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The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR), are themain endocrine therapies for prostate cancer
(PCa). But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of
novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series
of 7𝛼-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability.
The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem,
resulting in the finding of novel compounds CID 70128824, CID 70127147, and CID 70126881, whose in silico bioactivities are
much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics
(MD) simulations, andMM/GBSA have been employed to analyze and compare the binding modes between the novel compounds
andAR.Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered
chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals
interaction is the main driving force during the binding process.

1. Introduction

According to the latestWorldCancer Report 2014 [1], prostate
cancer (PCa) has become the second most common cancer
among men in the world. The morbidity rate of PCa has
reached 15%, which is merely 1.7% lower than the leading
lung cancer. It is reported that about 1100,000 people were
diagnosed as new PCa patients in 2012 [2]. Additionally
researchers pointed out that prostate cancer is not the
privilege of men; women have similar prostate tissue, which
also has the risk of cancer [3].

The androgen receptor (AR), a ligand inducible transcrip-
tion factor in the nuclear hormone receptor super family [4],
plays a critical role in the development and progress of PCa.
Natural hormone testosterone (T) and dihydrotestosterone

(DHT), known as androgens, are the endogenous ligands of
AR. When bound to AR, androgens play significant roles
in the sexual development, function, and musculoskeletal
growth of male. The main mechanism of androgen action is
to regulate the gene expression by means of binding to AR,
changing the level of specific proteins in cells, and controlling
cell behavior [5]. Therefore, a rational approach to cure PCa
is the use of antiandrogens to prevent the interaction of T or
DHT with AR.

At present, androgen receptor antagonists, such as bica-
lutamide and flutamide, are used as main hormone therapies
for prostate cancer [6]. Although these antiandrogens exhibit
good efficacy in many cases and comprise an important part
of effective therapeutics [7–10], the emergence of recurrent
and metastatic forms of castration-resistant PCa (CRPC)
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Figure 1: The skeleton structure of 7𝛼-substituted dihydrotestos-
terones derivatives.

becomes a major challenge, with a median survival of only
1∼2 years [11]. A possible reason is that these antiandrogens
have partial agonistic activities at high concentration in vitro
[12]. Therefore, the discovery of new AR antagonists with
high antiandrogen activities is highly expected.

Here, in this study, to aid the research and development
of steroidal antiandrogens, we investigated the relation-
ships between a series of 7𝛼-substituted dihydrotestosterone
derivatives and corresponding antiandrogen activities. The
vital features related to the bioactivities were explored, and
a linear quantitative structure-activity relationship (QSAR)
model was established according to OECD principles [13],
using the QSARINS program [14, 15].Then the QSARmodel,
thoroughly and strictly validated by various internal and
external validation techniques, is used to virtually screen
new dihydrotestosterones, without experimental bioactiv-
ities, downloaded from PubChem database [16]. Besides,
molecular docking and molecular dynamics (MD) simu-
lations are used to study the possible binding mode of
compounds owning high in silico activities with androgen
receptor. At last, the most active compounds with good
binding affinities to AR, as highlighted by the Insubria graph
[17], are proposed for experimental research group to test the
antiandrogen activities in the future.

2. Materials and Methods

2.1. Data Set. The success of any QSAR model depends
on accurate and clean training data, proper representative
descriptor selection methods, suitable statistical methods,
and, most critically, both internal and external validation of
resulting methods [18, 19]. Here, in this work, a set of 36 7𝛼-
substituted dihydrotestosterones derivatives were taken from
literatures [20, 21].The skeleton structure of these derivatives
is shown in Figure 1, in which R group represents amine,
carboxylic acids, and halogens, and so forth.

These molecules were divided into a training set and
a prediction set according to the structure diversity in
QSARINS. Finally, 29 compounds were included in the
training set and 7 compounds were in the prediction set
(prediction set a). The experimental values, half maximal
inhibitory concentration (IC50) expressed in nM, were con-
verted into negative logarithmic unitsmarked as pIC50, which
was used as dependent variables in the QSAR analyses. The
studied molecular structures and corresponding antiandro-
gen activities were listed in Table 1.

2.2. Descriptors Calculation. To describe a molecule, the
molecular structures were firstly sketched in HyperChem
program [22] and then were optimized to the minimum
energy conformation by using AM1method. Afterminimiza-
tion, we submit the structures to DRAGON 5.5 software
[23] to calculate 2914 descriptors including zero-, one-,
two-, and three-dimensional (0D, 1D, 2D, and 3D), charge
descriptors, and molecular properties. The related theories
of the molecular descriptors are provided by DRAGON
software, and the calculation procedure is clarified in detail,
in the Handbook of Molecular Descriptors [24].

In order to facilitate the successive feature selection
process, the constant and near constant descriptors were
removed. Besides, if pairwise correlation of two descriptors
is larger than 0.98, the one showing the highest pairwise cor-
relation with others will be excluded. Finally, 358 descriptors
remained for the next variable selection process.

