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Abstract. Lung adenocarcinoma (LUAd) is one of the most 
common types of lung cancer and its poor prognosis largely 
depends on the tumor pathological stage. critical roles of 
microRNAs (miRNAs) have been reported in the tumorigenesis 
and progression of lung cancer. However, whether the differen-
tial expression pattern of miRNAs could be used to distinguish 
early-stage (stage I) from mid-late-stage (stages II-IV) LUAd 
tumors is still unclear. In this study, clinical information and 
miRNA expression profiles of patients with LUAd were 
downloaded from The cancer Genome Atlas (TcGA) and 
Gene Expression Omnibus databases. TcGA-LUAd (n=470) 
dataset was used for model training and validation, and the 
GSE62182 (n=94) and GSE83527 (n=36) datasets were used 
as external independent test datasets. The diagnostic model 
was created through miRNA feature selection followed by 
SVM classifier and was confirmed by 5‑fold cross‑validation. 
A receiver operating characteristic curve was calculated to 
evaluate the accuracy and robustness of the model. Using the 
dX score and LIBSVM tool, a 16-miRNA signature that could 
distinguish LUAd pathological stages was identified. The 
area under the curve rates were 0.62 [95% confidence interval 
(cI): 0.56-0.67], 0.66 (95% cI: 0.54-0.76) and 0.63 (95% cI: 
0.43-0.82) in TcGA-LUAd internal validation dataset, the 
GSE62182 external validation dataset, and the GSE83527 

external validation dataset, respectively. Kyoto Encyclopedia 
of Genes and Genomes and Gene Ontology enrichment 
analyses suggested that the target genes of the 16-miRNA 
signature were mainly involved in metabolic pathways. The 
present findings demonstrate that a 16‑miRNA signature could 
serve as a promising diagnostic biomarker for pathological 
staging in LUAd.

Introduction

Lung cancer is the leading cause of cancer-associated deaths 
worldwide and has a low 5-year survival rate after diagnosis (1,2). 
Non-small cell lung cancer (NScLc) accounts for ~85% of all 
lung cancer cases and lung adenocarcinoma (LUAd) is the 
predominant histological subtype of NScLc, which is often 
exhibited by females and people who have never smoked (3-5). 
The poor patient survival rate of NScLc is primarily due to 
the high frequency of late diagnosis (6) and the prognosis of 
NScLc largely depends on the tumor stage. The lung tumor of 
patients with NScLc with pathological stage I disease (early 
stage) can be completely removed through surgical resection 
and these patients, therefore, have a 5-year survival rate of >70%. 
However, mid‑late‑stage (stages II‑IV) lung cancer is difficult 
and often impossible to remove completely with surgery, and 
the 5-year survival rate for patients with stage II-IV disease 
ranges from 40 to <10% (7,8). Thus, accurate staging is critical 
for NScLc treatment.

MicroRNAs (miRNAs or miRs) are a class of small 
(~22 nucleotides), often phylogenetically conserved noncoding 
RNAs that are widely expressed and regulate the majority of 
biological functions (9). Mammalian miRNA binding sites are 
most commonly found in introns or the 3' untranslated region 
of mRNAs (10). After miRNAs are cleaved and activated by 
the dicer complex, the activated miRNAs bind to a comple-
mentary sequence in the 3' untranslated region of the target 
mRNAs, which results in decreased gene expression through 
translational repression and mRNA destabilization and degra-
dation (11). Since miRNAs regulate gene expression through 
incomplete base pairing, each miRNA has the ability to regulate 
multiple genes. Unlike mRNAs, miRNAs are stable and can be 
easily detected in archived formalin‑fixed paraffin‑embedded 
specimens (12). deregulation of miRNA expression has been 
linked to the majority of cellular functions, especially those 
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involved in cancer initiation and progression (13), making 
miRNAs attractive biomarkers for the detection, classification, 
and prognosis of multiple cancer types (14-16).

