate (Macaulay et al., 2007;
Hogberg et al., 2011). This suggests a role for succinate in
atherothrombosis, in which succinate levels may be increased due
to local hypoxia. In hematopoietic progenitor cells, the activated
SUCNR1 induces cell proliferation and protects erythroleukemic
cells from serum starvation-induced apoptosis. Together, this
explains how administration of succinate in a mouse model of
chemotherapy-induced myelosuppression leads to increased lev-
els of hemoglobin, platelets, and neutrophils (Hakak et al., 2009),
and thus, succinate administration may be beneficial for patients
recovering from chemotherapy.

Rubic et al. (2008) detected SUCNR1 mRNA in immature den-
dritic cells (DCs), but not in monocytes, T-, or B-cells, suggesting
that SUCNR1 expression is induced when monocytes develop into
immature DCs. In immature DCs, succinate stimulates cell migra-
tion in a concentration-dependent manner, and thus mediates
chemotaxis. Moreover, SUCNR1 and toll-like receptors act in syn-
ergy to potentiate the production of the inflammatory cytokines
tumor necrosis factor α (TNFα) and interleukin-1β. Upon acti-
vation, immature DCs will mature to mature antigen-presenting
DCs, which will subsequently activate T-cells. Succinate treatment
of the DCs promoted the interferon-γ production of activated
CD4+ T-cells. Furthermore, and underscoring the fact that the
above observations are SUCNR1-mediated, it was shown that mice
challenged with tetanus toxin accumulate higher levels of mature
DCs in their lymph nodes compared to SUCNR1−/− mice. It
was subsequently shown that grafts from SUCNR1−/− mice show
improved outcome in skin transplantation graft rejection exper-
iments (Rubic et al., 2008). As such, interfering with SUCNR1
signaling by, e.g., specific receptor antagonists or preventing suc-
cinate accumulation, may be beneficial for patients receiving organ
transplantation.

In the retina, SUCNR1 is predominantly expressed in the cell
bodies of the retinal ganglion cell (RGC) layer (Sapieha et al.,
2008). To study the role of SUCNR1 in the developing retina,
SUCNR1 siRNA was injected into the eye of newborn rat pups,
which decreased the vascularization of the retina at day 4 post-
partum compared to controls. In line with this, injection of suc-
cinate resulted in increased vessel numbers in the retina, clearly
demonstrating a positive role for SUCNR1 in retinal vasculariza-
tion. The SUCNR1-regulated increase in vessel growth occurred
through the production and release of pro-angiogenic hormones.
Together, these data revealed that SUCNR1 expression in RGCs are
essential for proper vascularization of the eye. In this respect, it has
been suggested that increased succinate levels may cause the high
rate of neovascularization in diabetes mellitus or retinal ischemia,
leading to retinopathy (Rubic et al., 2008). If so, inhibitors of
SUCNR1 may provide a potential treatment. Recently, also the
expression of SUCNR1 in the apical membrane of retinal pigment
epithelium (RPE) was demonstrated. Since RPE expresses VEGF
and excess iron levels promote angiogenesis, the role of SUCNR1
in iron-dependent angiogenesis was evaluated in Hfe−/− mice, a
model of hereditary hemochromatosis that results in increased
iron absorption and accumulation (Gnana-Prakasam et al., 2011).
Indeed, SUCNR1 expression in total retina and RPE from Hfe−/−
mice is higher compared with WT animals. This observation
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was also demonstrated in human RPE cell line ARPE19, primary
RPE cells subjected to CMV US2 infection or ferric ammonium
administration, cellular models that mimic Hfe deficiency. Using
SUCNR1-specific shRNA, the succinate-induced expression of
VEGF could be could be reduced in RPE cells, confirming a role of
SUCNR1 in the regulation of vascular adaptations in the retina.