2.3. QSAR Model Generation. After descriptor calculation,
genetic algorithm (GA) implemented in QSARINS software
was used to select descriptors. The final model was built
by using MLR method based on the selected descriptors,
named GA-MLR. The first step of GA is to produce a set of
solutions randomly which is called initial population. Each
solution, amodel based on the contained descriptors by using
multiple linear regressions method, is called a chromosome.
Subsequently, the fitness function, Friedman LOF, is used to
evaluate the fitness of these individuals:

LOF = { SSE
[1 − (𝑐 + 𝑑𝑝/𝑛)]}

2

. (1)

Here, SSE represents the sum of squares of errors, 𝑐 is the
number of basis function, 𝑑 is the smoothness factor (default
0.5), 𝑝 is the number of features in the model, and 𝑛 is the
number of samples for model construction. In the successful
selection stage, the fittest individuals evolve to the next
generation.Then crossover andmutation operators were per-
formed to generate new individuals. Finally a new population
is formed consisting of the fittest chromosomes. The above
evolution continues until the stop conditions are satisfied.
The related parameters that control the GA performance are
list as follows: population size (200), maximum generations
(10000), and mutation probability (0.05).

2.4. Model Validation. QSARINS is based on GA-MLR
method and performed various tools to a rigorous internal
and external validation, based on the different validation
criteria, aswell as for the check ofmodel applicability domain.

The robustness and stability of the built model were vali-
dated by several statistical parameters, such as determination
coefficient (𝑅2), leave-one-out (LOO) cross-validation𝑄2LOO,
and root mean squared error (RMSE). Besides, leave-many-
out (LMO) cross-validation method was also performed
and 𝑄2LMO was reported. Randomization technology, by
reordering the independent variable, was used to exclude
the possibility of the chance correlation. Generally, the
correlation coefficient of the builtQSARmodel should exceed
Y randomized generated model. After Y scrambling was
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Table 1: The studied compounds and corresponding experimental and predicted pIC50 values.

Number Structure Experimental
pIC50

Predicted
pIC50

1a

O

O

(CH2)9

OH

OH

6.04 5.91

2a
O

O (CH2)7

OH

OH

6.14 6.15

3a
O

O (CH2)9 OH

OH

5.70 5.81

4

O

O

O (CH2)3 (CH2)2 OH

OH

6.77 6.88

5
O

OO (CH2)3 (CH2)3

OH

OH

6.18 6.23

6a
O

OO (CH2)3 (CH2)4

OH

OH

6.52 6.71
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Table 1: Continued.

Number Structure Experimental
pIC50

Predicted
pIC50

7
O

O

O (CH2)3

(CH2)3

OH

OH

5.24 6.76

8
O

OO (CH2)3(CH2)4

OH

OH

6.07 5.95

9

O

O

O (CH2)4(CH2)4

OH

OH

6.60 6.53

10
O

OO (CH2)4 (CH2)5

OH

OH

6.38 6.27

11
O

O

O (CH2)4

(CH2)3

OH

OH

6.04 6.06

12a O

O

O (CH2)4

(CH2)4

OH

OH

6.48 6.48
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Table 1: Continued.

Number Structure Experimental
pIC50

Predicted
pIC50

13
O

O

O (CH2)4

(CH2)5 OH

OH

6.28 5.80

14
F F

F
F

F

S

O

O (CH2)9 (CH2)3

OH

5.54 5.47

15 O

O N(CH2)7

OH

6.47 6.17

16

(CH2)8

O

O N

OH

5.47 5.81

17a
(CH2)9

O

O N

OH

5.74 5.51

18

(CH2)10

O

O N

OH

5.89 5.80
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Table 1: Continued.

Number Structure Experimental
pIC50

Predicted
pIC50

19

(CH2)11

O

O N

OH

5.46 5.61

20 O

O C
H

N(CH2)7

OH

5.96 6.35

21a O

O C
H

N(CH2)7

OH

6.38 6.12

22 O

O C
H

N(CH2)7

OH

6.38 6.07

23 O

O C
H

N(CH2)7

OH

6.72 6.64

24 O

O C
H

N(CH2)7

OH

6.52 6.46

25 O

O
C

H
N(CH2)7

OH

5.80 5.84
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Table 1: Continued.

Number Structure Experimental
pIC50

Predicted
pIC50

26 O

OO C

H
N(CH2)7

OH

6.14 6.30

27

O

O

OH

C
H

N(CH2)7

6.52 6.46

28

O

O

OH

C
H

N(CH2)7

6.31 6.48

29

O

O

OH

C
H

(CH2)7 NH2

6.35 6.18

30

O

O

OH

C
H

(CH2)7 NH

6.32 6.06

31

O

O

OH

C
H

(CH2)7 NH

6.03 5.80

32

O

O

OH

C
H

(CH2)7 NH

5.74 5.60
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Table 1: Continued.