Previous studies have attempted to identify miRNA signa-
tures as potential biomarkers for patients with lung cancer. 
Patnaik et al (17) reported a 6‑miRNA‑based classifier that 
could predict the recurrence of localized stage I NScLc 
based on the miRNA expression profiles of 77 surgically treated 
pathologic stage I NScLc cases. Bishop et al (18) reported 
that a miRNA-based method could be used to classify lung 
squamous cell carcinoma and LUAd. Li et al (19) identified 
an 8-miRNA signature as a potential biomarker for predicting 
survival in LUAd. Although several miRNAs have been iden-
tified as predictors of clinical diagnosis or outcome in lung 
cancer, due to the small patient number and lack of external 
validation, the models predicted in these studies (17-19) might 
not be reliable. Importantly, whether miRNAs can be used as 
pathological staging markers remains unclear. Therefore, a 
larger patient cohort and an external independent validation 
cohort for investigation of LUAD staging‑specific classifiers 
are urgently required.

The cancer Genome Atlas (TcGA) database provides a 
collection of clinical data, dNA/RNA sequences and dNA 
methylation profiles of ≥500 cases of 20 different tumor types, 
which is publicly available (20), while the Gene Expression 
Omnibus (GEO) is a public functional genomics data reposi-
tory supporting minimum information about a microarray 
experiment-compliant data submissions (21). TcGA and 
GEO contain extensive genomic data, including miRNA 
sequencing (miRNAseq) data and related clinical informa-
tion of LUAd cases. Yerukala Sathipati and Ho reported an 
18-miRNA signature associated with LUAd patient survival 
based on the TcGA-LUAd dataset (22). This study used 
miRNAseq expression profiles downloaded from TCGA and 
GEO to identify the differential miRNA expression patterns 
in samples from patients with early and mid-late pathological 
stage LUAd. Additionally, a 16-miRNA signature that could 
distinguish early-stage LUAd from mid-late-stage tumor, was 
constructed. Furthermore, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) analyses were 
performed to understand the biological pathways regulated by 
the prognostic miRNA signature.

Materials and methods

miRNA expression data collection and preprocessing. The 
miRNA expression profiles and clinical information from 
TcGA-LUAd dataset were downloaded from TcGA data-
base (https://portal.gdc.cancer.gov/), while raw data from 
the GSE62182 (23) and GSE83527 (24) datasets were down-
loaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo). The expression profiles of the 3 miRNA miRNAseq 
datasets used in the present study were all generated by an 
Illumina HiSeq 2000 platform (Illumina, Inc.). These full 
clinical datasets were assessed for eligibility and nontumor 
samples (45 cases in TcGA-LUAd, 94 cases in GSE62182 
and 41 cases in GSE83527), recurrent tumor samples (2 cases 
in TcGA-LUAd) and samples lacking staging informa-
tion (7 cases in TcGA-LUAd) were removed. There were 
470 available primary LUAd samples with histopathological 

information in TcGA-LUAd dataset and 94 and 36 available 
primary LUAd samples in the GSE62182 and GSE83527 
datasets, respectively. Notably, 10 LUAd samples from 
the GSE83527 dataset were originally classified using the 
Tumor-Node-Metastasis (TNM) staging system and were 
therefore reclassified following the 8th edition TNM stage 
classification guide developed by the International Association 
for the Study of Lung cancer (25). All the clinical information 
of the selected samples is summarized in Table I.

The miRNA expression levels were reported as reads per 
million miRNA mapped (RPM). Since a number of miRNAs 
were differentially expressed by tumor subtype and differences 
in sample procurement were observed, the RNA extraction 
quality, enzymatic efficiency, and other sources might lead 
to systematic variability. consequently, the accuracy of the 
methods used for expression analysis was critically dependent 
on the proper normalization of the raw data. An ideal normal-
izer would be a single miRNA that is stable and has invariant 
expression across all samples. In this study, Homo sapiens 
(hsa)-miR-191 was used as the normalizer because it was 
the most stable single miRNA and has been shown to have 
the lowest expression variability in lung cancer tissues (26). 
Finally, the hsa-miR-191-normalized RPM values were used 
to represent the miRNA expression levels in TcGA-LUAd, 
GSE62182 and GSE83527 datasets.