In the kidney, the SUCNR1 localizes to the renal vascular lumen,
in particular the afferent arteriole and the glomerular vasculature.
Moreover, SUCNR1 is expressed in the luminal membrane of mul-
tiple segments of the renal tubules: the cortical thick ascending
limb (cTAL) of Henle’s loop, including the macula densa (MD),
and the cortical and medullary collecting duct (CD; Figure 3A;
Toma et al., 2008; Robben et al., 2009; Vargas et al., 2009). Recent
work by the Peti-Peterdi group demonstrated that the SUCNR1
mediates the release of renin from the JGA via SUCNR1 located
in the vascular luminal membrane (Toma et al., 2008) and in the
apical membrane of MD cells (Robben et al., 2009; Vargas et al.,
2009). Elegant microperfusion studies combined with live imaging
of isolated glomeruli showed that perfusion with a succinate-
containing buffer induced renin release from the granular cells
of the JGA and rapidly induced vasodilation of the afferent arte-
riole. Together, this suggests that SUCNR1 plays a pivotal role
in development of glomerular hyperfiltration and activation of
the renal renin–angiotensin system. This clearly explained how
infusion of succinate in mice, as initially performed by He et al.
(2004) resulted hypertension. The SUCNR1-mediated release of
renin from the JGA is mediated by nitric oxide and prostaglandin
E2 that will subsequently transactivate EP2 and/or EP4 recep-
tors on the granular cells (Figures 3A,B; Toma et al., 2008).
Moreover, it was shown that SUCNR1 activation in the lumi-
nal membrane of the MD cells triggers renin release from the
JGA via a similar mechanism, although in this case SUCNR1
serves as a sensor for succinate in the pro-urine rather than in
the blood (Vargas et al., 2009). As SUCNR1 in the renal tubules
senses (pro)urinary succinate levels, measurement of succinate in
excreted urine may provide an easy, non-invasive way to determine
SUCNR1 activity in the kidney compared to circulating succinate
levels.

Analogous to the development of hypertension upon admin-
istration of succinate to mice (He et al., 2004), plasma levels of
succinate were shown to be elevated in several rodent models
of hypertension and metabolic disease. Spontaneous hyperten-
sive rats, fatty Zucker fa/fa rats, db/db diabetic mice, and ob/ob
mice had succinate levels that were elevated two- to four-fold
compared to their respective non-hypertensive or lean controls
(Sadagopan et al., 2007). However, in serum of hypertensive or
diabetic patients, succinate levels were similar to healthy age-
matched controls (Sadagopan et al., 2007). The cause of this
discrepancy between rodent models and patients remains to be
established. Although the above succinate measurements indicated
that SUCNR1 may play a role in diabetes and metabolic syndrome,
the relationship between diabetes and development of hyperten-
sion was first unquestionably demonstrated using SUCNR1−/−
mice. The JGA and whole-kidney renin content of diabetic mice
is elevated compared to non-diabetic controls, and renin release
is stimulated by perfusion of the afferent arteriole (Toma et al.,
2008) or the MD-containing cTAL (Vargas et al., 2009) with a

high glucose or succinate buffer. The observed release of renin,
combined with the aforementioned dilation of the afferent arte-
riole resulting in hyperfiltration, are hallmarks of the diabetic
kidney.

Nowadays, it is well established that the production and release
of renin is no longer restricted to the JGA and individual com-
ponents of the renin–angiotensin system have been detected
throughout the nephron (Rohrwasser et al., 1999) and its role
is increasingly being elucidated (Suzaki et al., 2006; Schweda et al.,
2007). In the kidney of diabetic mice, activation of SUCNR1 in
the CD (Robben et al., 2009) leads to increased phosphoryla-
tion of the extracellularly regulated kinases 1 and 2 (ERK1/2),
whereas this effect is absent in SUCNR1−/− mice. Sustained tubu-
lar ERK1/2 phosphorylation is associated with proliferation of
tubular cells and the development of tubulo-interstitial fibrosis
(Sakai et al., 2005; Steckelings et al., 2009) and the SUCNR1 has
been postulated to be instrumental in the development of fibro-
sis in diabetic nephropathy and diabetes-induced hypertension
(Peti-Peterdi et al., 2008). However, the exact role of the SUCNR1
activation and mechanisms underlying these processes require
further investigation.

RECEPTOR SIGNALING PATHWAYS
Its expression within a large number of tissues and in a multitude
of cell types within these tissues suggests a highly specific signal-
ing machinery downstream of SUCNR1 activation. Indeed, this
seems to be the case: in kidney (derived) cells, such as HEK293
and MDCK cells, SUCNR1 signals through Gq and Gi mediated
pathways that induce intracellular calcium mobilization, increase
inositol phosphate accumulation, activate the (ERK1/2; Figure 3B)
and inhibit cAMP accumulation in a dose-dependent manner (He
et al., 2004). Similar downstream signaling pathways were identi-
fied in other tissues or cell types: in SUCNR1-positive adipocytes,
succinate inhibits lipolysis in a pertussis toxin-dependent man-
ner (Regard et al., 2008), demonstrating that SUCNR1 signaling
inhibits cAMP formation that is induced by lipolytic hormones.
Similarly, in hematopoietic progenitor cells, the activated SUCNR1
signals via the Gi/o protein to induce cell proliferation via ERK1/2
(Hakak et al., 2009). Although the identity of its associated G pro-
teins remain to be elucidated, in DCs, SUCNR1 acts in synergy
with toll-like receptors via activation ERK1/2 (Rubic et al., 2008).