Number Structure Experimental
pIC50

Predicted
pIC50

33

O

O

OH

C
H

(CH2)7 NH

5.20 5.50

34

O

O

OH

C
H

(CH2)7 NH

5.18 5.24

35

O

O

OH

C
H

(CH2)6 N

6.70 6.59

36

O

O

OH

C
H

(CH2)6 N

6.28 6.59

37b F F
F

F
F

S
O

O

OH

HH

HH

6.02 6.38

38b F F
F

F
F

S
O

O

OH

HH

H

5.66 5.49

aThe prediction set a; bthe prediction set b (Bradbury et al., 2011).

carried out with iterations of 5,000, the average value of
squared correlation coefficient of the randomized models 𝑅2
and 𝑄2LOO was reported.

A good QSAR model should also have satisfactory pre-
dictive ability. The best way to evaluate the predictive ability

of a model is its validation by new compounds, called pre-
diction set, which do not participate in the process of model
building. After the activities of the prediction set samples
were predicted, the agreement between the experimental and
predicted values was calculated as a measure of a QSAR
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model quality. Here we adopt several ways to calculate this
agreement, 𝑄2𝐹1, 𝑄2𝐹2 [25], 𝑄2𝐹3 [26], and CCC [27–29].

All the above external validation parameters were cal-
culated in the software QSARINS and were combined to
evaluate the predictive ability of the proposed model.

2.5. Applicability Domain. To validate the practical appli-
cability of a model to a new chemical, the applicability
domain (AD), a theoretical domain which is defined by
means of the selected descriptors in the process of modeling,
should be defined properly. In this research, the AD was
quantitatively assessed by the leverage approach [30, 31]. The
leverage (hat, ℎ) was calculated by ℎ𝑖 = 𝑥𝑖(𝑋𝑇𝑋)𝑥𝑖𝑇 (𝑖 =1, . . . , 𝑚), where𝑥𝑖 was the descriptor row-vector of the query
compound 𝑖 and 𝑋 was the 𝑛 ∗ 𝑝 matrix of the training set
(𝑝 is the number of model descriptors). The limit of model
domain was quantitatively defined by the leverage cutoff(ℎ∗), set as 3(𝑝 + 1)/𝑛. A leverage greater than ℎ∗ means
that the query was outside of the model structural AD, so
the predictions were extrapolations of the model and could
be less reliable. The AD for chemicals with experimental
data was verified by the Williams plot, where the hat values
versus the standardized residuals were plotted, while the
AD for chemicals without experimental data, which were
analyzed in the virtual screening, was verified by the Insubria
graph where the hat values were plotted versus the predicted
responses [14, 18].

2.6. Virtual Screening of Potent Steroidal Antiandrogens. To
exploremore 7𝛼-substituted dihydrotestosterones and to find
similar derivatives with high antiandrogen activities, the
studied skeleton structure was used as a query to search
PubChem database for new dihydrotestosterones, without
experimental bioactivities. Then the established MLRmodel,
after thoroughly being validated internally and externally,
was used to predict the antiandrogenic activities of these new
dihydrotestosterones, verifying the AD.

Besides, molecular docking was employed to investigate
the possible interaction mechanisms of the samples owning
high in silico antiandrogenic activities with AR. Particularly,
comprehensively considering the docking speed and accu-
racy, LigandFit, which is commonly used as a flexible docking
method executed in the commercial software Discovery
Studio 2.5 [32], was applied into the progress of structure-
based virtual screening. The protein structure of AR was
firstly downloaded from RCSB Protein Data Bank [33] (PDB
entry code: 1T65) and imported in docking process. All
ligands and water molecules were removed at first, the charge
and polar hydrogen atoms were added, and the incomplete
residues were corrected.

2.7. Molecular Dynamics (MD) Simulations. The molecular
dynamics (MD) simulations were carried out using the
Amber 14 software package [34]. MD is a commonly used
methodology in exploring the interaction between ligand and
protein. We have investigated the interaction mechanisms
of R-bicalutamide/S-1 with WT/W741L AR using molecular
dynamics simulations [35]. The docked structures of AR

(PDB ID: 1T65) with the reported most active compound
number 4 and novel chemicals with high in silico activities
were used as the initial structures forMDsimulations.During
the process of docking, taking into consideration the fact
that these residues collide significantly with the compounds,
Helix 12 of AR was removed in the model as executed in the
literature [36].

All missing hydrogen atoms of the AR were added by
the LEaP module of the Amber 14 package. To maintain the
electroneutrality of all the studied complexes, the appropriate
number of chloride counterions was added. Then each com-
plex was immersed into a cubic periodic box of TIP3P water
model [37] with at least 10 Å distance around the complex.

