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Spatially mapped single-cell chromatin accessibility
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High-throughput single-cell epigenomic assays can resolve cell type heterogeneity in com-

plex tissues, however, spatial orientation is lost. Here, we present single-cell combinatorial

indexing on Microbiopsies Assigned to Positions for the Assay for Transposase Accessible

Chromatin, or sciMAP-ATAC, as a method for highly scalable, spatially resolved, single-cell

profiling of chromatin states. sciMAP-ATAC produces data of equivalent quality to non-

spatial sci-ATAC and retains the positional information of each cell within a 214 micron cubic

region, with up to hundreds of tracked positions in a single experiment. We apply sciMAP-

ATAC to assess cortical lamination in the adult mouse primary somatosensory cortex and in

the human primary visual cortex, where we produce spatial trajectories and integrate our data

with non-spatial single-nucleus RNA and other chromatin accessibility single-cell datasets.

Finally, we characterize the spatially progressive nature of cerebral ischemic infarction in the

mouse brain using a model of transient middle cerebral artery occlusion.
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Heterogeneous cell types coordinate in complex networks to
generate emergent properties of tissues. These cell types are
not evenly dispersed across tissues, creating spatially

localized functionality. In many disease states, this becomes more
apparent, as the affected organ experiences spatially progressive
etiologies. For example, following cerebral ischemic injury, astro-
cytes, and microglia enter reactive states that are metered by
proximity to the site of infarction1, but this spatial information
has, so far, been difficult to assess. Single-cell technologies have
advanced cell type and state characterization efforts by enabling
the isolation of signals from individual cells within a sample, thus
resolving the heterogeneity of complex tissues. Applications of
single-cell technologies have identified novel cell types with char-
acteristic -omic signatures in the highly complex tissue of the
brain2,3. In the cerebral cortex, specifically, cells form an intricate
layered hierarchical structure comprised of both neuronal and glial
cell types that generate sensory, motor, and associational percepts4.
Layer-specific gene expression profiles of cortical neurons and
astrocytes have been characterized by spatial transcriptomic
approaches and immunohistochemical (IHC) staining; however,
spatially mapped epigenetic states of cortical cells have yet to be
directly assayed, without relying on the data integration5–7.

To address this challenge, several strategies have emerged to
assay transcription either directly in situ or in a regional manner.
The former techniques utilize fluorescence in situ hybridization
(FISH)8–10 or in situ RNA sequencing11,12. While powerful, FISH
methods require the use of a defined probe set and are limited to
the identification of DNA and RNA sequences. In contrast,
technologies that utilize array-based mRNA barcoding do not
require a defined set of genes and operate similarly to single-cell
RNA-seq methods13,14, thus allowing for whole transcriptome
profiling. Initial iterations of these platforms capture regional
transcription over multiple cells; however, higher resolution
variants may facilitate single-cell resolution. Unfortunately, these
platforms rely on the relatively easy access to mRNA molecules
that can be released from the cytoplasm and hybridized to bar-
coding probes, making the expansion into nuclear epigenetic
properties challenging. With the wealth of epigenetic information
that resides in the nucleus and the value it can add to char-
acterizing complex biological systems15–17, we sought to address
this challenge by harnessing the inherent throughput character-
istics of single-cell combinatorial indexing assays18,19.

Here, we present single-cell combinatorial indexing from
Microbiopsies with Assigned Positions for the Assay for Trans-
posase Accessible Chromatin (sciMAP-ATAC). sciMAP-ATAC
preserves the cellular localization within intact tissues and gen-
erates thousands of spatially resolved high-quality single-cell
ATAC-seq profiles. As with other “sci-” technologies, sciMAP-
ATAC does not require specialized equipment and scales non-
linearly, enabling high-throughput potential. Building upon
multiregional sampling strategies20,21, where several regions are
isolated, we reasoned that the sample multiplexing capabilities of
combinatorial indexing could be utilized to perform high-
throughput sampling at resolutions approaching those of array-
based spatial transcriptional profiling, all while retaining true
single-cell profiles. Unlike multiregional sampling, we perform
high-density microbiopsy sampling, ranging from 100 to 500 µm
in diameter, on cryosectioned tissue sections, between 100 and
300 µm in thickness, to produce up to hundreds of spatially
mapped punches of tissue, each producing a set of single-cell
chromatin accessibility profiles (Fig. 1a). We demonstrate the
utility of sciMAP-ATAC by profiling the murine and human
cortex, where distinct cell type compositions and chromatin
profiles are observed based on the spatial orientation of the
punches, and further extend the platform to characterize cerebral
ischemic injury in a mouse model system, where cell type

compositions and epigenetic states are metered by proximity to
the injury site (Supplementary Fig. 1).