miRNA selection and model construction. The goal of the 
miRNA feature selection is to remove redundant features and 
to identify the most relevant features, thereby improving the 
classification performance for early‑stage and mid‑late‑stage 
lung cancer. The expression heatmaps of the selected miRNAs 
were generated using HemI v1.0, a toolkit for illustrating 
heatmaps (http://hemi.biocuckoo.org). The present group 
previously developed a feature selection scheme based on 
a dX score and successfully evaluated its effectiveness in a 
classification system (27,28). Briefly, the DX score is used to 
measure the diversity between positive and negative classes 
for each feature. The DX scores can be defined as follows: 
dX=(m1-m0)2/d1

2 + d0
2 + σ, where m1 (m0) and d1 (d0) are the 

mean value and standard deviation of a feature in a positive 
(negative) sample, respectively. To avoid a denominator equal 
to zero when both classes had constant features, a small posi-
tive number, namely σ, was added. The larger the dX score, 
the better the performance of differentiating between the posi-
tive and negative samples by this feature.

Starting with the individual dX scores, the dX score of 
each feature was ranked from high to low in order to form a 
ranked feature set and its classification performance was eval-
uated by 5-fold cross-validation (cV). This procedure yielded 
a curve of cV accuracy with several top-ranked miRNAs. The 
optimized miRNAs with the best accuracy were identified for 
later training and testing.

The predictive model was established using the miRNA 
feature selection scheme based on the dX score and a support 
vector machine (SVM) classifier. The top‑ranked miRNAs with 
the best accuracy were identified as the optimized miRNAs 
that could capture the subtle difference between early-stage 
and mid-late-stage lung cancer. This feature selection scheme 
was confirmed by 5‑fold CV and area under the curve (AUC) 
analysis. In 5-fold cV, the dataset was randomly divided into 
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5 subsets with ~the same size and each subset had practically 
the same number of cases of the two types (i.e., early-stage and 
mid-late-stage lung cancer). Then, 4 subsets were used as the 
training data and the remaining subset was used to validate 
the trained classifier. This process was repeated 5 times and 
each subset was used as the validation data once. The accu-
racy of the 5‑fold CV was defined as the average classification 
accuracy over the 5 rounds of validation.

The SVM algorithm (29) was selected for classification 
since its superior performance is well established theoreti-
cally and practically. In addition, SVM is a typical supervised 
machine learning approach and is employed as a classifier in 
this predictive model. For most classification and prediction 
systems, SVM is superior to other machine learning methods, 
including the neural network and decision tree classifiers (30).

More specifically, a well‑established SVM tool, 
LIBSVM (31), was selected as the classifier. The radial basis 
function (RBF) was employed as the Kernel function based on 
various trials. A grid search was also implemented on the RBF 
parameter γ and the trade‑off coefficient C. To evaluate the 
accuracy and robustness of each classifier, a receiver operating 
characteristic (ROC) curve for sensitivity and specificity was 
calculated. Sensitivity was determined by TP/(TP+FN), while 
specificity was computed by TN/(FP+TN), where TP, FP, FN 
and TN refer to true positive, false positive, false negative and 
true negative, respectively.

GO and KEGG pathway analyses. To investigate the signifi-
cantly enriched functions of the differentially expressed genes 
regulated by the miRNAs and to better understand the signifi-
cant pathways in which the differentially expressed genes were 
involved, both GO and KEGG analyses were performed by 
dIANA-miRPath v3.0 online software (32). Predicted interac-
tions between target genes and biological pathways regulated 
by the miRNAs were identified using DIANA‑TarBase v7.0, 
enabling an experimentally supported miRNA functional 
annotation (33). Two-sided Fisher's exact test was used to 
analyze the significance of the GO category and KEGG 
pathway enrichment, and corrected P<0.05 was considered to 
indicate a statistically significant difference.