For the ligand, the GAFF parameter assignments [38]
were made by using Antechamber program and the par-
tial charges were assigned by using the AM1-BCC method
[39].

Amber 14 package and the Amberff03 force field were
used for allmolecular dynamics simulations. Sander program
was carried out for the energy minimization and equilibra-
tion protocol. First, energy minimization of four complexes
was done through three stages, using the steepest descent
method switched to a conjugate gradient every 2500 steps
for a total of 5000 steps with a nonbonded cutoff of 10 Å. In
the first stage, to enable the added TIP3P water molecules to
adjust to their proper orientations, the AR and ligand were
restrained with 5.0 kcalmol−1 Å−2. In the second stage, to
enable the AR to find a better way of accommodating ligand,
the protein backbone was restrained with 3.0 kcalmol−1 Å−2.
In the third stage, the entire solvated system was minimized
without any restraint. Additionally, gradual heating, density,
and equilibration protocols were performed. During the
100 ps heating procedure, the system was gradually heated
from 0 to 310K, and then the density was at 310 K for 400 ps,
and at last the equilibration was at 310 K for 400 ps.

Afterwards, four 20 ns production MD simulations were
carried out with the PMEMD programwithout any restraints
in the isothermal isobaric ensemble (NPT, 𝑃 = 1 atm,𝑇 = 310K) MD. The time step was set at 2 fs. 10 Å cutoff
was applied to treat nonbonding interactions. During the
simulations periodic boundary conditions were employed
and all electrostatic interactions were calculated using the
particle mesh Ewald (PME) method. The SHAKE algorithm
was used to restrain all bond lengths containing hydrogen
atoms. All of the coordinate trajectories were recorded every
2 ps throughout all MD runs. To analyze the energy and
structure, a total of 500 snapshots of the simulated structures
stripped in the last 2 ns stable MD production trajectory at
4 ps intervals were extracted.

2.8. Binding Free Energy Calculations. For each protein-
ligand complex, the binding free energy was analyzed by
the MM/GBSA method [40]. To compare the AR binding
free energies with different ligands, MM/GBSA calculation
was applied to the 500 snapshots extracted from the final
2 ns of the MD trajectories. The total free energy of binding
free energy was composed of the following molecular species
(complex):



10 BioMed Research International

Table 2: The selected descriptors used to build QSAR model and corresponding meanings.

Descriptor Meaning Descriptor type
IC5 Information content index (neighborhood symmetry of 5-order) Information indices
GATS5e Geary autocorrelation, lag 5/weighted by atomic Sanderson electronegativities 2D autocorrelations
DISPp d COMMA2 value/weighted by atomic polarizabilities Geometrical descriptors
HATS3u Leverage-weighted autocorrelation of lag 3/unweighted GETAWAY descriptors

Δ𝐺bind = 𝐺complex − 𝐺protein − 𝐺ligand

= Δ𝐸MM + Δ𝐺sol − 𝑇Δ𝑆,
(2)

where 𝐺complex, 𝐺protein, and 𝐺ligand are the free energy of
complex, receptor, and ligand, respectively. The free energy
for each species (complex, ligand, or receptor) can be decom-
posed into a gas phase energy (Δ𝐸MM), a solvation-free
energy (Δ𝐺sol), and an entropy term (𝑇Δ𝑆).

Δ𝐸MM = Δ𝐸val + Δ𝐸ele + Δ𝐸vdw,
Δ𝐺sol = Δ𝐺p + Δ𝐺np,
Δ𝐺np = 𝛾SASA + 𝛽,

(3)

where the Δ𝐸MM is the sum of the internal energy of
bonds, angle, and torsion (Δ𝐸val), electrostatic interaction
energy (Δ𝐸ele), and van derWaals interaction energy (Δ𝐸vdw).Δ𝐺sol is solvation-free energy and can be divided into
two parts, the polar solvation-free energy (Δ𝐺p) and the
nonpolar solvation-free energy (Δ𝐺np). The polar solvation-
free energy Δ𝐺p is determined by generalized Born (GB)
equation. The values of the dielectric constant for solute
and solvent were set as 1 and 80. Δ𝐺np is the nonpolar
solvation contribution and was calculated with constants
0.0072 kcalmol−1 Å−2 for surface tension proportionality
constant 𝛾 and 0.92 kcalmol−1 Å−2 for the nonpolar free
energy for a point solute 𝛽. SASA is the solvent accessible
surface area and is determined by recursively approximating
a sphere around each atom, starting from icosahedra (ICOSA
method).𝑇Δ𝑆 is the entropy term, including the translational,
rotational, and vibrational terms of the solute molecules.

2.9. Energy Decomposition. Furthermore, to obtain the con-
tribution of each residue to the binding process, we per-
formed binding free energy decomposition. The MM/GBSA
approach was used to calculate the per-residue free energy
decomposition, which is based on the same 500 snapshots we
have extracted from the last 2 ns of the stable MD trajectory.