Results
Single-cell combinatorial indexed ATAC-seq from microbiopsy
punches. Single-cell ATAC-seq requires the isolation and pro-
cessing of nuclei such that the nuclear scaffold remains intact to
facilitate library preparation via transposition in situ; it also
requires that the chromatin structure is maintained to produce a
chromatin accessibility signal. We and others have explored
methods for tissue preservation that are compatible with single-
cell ATAC-seq18,22; however, we sought to confirm that these
strategies are compatible with freezing techniques used for
cryosectioning and IHC staining of tissue. We tested our work-
flow on mouse whole brain samples by processing one hemi-
sphere using flash-freezing methods designed for tissue freezing
medium (TFM) embedding and cryosectioning (“Methods”), and
processing the paired hemisphere as fresh tissue. Our previously
established nonspatially resolved sci-ATAC-seq workflow22 was
performed on both hemispheres, including pooling post-
transposition for sorting, PCR amplification, and sequencing.
Flash-frozen and fresh nuclei produced nearly identical passing
reads per cell at the depth they were sequenced, along with
comparable fractions of reads present in a set of aggregate mouse
ATAC-seq peaks (FRiS; 0.93 and 0.91 for fresh and frozen,
respectively; Supplementary Fig. 2a, b).

We then explored techniques for cryosectioning flash-frozen
TFM-embedded tissue at thicknesses compatible with micro-
biopsy punching. Typically, cryosectioning is used to produce
sections for imaging applications, and thicker sectioning results in
tissue fracture. Drawing on past literature23, we carried out a
series of experiments testing several sectioning thicknesses and
punch diameters followed by nuclei isolation and debris-cleanup
on flash-frozen, embedded mouse brain microbiopsy punches.
We found that holding cryo-chamber and chuck temperatures at
−11 °C improves flexibility of the fragile flash-frozen tissue, while
maintaining adherence of embedded tissue to the sample mount,
thus allowing for uninterrupted sectioning of alternating
100–300 µm sections for punching, and paired 20 µm sections
for histology (Fig. 1a). This approach facilitates acquisition of
both sections for microbiopsy punching and paired sections
compatible with IHC staining and high-resolution microscopy.
Cryopreservation of 100–300 µm/20 µm slide decks at −80 °C
allows for long-term sample storage and the ability to test
hypotheses by staining after analysis of the spatially resolved
chromatin accessibility profiles; however, we note that sections
stored for ~3 months result in an overall loss of quality in
transcription start site (TSS) enrichment.

Microbiopsy punching of 100–300 µm sections performed
within a cooled chamber (“Methods”) allows for isolation of
microscopic pellets of nuclei that readily dissociate in nuclear
isolation buffer (NIB) after mechanical dissociation by trituration.
We observed minimal loss after pelleting and washing nuclei, an
important step for the removal of mitochondria, which can
deplete the available pool of transposase because of the high
transposition efficiency into mitochondrial DNA24. Nuclei
isolation, as measured by nuclei per cubic micron, was more
efficient for volumetrically smaller punches (Fig. 1b). This implies
that smaller punches dissociate more readily because of a higher
surface area to volume ratio, thus higher resolution punches yield
more nuclei, respective of volume.