Interestingly, stimulation of cardiac myocytes with succinate
leads to increased PKA activity that subsequently triggers intra-
cellular calcium transients. Moreover, the maximum peak height
and frequency of the calcium transients is affected by SUCNR1
activation. The succinate-induced apoptosis observed in cardiac
myocytes is most likely orchestrated by a combination of PKA
activation and increased intracellular calcium levels (Aguiar et al.,
2010). Activation of the PKA activation suggests signaling of
SUCNR1 through the Gs/cAMP pathway. Indeed, this pathway has
also been shown to be involved in the SUCNR1-mediated activa-
tion of platelets (Hogberg et al., 2011). The signaling pathways
involved in HSC activation remain to be elucidated. In contrast to
adipocytes or renal cells, administration of succinate to HSC failed
to induce an intracellular Ca2+ response, nor did it decrease basal
or forskolin-induced cAMP levels or increase cAMP levels by itself
(Correa et al., 2007).
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FIGURE 3 | Signaling of SUCNR1 in the kidney. (A) Signaling in the
juxtaglomerular apparatus. SUCNR1 is expressed in several parts of the
nephron (indicated in red), where it contributes to renin release from the
JGA (see inset on the right). Succinate receptor activation on macula
densa (MD) cells or on endothelial cells of the afferent arteriole (AA)
induce the release of prostaglandin E2 (PGE2) and nitric oxide (NO), which
trigger the release of renin form the granular cells of the juxtaglomerular
apparatus (JGA). Additional abbreviations: EA, efferent arteriole; cTAL,
cortical thick ascending limb. (B) Intracellular signaling. In tubular cells,
diabetes mellitus, ischemia/reperfusion injury, or oxidatives stress affect

the functioning of the mitochondria, resulting in the release of succinate
into the cytoplasm and eventually to the extracellular environment. There,
it can bind to SUCNR1 on the cell surface. This triggers a signaling cascade
that eventually leads to the secretion of nitric oxide (NO) and prostaglandin
E2 (PGE2). These signaling molecules will subsequently promote the
release of renin from the JGA as described under (A). Abbreviations: PIP2,
Phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; DAG,
diacylglycerol; IP3, inositol 1,4,5-trisphosphate; PKC, protein kinase C;
pERK1/2, phosphorylated extracellularly regulated kinase 1/2; COX,
cyclo-oxogenase, eNOS, endothelial nitric oxide synthase.

SUCNR1-MEDIATED TRANSACTIVATION PATHWAYS
Besides through intracellular pathways, SUCNR1 is an important
initiator of transactivation signals by inducing the release of extra-
cellular factors or hormones. The release of renin from the JGA
is mediated in part by the formation of nitric oxide. Moreover,
SUCNR1 activation increases intracellular release of arichidonic
acid that, through the actions of cyclooxygenase (COX)-2, leads to
the production and release of prostaglandin E2 (Robben et al.,
2009) that subsequently transactivate EP2 and/or EP4 recep-
tors on the granular cells (Figures 3A,B; Toma et al., 2008;
Vargas et al., 2009). SUCNR1-mediated local activation of the

prostaglandin system has also been suggested as a potential mech-
anism responsible for the succinate-induced apoptosis observed
in cardiac myocytes (Aguiar et al., 2010), although experiments
clearly demonstrating this are currently lacking.

In the eye, SUCNR1 activation induces VEGF and other angio-
genic factors (Sapieha et al., 2008). Although the full cellular
pathways triggering this release remain unknown, the study by
Sapieha et al. revealed revolutionary insights in the role of suc-
cinate in this process: for a long time, the production of VEGF
has been linked to increased intracellular succinate levels that
lead to stabilization of hypoxia inducing factor (HIF)1α (Taylor,
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FIGURE 4 | Structure of SUCNR1 ligands. From left to right: succinic acid,
compound “4g,” compound “5g,” and compound “7e.” Structures were
derived from (Bhuniya et al., 2011).