2.10. Normal Mode Calculation. Entropy was analyzed by
normal mode with AMBER14 NMODE module. Due to
the high computational cost in the entropy calculation, 50
snapshots were extracted from the last 2 ns trajectory of the
simulation with 40 ps time intervals.

3. Results and Discussion

3.1. The Linear MLR Model. The training set samples, 29
compounds as listed in Table 1, were used to build QSAR

model by using GA-MLR methods, and the remaining
compounds were used to evaluate the predictive ability of
the built model. GA provided a series of linear equations
containing different descriptor combinations with different
performance, but similarly satisfactory. An excellent QSAR
model should have high fitting ability, high cross-validated𝑄2LOO, high external predictive ability, and little difference
between internal and external predictive ability.

Based on the above principles, a four-descriptor model
was selected as the final model. The involved descriptors
and corresponding physical-chemical meanings were listed
in Table 2. The corresponding model equation and statistic
parameters are listed as follows:

pIC50 = −2.89IC5 + 1.01GATS5e
− 3.17DISPp − 12.99HATS3u
+ 27.13,

𝑅2 = 0.760,
𝑄2LOO = 0.656,
𝑄2LMO = 0.662,
𝑄2𝐹1 = 0.739,
𝑄2𝐹2 = 0.731,
𝑄2𝐹3 = 0.876,
CCC = 0.891,

RMSEtraining = 0.226,
RMSEprediction = 0.270.

(4)

From the linear equation and statistic parameters, we could
see that the fitting ability of the finalmodel was relatively high
with 𝑅2 of 0.760 and the final model was stable with 𝑄2LOO
of 0.656 and 𝑄2LMO of 0.662. About the predictive ability of
the final model, we could find that 𝑄2𝐹1 and 𝑄2𝐹2 have similar
high values. Compared with 𝑄2𝐹1 and 𝑄2𝐹2, the value of 𝑄2𝐹3
was higher. Besides, the value of CCC was as high as 0.891,
surpassing the threshold value of 0.85 as suggested in litera-
ture [29] for predictive model. Additionally, the RMSE values
for the training set and prediction set were similarly very low.
All these parameters indicated the higher external prediction
ability of the final model. The interrelation coefficients of the
selected descriptors were presented in the Table 3. It could
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Table 3: The correlation coefficients (𝐾) of the selected descriptors in the model.

IC5 GATS5e DISPp HATS3u
IC5 1
GATS5e 0.07 1
DISPp 0.25 0.36 1
HATS3u −0.625 0.19 −0.15 1

0

0.2

0.4

0.6

0.8

1

0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.2

−0.4

−0.6

Mod. R2

R
2

Ys
cr
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d Q

2
Ys

cr

R2 Yscr
Q2 Yscr Mod. Q2

Kxy

Figure 2: The distribution of 𝑅2 and 𝑄2 of 5000 iterated Y-scrambled models in comparison to the proposed model performances.

be seen that the highest intercorrelation coefficient 𝐾 was−0.61 between IC5 and HATS3e, which indicated that the
used variables were independent. All results proved that the
selected model was reliable, stable, and predictive.

Y randomization technique was carried out with iter-
ations of 5000 in QSARINS. Figure 2 showed the plot of𝑅2 and 𝑄2 values versus 𝐾𝑥𝑦, automatically obtained in
QSARINS. From Figure 2, we could find that the 𝑅2 and 𝑄2
values of the final model were much higher than the models
from scrambled Y-column, because the relationship between
molecular structure and response was broken. This result
indicated that the relationships between structures of 7𝛼-
substituted dihydrotestosterones and corresponding pIC50
values did exist in the proposed model, and it was really not
obtained by chance.

The predicted pIC50 values by MLR model were listed
in Table 1. Figure 3 was the scatter plot of the experimental
versus the predicted pIC50 values. It was obvious that, in
Figure 3, all predicted pIC50 values were close to the line

𝑦 = 𝑥, which indicated that the linear model can accurately
predict the antiandrogenic values of these derivatives.

The model applicability domain was evaluated by means
of leverage analysis, namely,Williams plot, shown in Figure 4,
in which the standardized residuals (𝜎) and leverage values
(ℎ) were plotted. In Figure 4, we could see that all compounds
were inside the model structural applicability domain (ℎ∗ =0.517) and reasonably well predicted with standard residue
smaller than 2.5𝜎.

After the MLR model was built, we luckily found two
new 7𝛼-substituted dihydrotestosterones, showed in Table 1
(marked as “b,” prediction set b), with experimental antian-
drogen activities from another published literature [41].
These two compounds were additionally used to validate our
model. Both of them (numbered in the Williams plot of
Figure 4) were located in the applicability domain of theMLR
model with ℎ value of 0.332 for compound 37 and 0.237 for
compound 38. The predictions on them were quite near to
their experimental values. In Figure 3, these two samples (in
red) were very near to the line 𝑦 = 𝑥. These results further
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indicated the high predictive ability of the proposed MLR
model.