sciMAP-ATAC performance and quality assessment. We
applied these techniques to perform sciMAP-ATAC, where
we tested four methods of punch dissociation (“Methods”). We
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utilized a workflow similar to our established sci-ATAC-seq
method, with each indexed transposition reaction performed on
an individual punch, for a total of 384 transposition reactions,
performed in four 96-well plates. Reactions were pooled and
indexed nuclei were distributed via fluorescence-assisted nuclei
sorting (FANS) to wells of four new 96-well plates for indexed
real-time PCR, followed by pooling and sequencing. The resulting
library produced 8011 cells passing filters, for an estimated
doublet rate of 2.5% based on the total indexing space of 384 ×
384 (“Methods”), and a mean of 12,052 passing reads per cell
(unique reads, aligned to autosomes or X chromosome at q10 or
higher; Supplementary Fig. 2a) at the depth sequenced and
potential to reach 23,830 mean passing reads per cell with addi-
tional sequencing (“Methods”). This is comparable to the mean
passing reads per cell from the whole brain sci-ATAC-seq library
at 11,987 (projected mean passing reads of 24,672 and 32,029 for
fresh and frozen preparations, respectively; Fig. 1c and Supple-
mentary Fig. 2a). We observed a mean of 112 passing cells per
punch. This could be increased if additional PCR plates were
sorted, as the pool of indexed nuclei were not depleted during
FANS. A comparison between the four dissociation methods
enabled us to identify an optimal means of punch processing that
produced the highest cell counts per punch with high-quality cell
profiles (Methods; Supplementary Figs. 1b and 2a), which was
used for all subsequent experiments. Across all sciMAP-ATAC
datasets produced in this study on healthy mouse brain tissue, we

achieve a TSS enrichment of 14.73, within the “acceptable” range
prescribed by ENCODE (10–15, mm10 RefSeq annotation) and
just shy of “ideal” (>15). This is substantially below that of our
sci-ATAC-seq preparation, with a TSS enrichment of 31.25;
however, we note that an enrichment of more than double the
“ideal” standard is exceptionally high (“Methods”, Fig. 1d). In line
with the lower TSS enrichment in sciMAP-ATAC, we also
observed a reduction in the fraction of reads present in a mouse
reference peak set (FRiS; “Methods”), with a mean ranging from
0.83 to 0.87, compared to 0.91 and 0.93 for sci-ATAC-seq
(Supplementary Fig. 2b). Finally, we performed an integrated
analysis across these preparations that revealed negligible batch
effects (Fig. 1e and Supplementary Fig. 3a, b). We observed a
single exception in the form of a population of cells present only
in the nonspatial dataset which, upon inspection, were deter-
mined to be spinal cord derived interneurons (Supplementary
Fig. 3c, d) and not present in coronal sections that were used in
spatial experiments. Taken together, with improvements and
validation on sample preparation, cryosectioning, nuclei isolation,
and the general sci-ATAC-seq protocol, we generated a robust
method to obtain the spatial information that we sought to test in
a complex system.

sciMAP-ATAC in the adult mouse somatosensory cortex. To
establish the ability of sciMAP-ATAC to characterize single cells
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within a spatially organized tissue, we applied the technique to
resolve murine cortical lamination within the primary somato-
sensory cortex (SSp). We harvested intact whole brain tissue from
three wild-type C57/Bl6J adult male mice, flash-froze the tissue,
and prepared whole brain slide decks of 200 µm microbiopsy
slides each interspersed with three 20 µm histological slides. To
orient sections to intact mouse brain, and to establish the quality
of histological section prepared according to the sciMAP-ATAC
protocol, we stained nuclei using DAPI and IHC stained for
SATB2 to resolve cortical layers (“Methods”, Fig. 2a). DAPI
imaging was then matched to the adult mouse Allen Brain
Reference Atlas25, which enabled determination of the SSp
location within adjacent sections for punch acquisition. SATB2
imaging demonstrated the quality of histological sections, across
diverse fixation protocols (4% PFA postfixation for 10 min and
70% ethanol postfixation for 30 s) and generated a high signal-to-
noise ratio canonical for SATB2 IHC staining26 (Fig. 2b).
Microbiopsy punches were then taken from three regions: (i)
outer (L2–4) SSp cortical layers, (ii) inner (L5 and 6) SSp cortical
layers, and (iii) throughout the striatum. The striatum is rich in
glia and is absent of cortical glutamatergic neurons and cortical
lamination. Therefore, the striatum punches served as a negative
control for these features and also bolstered single-cell glial cell
type identification. In total, 96 individual tissue punches were
obtained, split evenly between the three categories over eight
coronal sections spanning the SSp (Fig. 2a). After nuclei isolation,
each well of the plate containing a single punch was split across
four wells, resulting in four 96-well plates for subsequent indexed
transposition, providing four tagmentation technical replicates
for each punch. Posttransposition, nuclei were pooled and

distributed to two 96-well PCR plates for the second tier of
indexing and then sequenced (“Methods”).