2008). Interestingly, Sapieha et al. (2008) showed that extracellu-
lar succinate, through action of the succinate receptor, triggers the
increased expression and release of VEGF under hypoxic condi-
tions, independently from HIF1α. This validates critical re-analysis
of the role of HIF1α in tissue adaptive responses in cellular or tis-
sue hypoxic conditions, as part of its actions may be regulated by
SUCNR1.

DEVELOPMENT AND ACTION OF SUCNR1 ANTAGONISTS
Because of the involvement of SUCNR1 in a multitude of dis-
eases, receptor-specific antagonists are promising drug candi-
dates. Recently, using a systematic structure-activity relationship
approach, Bhuniya et al. (2011) were the first to identify selective
antagonists for both human and rat SUCNR1. The IC50 for the dif-
ferent compounds ranges from 7 to 180 and 7 to 435 nM for human
SUCNR1 and rat SUCNR1, respectively. Of these, compound “4c”
(Figure 4) was shown to be the most efficient antagonist in vitro
(IC50 = 7 nM). Bolus intraperitoneal injection of 100 mg/kg “4c”
in rats resulted in plasma levels of 200–300 nM of this compound,
which ameliorated a succinate-induced change of mean arterial
pressure up to 76%. Moreover, and of high pharmaceutical and
clinical importance, two compounds structurally related to “4c”
(“5g” and “7e”), were shown to be active upon oral administration
and will thus serve as leads for further drug development. Inter-
estingly, none of these antagonists show any obvious structural
relationship to succinate (Figure 4), and their binding sites within
the receptor remain to be determined. However, the discovery
and characterization of these compounds opens new possibilities
to unravel the role of SUCNR1 in many pathological states and
will likely establish SCURN1 as a promising drug target with high
clinical potential.

FUTURE PERSPECTIVES
As illustrated above, signaling of the SUCNR1 is involved in
various pathologies in multiple organs. These pathologies are
particularly linked to local stress factors that affect the energy bal-
ance of a tissue, such as ischemia, hypoxia, metabolic syndrome,
and diabetes mellitus. Besides, SUCNR1 senses local damage and

increases inflammatory responses. Therefore, this receptor is a sen-
sor of local stress situations that affect the cellular metabolism, as
reflected by increased formation and release of succinate.

It is clear that SUCNR1 is a major regulator of blood pressure
in diabetes mellitus, and may contribute to the development of
tubulo-interstitial fibrosis in diabetic nephropathy. Moreover, it
has an obvious role in the development of excess retinal vascular-
ization in diabetic retinopathy, activation of the innate immune
system. Future challenges lie in elucidating the cellular and mol-
ecular mechanisms responsible for these effects, and identifying
means, e.g., the development of specific receptor antagonists, to
prevent, cure, or ameliorate these pathological effects.

The presence of SUCNR1 on immune cells may also affect
pathology of various tissues. Succinate’s role as chemotactic com-
pound via SUCNR1 on immature DCs may induce infiltration
of immune cells in transplanted organs or damaged tissues.
In, e.g., renal transplantation, ischemia, and hypoxia will likely
increase renal succinate formation, similar as observed in ischemic
retinopathy. This may,analogous to the skin transplantation effects
described above, promote maturation of immature DCs in the
kidney. In renal ischemia-reperfusion experiments, which serves
as an accurate model for transplantation, DCs are the major source
of TNFα produced early in inflammatory responses (Dong et al.,
2007). The synergistic effect of SUCNR1 and toll-like receptors
(Rubic et al., 2008) may contribute significantly to the release of
high levels of TNFα, thus increasing inflammation, renal epithelial
apoptosis, and recruitment, binding, and migration of leukocytes.
Eventually, this may result in graft injury and rejection (Rogers
et al., 2009).

Besides promoting retinal vascularization during development
(Sapieha et al., 2008), no clear role for SUCNCR1 in physiology has
currently been established. This may in part be due to the relative
recent discovery that succinate can act as a signaling molecule, and
this realization may incite researchers to investigate the regulatory
role of succinate and its receptor further. Alternatively, its role in
physiology may be very subtle or redundant, and extracellular suc-
cinate may exclusively act as a stress or damage signal, as illustrated
by its involvement in the multiple pathologies described above.
Although its role in (patho)physiology remains to be investigated
in more detail, it is clear that this receptor is a highly promising
drug target in a multitude of disorders.
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