By interpreting the meaning of the descriptors used in
the model, we could extract vital structural features, to
some extent, responsible for the antiandrogenic activities of
these steroidal derivatives. IC5 was calculated as the mean
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Figure 5: Insubria graph (plot of hat values versus predicted values
for the complete compounds).

information content as follows: IC5 = −∑𝐴𝑔𝑔−1(𝐴𝑔/nAT) ⋅
log2(𝐴𝑔/nAT), where 𝑔 runs over the equivalence classes,𝐴𝑔
was the cardinality of the 𝑔th equivalence class, and nAT was
the total number of atoms. This index represented a mea-
sure of structural complexity per vertex. GATS5e belonged
to 2D autocorrelations and was Geary autocorrelation, lag
5/weighted by atomic Sanderson electronegativities. This
descriptor was favorable to the antiandrogen activities of
these steroidal derivatives. DISPp, geometrical descriptors,
indicated the displacement between the geometric center and
the center of the polarizability, calculated with respect to the
molecular principal axes. HATS3u is a GETAWAY descriptor
[42], representing the leverage-weighted autocorrelation of
lag 5/weighted by atomic polarizabilities. With the increase
of these two descriptors, the bioactivities of the studied
compounds decreased.

3.2. Virtual Screening. From PubChem database, we found
110 new 7𝛼-substituted dihydrotestosterone derivatives, with-
out experimental data. By exploring the leverage ℎ values,
77.27% of them were located in the structural applicabil-
ity domain of the proposed MLR model. Figure 5 is the
Insubria graph of these dihydrotestosterones, the plot of
leverage values versus predicted pIC50, which was proposed
especially for exploring the unknown samples. In Figure 5,
most chemicals are in the range of the hat cutoff (ℎ∗ =0.517). Inside the model AD, the most active compound is
CID 70128824, which has in silico PIC50 of 7.37, higher than
the reportedmost active compound number 4 (pIC50 = 6.77).
Outside the model AD, we luckily obtained several samples
with higher in silico activities, especially CID 70126881 and
CID 70127147, which showed excellent in silico antiandrogen
activities as high as 7.90 and 7.76, respectively, even higher
than bicalutamide and hydroxyflutamide. The ID of these
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Table 4: The 110 new compounds from PubChem database and
corresponding predicted activities.

Number MolID Pred ADa

1 CID 44421999 6.32 Y
2 CID 44422008 6.49 Y
3 CID 44422014 6.53 Y
4 CID 44422020 6.47 Y
5 CID 44422031 6.34 Y
6 CID 44422034 6.15 Y
7 CID 44422037 6.14 Y
8 CID 44422041 6.07 Y
9 CID 44422043 5.82 Y
10 CID 44422044 5.67 Y
11 CID 44422045 5.62 Y
12 CID 44422047 6.69 N
13 CID 44422053 6.16 Y
14 CID 44422054 6.91 Y
15 CID 44422058 6.90 Y
16 CID 44422064 6.12 Y
17 CID 44422067 5.94 Y
18 CID 44422075 6.25 Y
19 CID 44422080 6.33 Y
20 CID 44433644 6.53 Y
21 CID 44433645 6.20 Y
22 CID 67854257 7.51 N
23 CID 69758112 6.69 Y
24 CID 70126216 7.35 N
25 CID 70126231 7.17 Y
26 CID 70126247 6.91 Y
27 CID 70126297 5.60 Y
28 CID 70126298 5.83 Y
29 CID 70126305 6.56 Y
30 CID 70126327 7.42 N
31 CID 70126491 6.40 Y
32 CID 70126782 6.27 Y
33 CID 70126784 6.24 Y
34 CID 70126798 6.48 N
35 CID 70126802 6.87 N
36 CID 70126837 6.36 Y
37 CID 70126868 6.75 N
38 CID 70126881 7.90 N
39 CID 70126979 6.39 Y
40 CID 70126991 6.89 Y
41 CID 70127144 6.82 Y
42 CID 70127147 7.76 N
43 CID 70127181 6.03 Y
44 CID 70127183 6.35 Y
45 CID 70127185 6.87 N
46 CID 70127188 6.96 N
47 CID 70127192 6.88 Y
48 CID 70127194 6.81 Y
49 CID 70127269 6.35 Y
50 CID 70127287 7.48 N

Table 4: Continued.