We processed the raw sequence data (“Methods”), which
resulted in 7779 cells passing quality filters (estimated doublet rate
of 4.9%; “Methods”). Our mean passing reads per cell was 17,388,
with a projected total passing mean reads per cell of 37,079
(“Methods”), a TSS enrichment ranging from 13.74 to 15.26, and
nucleosomal banding present in the library insert size distribution
(Supplementary Fig. 2a–d). A median of 81 single-cell profiles was
obtained per punch, with little bias for punch target region or
section (Supplementary Fig. 2d). Subsequent peak calling, topic
modeling, and dimensionality reduction (“Methods”) revealed cell
groupings that were either mixed between the three regional
categories or highly enriched for cells derived from the cortex,
which was further divided by outer versus inner punch location
(Fig. 2c, Supplementary Fig. 3e, f, and Supplementary Data 2).
Overlay of spatial data on the UMAP projection fits with our
expectation that glutamatergic (excitatory) neurons are cortex
exclusive, displaying an absence of punch-to-punch cross talk or
contamination. In addition, these cells were integrated with prior
sciMAP-ATAC, and sci-ATAC-seq experiments where excitatory
neuron clusters were also dominated by cortex-derived punches,
with a shared spatial bias between upper and lower punch
positions. This demonstrates that spatial datasets can be integrated
with nonspatial datasets to provide additional spatial information
to those datasets, using label transfer or other analysis techniques
(Supplementary Fig. 3a, b).

We identified eleven clusters over eight broad cell type groups
corresponding to glutamatergic neurons, GABAergic (inhibitory)
neurons, GABAergic medium spiny neurons (MSNs; also referred
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to as spiny projection neurons (SPNs)), oligodendrocyte precursor
cells (OPCs), newly formed or intermediate oligodendrocytes,
mature oligodendrocytes, astrocytes, microglia, and endothelial
cells based on the chromatin accessibility signature of regulatory
elements proximal to marker genes (“Methods”; Fig. 2d, e and
Supplementary Data 1). GABAergic neurons subdivide into non-
layer-specific cortical GABAergic neurons and striatum-derived
MSNs. In contrast, glutamatergic neurons separate along the
dorsal–ventral axis, as determined by punch position. This
recapitulates known neuronal cell state biology, where glutama-
tergic pyramidal neurons express cortical layer(s)-specific markers
that define the spatially defined cortical layers. Within the SSp-
derived cells, we observed 66.6%, 62.4%, and 49.9% of cells
corresponding to neurons in the inner cortex, outer cortex, and
striatum, respectively. These equate to glia to neuron ratios
(GNRs) of 0.50, 0.60, and 1.00 from inner cortex, outer cortex, and
striatum, respectively, which correspond to previously reported
mouse cerebral cortex and striatum GNRs of 0.66 and 0.97,
respectively27. In addition to coarse cell type characterization
across the major punch categories, we determined cell type
composition for each individual spatially resolved punch (Fig. 2g).
For cortical punches, little variance was observed within the outer
and inner punch categories; however, we did observe increased
variability in the proportion of MSNs in the striatum punches,
ranging between 2.78% and 72.64%, suggesting a non-even

distribution of these cells, which is confirmed by MSN cell type
marker, Drd1, in situ hybridization in adult C57BL/6J striatum
(Allen Mouse Brain Atlas)25.

Analysis of individual punch sciMAP-ATAC profiles and spa-
tial comparisons. We next characterized the single-cell ATAC
profiles produced from a single tissue punch. We isolated cell
profiles that were from punch F5 (n= 90 cells), an inner cortex
punch, and performed the same analysis as above using the set of
peaks called on the full dataset. This produced a set of topic
weights that contained a clear structure and were associated with
specific cell types (Fig. 3a). This was also clear in the UMAP
projection, with three primary clusters of cells identified (Fig. 3b).
Two of these groups were dominated by one cell type, including
glutamatergic neurons and GABAergic neurons, with the third
group comprised predominantly of glial cell types.