Results

Study design. Although patients with stage I or stage II LUAd 
could both be removed by surgery, their 5-year survival rate 
was different. According to previous reports, stage I LUAd 
patients had a 5-year survival rate of >70%, whereas the 5-year 
survival rate of stage II patients was only ~40% (7,8). Thus, 
the aim of the present study was to separate stage I from 
stage II-IV LUAd, which was based on the 5-year survival 
rate above or below 50%. In the present study, miRNA expres-
sion profiles and tumor staging information were obtained 
from 3 public datasets that had been sequenced using the 
same miRNAseq platform (TcGA-LUAd, GSE62182 and 
GSE83527). Only LUAd tissues with pathological staging 
information were used in this study. TcGA-LUAd dataset 
originally contained 528 miRNA profiles of patients with 
LUAD, but 2 recurrent tumor profiles, 45 solid tissue normal 
profiles, 4 repeated profiles and 7 profiles without staging 
information were removed according to the exclusion criteria. 
To minimize unwanted variation between different datasets, 
the miRNA expression levels in each profile were normalized 
to that of hsa-miR-191. The miRNA signature associated with 
LUAd pathological grade was first trained and validated 
through the normalized miRNA expression profiles of the 
remaining 470 patients in TcGA-LUAd dataset. Since the 
miRNA signature might be overfitted to the training dataset, 
it was further evaluated in patients from the GSE62182 and 
GSE83527 independent datasets to test the robustness of the 
diagnostic model. The study flow diagram is shown in Fig. 1.

miRNA selection, model training and validation. certain 
miRNA features were selected based on the SVM method as 
described above. The top 50 LUAd staging-related miRNAs 
were selected and it was observed that the combination of the 
expression levels of the top 42 miRNAs produced the best 
model for LUAd staging (Fig. 2A). The AUc was used to 
evaluate the diagnostic ability of the miRNA signature. The 
ROc curve for pathological diagnosis of LUAd was plotted 
based on miRNA expression levels and the AUc curve for 
the signature comprising the 42 miRNAs in the internal 

Table I. demographic and histopathological data of patients from TcGA and GEO databases.

 TcGA-LUAd (n=470) GSE62182 (n=94) GSE83527 (n=36)
Variable Training and validation dataset Test dataset 1 Test dataset 2

Sex, n (%)   
  Female 255 (54.3) 65 (69.1) 15 (41.7)
  Male 215 (45.7) 29 (30.9) 21 (58.3)
Smoking, n (%)   
  current or former 320 (68.1) 67 (71.3) 33 (91.7)
  Never 150 (31.9) 27 (28.7) 3 (8.3)
Stage, n (%)   
  I 260 (55.3) 58 (61.7) 15 (41.6)
  II 109 (23.2) 23 (24.5) 15 (41.6)
  III 78 (16.6) 10 (10.6) 5 (13.9)
  IV 23 (4.9) 3 (3.2) 1 (2.8)
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Figure 2. Generation and validation of the 42-miRNA signature. (A) Accuracy curve obtained by selecting the top 50 miRNA features. (B) ROc curve for 
the internal validation of the 42-miRNA signature in The cancer Genome Atlas-LUAd dataset. (c) ROc curve for the external validation of the 42-miRNA 
signature in the GSE62182 dataset. (d) ROc curve for the external validation of the 42-miRNA signature in the GSE83527 dataset. miRNA, microRNA; 
ROc, receiver operating characteristic; AUc, area under the curve; LUAd, lung adenocarcinoma.

Figure 1. Study flow diagram. The microRNA signature was first generated and internal validated in TCGA‑LUAD dataset, and then externally validated in 
the GSE62182 and GSE83527 datasets to demonstrate its performance. TGcA, The cancer Genome Atlas; LUAd, lung adenocarcinoma.
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validation dataset was 0.69 [95% confidence interval (CI): 
0.64-0.73] (Fig. 2B). The 42-miRNA model showed a similar 
performance in the other two external validation datasets 
[AUc, 0.75 (95% cI: 0.56-0.88) and 0.58 (95% cI: 0.45-0.69), 
respectively; Fig. 2c and d].