Number MolID Pred ADa

51 CID 70127296 6.92 N
52 CID 70127297 6.77 Y
53 CID 70127298 6.82 Y
54 CID 70127444 6.80 Y
55 CID 70127446 7.54 N
56 CID 70127567 5.89 Y
57 CID 70127714 7.00 N
58 CID 70127721 6.57 Y
59 CID 70127722 6.82 Y
60 CID 70127760 6.91 N
61 CID 70127771 6.66 Y
62 CID 70127818 7.06 N
63 CID 70127821 7.17 N
64 CID 70128062 6.59 Y
65 CID 70128068 7.19 N
66 CID 70128078 6.06 Y
67 CID 70128083 6.83 Y
68 CID 70128084 6.81 Y
69 CID 70128209 6.75 Y
70 CID 70128238 6.83 Y
71 CID 70128450 6.33 Y
72 CID 70128452 7.23 N
73 CID 70128456 6.71 Y
74 CID 70128462 6.84 Y
75 CID 70128533 6.79 Y
76 CID 70128534 6.92 Y
77 CID 70128574 7.18 N
78 CID 70128608 7.18 N
79 CID 70128824 7.37 Y
80 CID 70128828 6.46 Y
81 CID 70128830 7.00 Y
82 CID 70128847 7.46 N
83 CID 70128902 6.50 Y
84 CID 70128904 6.57 Y
85 CID 70128987 5.60 Y
86 CID 70129065 6.69 N
87 CID 70129161 7.05 Y
88 CID 70129198 6.53 Y
89 CID 70129204 7.14 N
90 CID 70129375 6.18 Y
91 CID 70129377 6.74 Y
92 CID 70129380 7.12 Y
93 CID 9804916 6.38 Y
94 CID 9826776 6.33 Y
95 CID 9827285 6.48 Y
96 CID 9828392 6.12 Y
97 CID 9828587 6.86 N
98 CID 9829426 6.45 Y
99 CID 9891033 6.14 Y
100 CID 9893352 5.94 Y
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Table 4: Continued.

Number MolID Pred ADa

101 CID 9933226 6.34 Y
102 CID 9935104 6.56 Y
103 CID 9935196 6.57 Y
104 CID 9935788 6.50 Y
105 CID 9936347 6.45 Y
106 CID 9936803 6.36 Y
107 CID 9955874 6.20 Y
108 CID 9957122 6.62 Y
109 CID 9957692 6.57 Y
110 CID 9958161 6.19 Y
aAD: model structural applicability domain; Y: compound inside the model
structural AD; N: compound outside the model structural AD.

compounds and corresponding predicted pIC50 values are
listed in Table 4. Though only these three compounds were
highlighted here, other samples with high in silico activities,
especially those located in themodel structural AD, were also
worthy of our attention.

To further explore the possible binding mode of the
screened compounds, molecular docking was employed to
study the interaction between compounds owning high
in silico activities (especially CID 70128824, CID 70126881,
and CID 70127147), together with the reported most active
compound 4 as a comparison, and androgen receptor (PDB
ID: 1T65) by using LigandFit module in Discovery Studio
2.5. Firstly, DHT was extracted from crystal structure and
redocked into ligand binding pocket to obtain the optimal
docking parameters. Secondly, the ligand binding site was
defined with the same parameters as DHT. At this point,
the radius of SBD Site Sphere was set to 10 Å. The other
parameters were set by default.

To obtain reasonable conformations of different complex,
the top-ranked compounds with lowest RMSD values were
extracted.The binding mode of compound 4, CID 70128824,
CID 70126881, and CID 70127147 with AR were presented in
Figure 6. From this Figure, it could be seen that the docked
pose of CID 70128824, CID 70126881, and CID 70127147
located in the same position with similar orientation in the
AR ligand binding site to compound 4. All these results indi-
cated that though two of them were outside of the model AD,
these three compounds CID 70128824, CID 70126881, and
CID 70127147 might have good performance to antagonize
androgen receptor and have the potency for further research
and development for PCa therapy.

3.3. MD Simulations

3.3.1. System Equilibration. In order to verify whether the
studied systems reach equilibrium, the root mean square
deviations (RMSDs) of all the backbone atoms of the protein,
theC𝛼 atoms for the residues of the active site (residueswithin
5 Å around ligand), and the heavy atoms of ligand from the
initial structure were monitored to examine the dynamic
stability of the systems and plotted against time, as shown in

CID_70126881

Compound 4 CID_70127147

CID_70128824

Figure 6: The molecular binding models of compound 4 (cyan),
CID 70128824 (yellow), CID 70126881 (pink), and CID 70127147
(blue) in the AR ligand binding site.

Figure 7.The three RMSDs have small fluctuations after 15 ns,
implying that the studied systems have reached stability. We
used the last 2 ns to analyze the energy and binding modes
for the four complexes.