We then took the examination of this individual punch further
by performing all aspects of the analysis, including peak calling,
on only the cell profiles present in punch F5. From those 90 cells,
we were able to call 8460 peaks which were sufficient to perform
topic modeling and UMAP visualization, and identify two distinct
clusters: one comprised of glutamatergic neurons, and the second
containing all other cell types, based on the cell type identities
established in the analysis of the full dataset (Fig. 3c, d). A
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comparison of global motif enrichment between the two clusters
revealed elevated NEUROD6 and TBR1, and depleted SOX9
motif accessibility in the cluster comprised of glutamatergic
neurons, suggesting very coarse cell type class assignment can be
performed on data from a single punch analyzed in isolation
(Fig. 3e). Further resolution of cell types on such a small number
of cells, especially without leveraging larger peak sets, is not likely
feasible simply due to the low abundance of certain cell types—for
example, there was only one endothelial cell present in punch F5.
However, it is unlikely that individual punches would be profiled
alone in an experiment and the throughput provided in sciMAP-
ATAC enables identification of low-abundance cell types in the
aggregate dataset, which can be used when performing analysis
on individual punch positions.

Finally, we explored whether we could identify and character-
ize spatially distinct chromatin properties from a single cell type
present within two adjacent punches. We isolated cells that were
identified as glutamatergic neurons in two punches, C5 (inner
cortex) and B5 (outer cortex), that were immediately adjacent
with 83 and 65 total cells, and 42 and 35 glutamatergic cells,
respectively. Similar to the single punch analysis, we produced a
counts matrix including only these cells and used the full set of
peaks to perform topic analysis and visualization using UMAP,
which showed clear separation between the two locations (Fig. 3f).
We then assessed global motif accessibility, which revealed clear
enrichment for motifs associated with upper or lower cortical
layers, including RORB, enriched in the outer cortex, and TBR1,
enriched in the inner cortex (Fig. 3g). To systematically assess this
spatial TF motif enrichment (TFME), we applied this same
analysis to the glutamatergic cell populations identified in every
pair of inner and outer cortical punches. This produced a
consistent pattern with very few punch pairs deviating from the
expected enrichment pattern (Fig. 3h).

Spatial trajectories of single-cell ATAC-seq in the human
cortex. With the ability to probe spatial single-cell chromatin
accessibility established in the mouse cortical lamination experi-
ment, we next deployed sciMAP-ATAC on human brain tissue to
profile lamination in the adult primary visual cortex (VISp) using
an equivalent voxel-diameter resolution of 215 cubic microns.
Samples of human VISp tissue were obtained from an adult
(60-year male) with no known neurodegenerative disorders at
5.5 hours postmortem. Samples were oriented and flash-frozen in
TFM prior to storage at −80 °C. The sample was cryosectioned
using the same alternating thick (200 μm) and thin (20 μm)
pattern, as previously described. We designed and implemented a
250 μm diameter punch schematic across three adjacent 200 μm
sections to produce 21 distinct trajectories comprised of eight
punches spanning the cortex, with an additional 20 punches
distributed in the subcortical white matter for a total of 188 spa-
tially mapped tissue punches (Fig. 4a, b). In total, 4547 cells
passed quality filters with a mean of 30,212 reads per cell (esti-
mated mean of 98,274 passing reads per cell with additional
sequencing; “Methods”, Supplementary Figs. 2a and 4a), a mean
TSS enrichment of 15.80—more than twice the “ideal” ENCODE
standard for bulk ATAC-seq datasets (>7, GRCh38 RefSeq
annotation), a FRiS of 0.45 using a human reference dataset28,
and prominent nucleosomal banding (“Methods”, Supplementary
Fig. 2b, c, e).

Cell profiles were generated as described in prior experiments,
which resulted in six distinct clusters representing the major cell
types (Fig. 4c, d). Similar to the murine cortex, glutamatergic
neurons exhibited the most distinct spatial patterning with a clear
gradient spanning cortical trajectories (Fig. 4a–c), which was also
determined to be the most significant (Moran’s I test Bonferroni
corrected p value= 0.87 × 10−4, “Methods”, Supplementary
Table 1). Further subclustering of GABAergic interneurons revealed
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minimal spatial bias across four distinct subtypes comprised of two
MGE-derived and two CGE-derived clusters (Supplementary
Fig. 4b–e). Each of the 21 individual trajectories through the cortex
produced similar distributions of cells through UMAP projections
with a lack of glutamatergic neurons present in the punches
obtained from subcortical white matter (Supplementary Data 2).
Our astrocyte to neuron ratio (0.15:1) was low, yet comparable to
previously published snRNA-seq of the human VISp (0.12:1)29.
Average cell type composition along these trajectories revealed the
expected pattern of an increased proportion of oligodendrocytes
and decreased glutamatergic neuron abundance, as the trajectory
approached or entered the subcortical white matter region (Fig. 4e).
Individual punches largely matched the corresponding average
position profile (1–8, WM), with higher variability at the first punch
where some trajectories overlapped the pial surface of the cortex
(Fig. 4f).