However, the combination of 42 miRNAs was markedly 
complex and could be difficult to use for clinical detection; 
thus, the accuracy of the combination of other miRNAs to 
obtain a more simplified miRNA signature was calculated. 
After permutation and combination analyses, the number of 
miRNAs was first reduced to 26. The results showed that the 
26-miRNA signature had a similar performance compared to 
that of all 42 miRNAs (Fig. 3A), with the AUcs in the internal 
validation dataset and the two independent external valida-
tion datasets calculated to be 0.65 (95% cI: 0.65-0.69), 0.69 
(95% cI: 0.56-0.78) and 0.62 (95% cI: 0.40-0.82), respectively 
(Fig. 3B-d).

Then, the number of miRNAs was further reduced to 
construct an easier and suitable model that could be a poten-
tial biomarker for the staging of LUAd. It was observed 
that the 16-miRNA signature (hsa-mir-2116, hsa-mir-4161, 
hsa-mir-3942, hsa-mir-4435, hsa-mir-1307, hsa-mir-1254, 
hsa-mir-582, hsa-mir-5690, hsa-mir-4713, hsa-mir-1293, 
hsa-mir-939, hsa-mir-421, hsa-mir-335, hsa-mir-4677, 
hsa-mir-4754 and hsa-mir-4746; Table II) showed a similar 

ability to classify LUAd pathological stages to that of the 
combinations of 42 or 26 miRNAs (Fig. 4A). The AUc for 
the 16-miRNA signature was 0.62 (95% cI: 0.65-0.67) in the 
internal validation dataset (Fig. 4B), 0.66 (95% cI: 0.54-0.76) 
in the GSE62182 external validation dataset (Fig. 4d) and 
0.63 (95% cI: 0.43-0.82) in the GSE83527 external validation 
dataset (Fig. 4F). The expression heatmaps of the 16 miRNAs 
in TcGA-LUAd, GSE62182 and GSE83527 datasets were 
generated using HemI v1.0 software (34) (Fig. 4c, E and G).

KEGG and GO analyses. Since the underlying molecular 
biology of different stages of LUAd is still not very clear, 
the present study used KEGG signaling pathway analysis 
and GO enrichment analysis to better understand the poten-
tial biological function and mechanism of the 16-miRNA 
signature. By selecting P<0.05 as the cut-off criterium in the 
KEGG pathway analysis, several comprehensive biological 
pathways regulated by the 16-miRNA signature were revealed 
in different stages of LUAd, including ‘fatty acid biosynthesis’ 
(hsa00061), ‘fatty acid metabolism’ (hsa01212), ‘other glycan 
degradation’ (hsa00511), ‘steroid biosynthesis’ (hsa00100), 
‘biosynthesis of unsaturated fatty acids’ (hsa01040) and 
‘EcM-receptor interaction’ (hsa04512) (Table III), most of 
which are metabolic pathways involving biosynthesis, metabo-
lism, degradation of fatty acids and other glycans. Therefore, 

Figure 3. Generation and validation of the 26-miRNA signature. (A) Accuracy curve obtained by selecting the top 30 miRNA features. (B) ROc curve for 
the internal validation of the 26-miRNA signature in The cancer Genome Atlas-LUAd dataset. (c) ROc curve for the external validation of the 26-miRNA 
signature in the GSE62182 dataset. (d) ROc curve for the external validation of the 26-miRNA signature in the GSE83527 dataset. miRNA, microRNA; 
ROc, receiver operating characteristic; AUc, area under the curve; LUAd, lung adenocarcinoma.
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these 16 miRNAs might be involved in fatty acid metabolism, 
indicating that metabolic pathways could play an important role 
in LUAD progression. The significant categories according to 
GO results included ‘biological process’ (Table IV), ‘cellular 
component’ (Table V) and ‘molecular function’ (Table VI). 
In these categories, various functions associated with RNA 
processing, gene expression and multiple catabolic/metabolic 
processes were identified. The clustered heatmap analysis of the 
enriched KEGG pathways and GO categories was generated 
by dIANA-miRPath v3.0 using the default settings (Fig. 5). 
The results indicated that the 16 miRNA classifiers might 
participate in the development of LUAd through the regula-
tion of a series of pathways, particularly metabolism-related 
pathways.