3.3.2. Validation of the MD Simulations. We calculated the
binding free energy by MM/GBSA method between the
four ligands and AR to validate the reliability of the MD
simulation. Table 5 lists the binding free energy and all of the
energy terms for the four compounds. From Table 5, the four
complexes had different binding free energy; the ranking
order is CID 70126881 (−41.62 kcalmol−1), CID 70127147
(−33.06 kcalmol−1), CID 70128824 (−31.86 kcalmol−1),
and compound 4 (−22.69 kcalmol−1). Different binding
free energy means different binding affinity between the
four complexes. We have proved that the antiandrogen
activity of compounds CID 70126881, CID 70127147, and
CID 70128824 are higher than the published best one
(compound 4) by MLR model. In addition, the ranking of
the calculated binding free energy was consistent with their
in silico bioactivities order.

3.3.3. Analysis of the Interaction Mechanism. According to
the calculated binding free energy, CID 70126881 holds the
strongest binding affinity; on the contrary, compound 4 has
the lowest binding affinity. As can be seen from Table 5,
the nonpolar interactions (Δ𝐺nonpolar) including van der
Waals (𝐸vdw) and nonpolar solvation (Δ𝐺np) terms are the
driving force for the binding of the four ligands to AR,
and the total polar contributions (Δ𝐺p) are unfavorable for
their binding. In addition, CID 70126881, CID 70127147, and
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Figure 7: Time series of (a) the RMSDs of backbone atoms of androgen receptor, (b) the RMSD of C𝛼 atoms for the residues around 5 Å of
the ligand, and (c) the RMSD of the heavy atoms of ligand.

Table 5: The calculated binding free energies (kcalmol−1) of four systems.

Complex Contribution
Δ𝐸ele Δ𝐸vdw Δ𝐺p Δ𝐺np Δ𝐸MM Δ𝐺sol Δ𝐸bind −𝑇Δ𝑆 Δ𝐺bind

Compound 4 −29.58 −58.93 44.95 −6.74 −88.50 38.22 −50.28 27.59 −22.69
CID 70128824 −3.32 −70.56 24.14 −7.25 −73.88 16.89 −56.99 25.13 −31.86
CID 70127147 −16.79 −71.34 33.50 −7.80 −88.13 25.69 −62.44 29.38 −33.06
CID 70126881 −10.01 −69.32 25.14 −8.85 −79.33 16.29 −63.05 21.43 −41.62
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Figure 8: Energy decomposition of key residues in four complexes.

CID 70128824 have almost the same van der Waals interac-
tions toward AR (−69.32 kcalmol−1, −71.34 kcalmol−1, and−70.56 kcalmol−1 for CID 70126881-AR, CID 70127147-AR,
and CID 70128824-AR), while compound 4 has a low van der
Waals value, which may partly explain the reduced binding
affinity of compound 4 and prove that the newly discovered
chemicals could possess higher antiandrogen activities.

To obtain the detailed interaction between four ligands
and AR, the decomposition of binding free energy, which is
calculated by MM/GBSA method, was executed to identify

key residues during the binding process. The result of
energy decomposition contains van der Waals, electrostatic,
solvation-free energy, and total energy contribution terms,
respectively, for four systems, shown in Figure 8. All the
residues with great energy contributions were almost more
than 1.5 kcalmol−1. As shown in Figure 8(a), residues L701,
L704, M780, L873, T877, L880, and L881 of AR make a
significant contribution to the CID 70126881-AR binding, as
well as those for the CID 70127147-ARwhich are L704, N705,
L712, W741, M745, and F876 (Figure 8(b)). In Figure 8(c),
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residues L704, N705, G708, L712, F764, and F891 of AR
make a substantial contribution to the CID 70128824-AR
binding. However, only two key residues (L704 and N705)
were the major energy contributions to compound 4-AR
binding as shown in Figure 8(d). As mentioned previously,
the vast majority of key residues of AR were nonpolar; it
was reasonable to speculate that these residues can form
greater van der Waals interactions with hydrophobic ligand
and exhibitmore favorable nonpolar interaction contribution
to the binding free energy.

The MD simulation, together with the docking
results, confirmed that the newly discovered chemicals
CID 70126881, CID 70127147, and CID 70128824 share
similar binding mode with the reported compound 4,
and the in silico antiandrogen activities of them are
higher through the calculated binding free energy and
decomposition of binding free energy.

4. Conclusions

In this study, the relationships between a series of 7𝛼-
substituted dihydrotestosterone derivatives and correspond-
ing antiandrogen activities were explored. A reliable, stable,
and robust linear MLR model with four descriptors was
built and validated in QSARINS. The predictive ability of the
final model, fully evaluated by using two different prediction
sets, is excellent enough to be used to virtually screen
novel 7𝛼-substituted dihydrotestosterones from PubChem
database. After antiandrogenic activity prediction, molecular
docking, andmolecular dynamic simulations, CID 70126881,
CID 70127147, and CID 70128824, as the most potent chemi-
cals with good binding affinities to androgen receptor, were
proposed. Of course, bioassay experimental researches are
needed to evaluate the virtual screening results. This study
provides the theoretical basis and specific chemicals for AR
antagonists, which can help the experimental research groups
to search for potential antiandrogens.
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