Discussion

considering that abnormal miRNA expression affects the 
molecular functions and biological processes of multiple 

tumors, numerous attempts have been made to use miRNAs 
as biomarkers for accurate prediction of lung cancer diag-
nosis and prognosis (18,22,35). However, most previous studies 
have focused on a small patient sample size. Moreover, most 
reported lung cancer subtype models do not involve an external 
confirmation dataset, therefore weakening the reliability of the 
results. In other words, the miRNA signature might correctly 
classify tumor status based on one particular dataset but might 
misclassify other samples from another dataset that are likely 
to have a different group of patients.

In this study, TcGA-LUAd, one of the largest miRNA 
expression datasets of LUAd, was selected to establish the 
current prediction model. Additionally, miRNA profiles 
from GEO62182 and GEO83527 were used as independent 
external test datasets for testing the robustness of the present 
algorithm. The current model showed stable diagnostic capa-
bility, as the model achieved similar accuracy in different 
datasets. However, the classification performance was not 
very high, probably due to the difficulty of the specific 

Table II. List of the 16 miRNAs in the signature.

miRNA Id miRNA region Mature miRNA

hsa-mir-2116 MIMAT0011161 hsa-miR-2116-3p
hsa-mir-4661 MIMAT0019729 hsa-miR-4661-5p
hsa-mir-3942 MIMAT0018358 hsa-miR-3942-5p
hsa-mir-4435 MIMAT0018951 hsa-miR-4435
hsa-mir-1307 MIMAT0005951 hsa-miR-1307-3p
hsa-mir-1254 MIMAT0005905 hsa-miR-1254
hsa-mir-582 MIMAT0004797 hsa-miR-582-3p
hsa-mir-5690 MIMAT0022482 hsa-miR-5690
hsa-mir-4713 MIMAT0019821 hsa-miR-4713-3p
hsa-mir-1293 MIMAT0005883 hsa-miR-1293
hsa-mir-939 MIMAT0004982 hsa-miR-939-5p
hsa-mir-421 MIMAT0003339 hsa-miR-421
hsa-mir-335 MIMAT0000765 hsa-miR-335-5p
hsa-mir-4677 MIMAT0019760 hsa-miR-4677-5p
hsa-mir-4754 MIMAT0019894 hsa-miR-4754
hsa-mir-4746 MIMAT0019880 hsa-miR-4746-5p

mir/miRNA, microRNAs.

Table III. Enriched biological pathways identified in a KEGG pathway analysis.

No. KEGG pathway P-value Genes miRNAs

1 Fatty acid biosynthesis (hsa00061)  <1x10-325 1 4
2 Fatty acid metabolism (hsa01212)  <1x10-325 6 4
3 Other glycan degradation (hsa00511)  9.86x10-06 3 2
4 Steroid biosynthesis (hsa00100)  6.13x10-05 13 2
5 Biosynthesis of unsaturated fatty acids (hsa01040)  0.01643741 4 2
6 EcM-receptor interaction (hsa04512) 0.04934272 26 1

KEGG, Kyoto Encyclopedia of Genes and Genomes; EcM, extracellular matrix; miRNA, microRNA.
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Figure 4. Generation and validation of the 16‑miRNA signature. (A) Accuracy curve obtained by selecting the top 20 miRNA features. (B) Classification 
performance of the 16-miRNA signature in TcGA-LUAd training dataset. (c) Hierarchical clustering of differentially expressed miRNAs in TcGA-LUAd 
dataset. (d) External validation of the 16-miRNA signature in the GSE62182 dataset. (E) Hierarchical clustering of differentially expressed miRNAs in the 
GSE62182 dataset. (F) External validation of the 16-miRNA feature in the GSE83527 dataset. (G) Hierarchical clustering of differentially expressed miRNAs 
in the GSE83527 dataset. TcGA-LUAd, The cancer Genome Atlas-lung adenocarcinoma; miRNA, microRNA; ROc, receiver operating characteristic; 
AUc, area under the curve.
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classification task. Unlike distinguishing squamous cell 
carcinoma from adenocarcinoma, where the two histo-
pathological subtypes arise from different cells with distinct 

microenvironments (36), there are often more similarities 
than differences between the miRNA expression patterns of 
early- and mid-late-stage LUAd. On the other hand, miRNA 

Table IV. List of significant GO terms in the biological process category.

No. GO Term (Biological Process) P-value Genes miRNAs

  1 Biological process (GO:0008150) <1x10-325 1,353 5
  2 Symbiosis, encompassing mutualism through parasitism (GO:0044403) <1x10-325 94 5
  3 Gene expression (GO:0010467) <1x10-325 125 6
  4 Biosynthetic process (GO:0009058) <1x10-325 450 7
  5 Cellular protein modification process (GO:0006464) <1x10-325 562 8
  6 cellular nitrogen compound metabolic process (GO:0034641) <1x10-325 612 10
  7 Viral process (GO:0016032) 1.11x10-16 85 5
  8 Small molecule metabolic process (GO:0044281) 1.18x10-14 552 5
  9 Neurotrophin TRK receptor signaling pathway (GO:0048011) 3.90x10-13 99 6
10 Nucleobase-containing compound catabolic process (GO:0034655) 1.04x10-12 126 5
11 catabolic process (GO:0009056) 1.24x10-12 446 5
12 cellular protein metabolic process (GO:0044267) 2.49x10-08 131 5
13 Response to stress (GO:0006950) 7.59x10-08 511 5
14 Blood coagulation (GO:0007596) 1.66x10-06 115 3
15 cell death (GO:0008219) 1.79x10-06 81 3
16 Mitotic cell cycle (GO:0000278) 1.87x10-06 60 5
17 Membrane organization (GO:0061024) 1.99x10-06 93 5
18 Fc-epsilon receptor signaling pathway (GO:0038095) 5.15x10-06 49 3
19 mRNA metabolic process (GO:0016071) 6.09E-05 40 5
20 Epidermal growth factor receptor signaling pathway (GO:0007173) 0.000209601 59 3
21 Immune system process (GO:0002376) 0.000331715 319 3
22 RNA metabolic process (GO:0016070) 0.000428269 38 4
23 cellular component assembly (GO:0022607) 0.000625565 124 4
24 RNA splicing (GO:0008380) 0.002480079 35 2
25 mRNA processing (GO:0006397) 0.002624066 61 4
26 Activation of signaling protein activity involved in unfolded protein 0.01328594 22 1
 response (GO:0006987)
27 dNA metabolic process (GO:0006259) 0.02118011 54 2
28 Post‑translational protein modification (GO:0043687) 0.02692964 40 1
29 Transcription, dNA-templated (GO:0006351) 0.02971434 131 2
30 Fibroblast growth factor receptor signaling pathway (GO:0008543) 0.04102542 50 3

GO, gene ontology; miRNA, microRNA.

Table V. List of significant GO terms in the cellular component category.

No. GO Term (cellular component) P-value Genes miRNAs

1 cellular component (GO:0005575) <1x10-325 1,497 6
2 cytosol (GO:0005829) <1x10-325 336 6
3 Protein complex (GO:0043234) <1x10-325 444 7
4 Organelle (GO:0043226) <1x10-325 2,361 10
5 Nucleoplasm (GO:0005654) 1.99x10-13 158 5

GO, gene ontology; miRNA, microRNA.
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Figure 5. Heatmaps of KEGG pathways and GO annotations of the target genes of the 16 miRNAs in the signature. (A) Heatmap of KEGG pathways from 
the intersection of the target genes of the 16 miRNAs. The isoforms of the target genes of the 16 miRNAs were involved in multiple pathways, particularly 
metabolic pathways. (B) Heatmap of GO molecular function from the intersection of the target genes of the 16 miRNAs. (c) Heatmap of GO cellular compo-
nents from the intersection of the target genes of the 16 miRNAs. (d) Heatmap of GO biological processes from the intersection of the target genes of the 
16 miRNAs. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; miRNA, microRNA.
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expression might only provide limited information for tumor 
staging. Multi-omics data, including mRNA expression and 
cpG methylation, could lead to multi-omics integration and 
help to discover more sensitive molecular features. In liver 
cancer patient survival prediction, multi-omics data have 
shown better performance than single-omics data for model 
building (37).

Among the aforementioned 16 miRNAs, the overexpres-
sion of hsa-miR-939 was correlated with poor prognosis in 
lung cancer (38), as well as promoting epithelial to mesen-
chymal transition in epithelial ovarian cancer (39). It has 
been reported that hsa-miR421 promotes tumor progression 
in hepatocellular carcinoma (40) and osteosarcoma (41), and 
hsa-miR-335 participates in the progression of gallbladder 
carcinoma (42). On the other hand, hsa-miR-582 func-
tions as a tumor suppressor in colorectal cancer (43) and 
hsa-miR-1254 inhibits cell migration and invasion in gastric 
cancer (44).

Based on the 16-miRNA signature, KEGG and GO 
analyses were employed to predict the target genes and related 
pathways, and the results showed that the diagnostic miRNAs 
regulate metabolic processes such as glycan degradation, fatty 
acid biosynthesis and metabolism, which is consistent with 
other reports (45-47). deregulated metabolism is considered 
an important hallmark of cancer initiation, progression, 
metastasis and immune evasion (45). miRNAs are involved in 
the regulation of cell metabolism, which in turn regulates the 
molecular mechanisms driving the Warburg effect in cancer 
cells, including glucose uptake, glycolysis, lipid metabolism 
and amino acid biogenesis (46). In addition, changes in the 
tumor environment at different pathological stages could alter 
the cell metabolism in NScLc (47). In conclusion, the present 
results indicate that dysregulation of fatty acid and glycan 
metabolism might be a critical change during the development 
of LUAd.

There were several limitations in this study. First, the 
current research only focused on LUAd, which means that the 
16-miRNA pathological staging signature is not suitable for 
other types of lung cancer, such as squamous cell carcinoma 
or small cell lung cancer. Second, this study is based on TcGA 
and GEO public datasets, which are retrospective; thus, the 
performance of the 16-miRNA signature needs to be validated 
in future clinical studies. Third, the present diagnostic model 

only used miRNA expression as single-omics data; thus, 
incorporating more molecular-omics data such as mRNA 
expression, cpG methylation and genomic information might 
help to improve the accuracy of the model.

In conclusion, the present study identified a novel 16‑miRNA 
signature based on a large sample size and multi-source data, 
which is promising and effective at predicting the pathological 
stages of patients with LUAd. In the authors' future studies, 
multi-omics information should be used to improve the model.
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Table VI. List of significant GO terms in the molecular function category.

No. GO Term (Molecular Function) P-value Genes miRNAs

1 Molecular function (GO:0003674) <1x10-325 1,491 6
2 Ion binding (GO:0043167) <1x10-325 1,414 7
3 Poly(A) RNA binding (GO:0044822) <1x10-325 242 7
4 RNA binding (GO:0003723) <1x10-325 297 8
5 Enzyme binding (GO:0019899) 3.22x10-15 337 8
6 Protein binding transcription factor activity (GO:0000988) 1.03x10-07 131 6
7 Enzyme regulator activity (GO:0030234) 0.02094084 169 2

GO, gene ontology; miRNA, microRNA.
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