Integration of sciMAP-ATAC with scTHS-seq and snRNA-seq
reveals epigenetic spatial patterning concordant with tran-
scriptional neuronal subtypes. Previously, Lake et al. produced
single-cell transposase hypersensitivity (scTHS-seq, an assay for
chromatin accessibility similar to ATAC-seq) and single-nucleus
RNA-seq from the human VISp29. We integrated our sciMAP-

ATAC dataset with each of these using Seurat30 and visualized the
joint UMAP projections with cell type information, along with the
positional breakdown of glutamatergic neurons (Fig. 5a, b). The
joint manifold for each integration largely agreed, with the
exception of a population of cells in our sciMAP-ATAC dataset
that did not co-embed with any cell types present in the snRNA-
seq dataset. These cells represent all of the cell types called within
the sciMAP-ATAC dataset, and cluster clearly with their cell types
in the sciMAP-ATAC analysis on its own, suggesting that it may
be an effect of the gene activity score intermediate that is used for
co-embedding with ATAC-based data (“Methods”).

To directly assess the performance of the dataset integration,
we used the joint manifold to perform cell type label transfer,
effectively using one assay’s cell type identities to predict the
other’s, and compared the overlap in the form of a confusion
matrix. For the scTHS-seq integration, the top concordance was
between the two corresponding cell types in nearly every case,
including across all eight of the spatial glutamatergic neuron cell
sets within the sciMAP-ATAC dataset that all corresponded to
the single glutamatergic cell type in the scTHS-seq dataset
(Fig. 5c). One exception was the association of a subset of
microglia within the sciMAP-ATAC dataset with the endothelial
cell population identified in the scTHS-seq dataset, which is a
population we did not define. This suggests that a portion of our
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cells identified as microglia are likely endothelial cells. Integration
with snRNA-seq data also produced concordance for the majority
of cell types (Fig. 5d), with the exception of a group of cells
spanning all cell types that did not co-embed as cleanly, and thus
project into the center of the UMAP. The snRNA-seq data
provided in Lake et al. includes a more granular breakdown of
glutamatergic neurons when compared to the single classification
provided for scTHS-seq cells. Within the confusion matrix where
cell types were predicted across modalities, we observed a clear
spatial progression that corresponded to the subtypes of
glutamatergic neurons identified by snRNA-seq, which Lake
et al. previously identified as being enriched for layer-specific
transcripts. The concordance between these subtypes and our
spatial assignments confirms that sciMAP-ATAC spatially
registers biological features of single cells from structured tissue.

Spatial excitatory neuron epigenetic patterning at the indivi-
dual trajectory level. Using our cell type assignments, we isolated
all human VISp glutamatergic neurons and split them by position
along their respective trajectories (Fig. 6a and Supplementary
Data 3). We examined ATAC signal at layer-specific marker
genes broken down by each spatially distinct category, which
revealed increased accessibility at genes associated with outer
cortical layers within the outer cortical punches and vice versa
(Fig. 6b). We next selected all cells from the centermost trajectory
of section 1 (T1.4, n= 358 cells) and performed an isolated

analysis using peaks called on the full dataset for topic analysis,
cluster identification, and visualization with UMAP (Fig. 6c and
Supplementary Fig. 4f, i). Clear separation was observed between
major cell types across six clusters, with two distinct clusters of
oligodendrocytes, two clusters of glutamatergic neurons, one
cluster comprised of GABAergic neurons, and finally, a cluster
made up of all other cell types (astrocytes, endothelial, and
OPCs). When performing the analysis in isolation using only
T1.4 cells for peak calling, we identified 16,493 peaks that were
used for subsequent analysis to produce four clusters with notably
less cell type separation than when leveraging the set of peaks
from the full dataset (Supplementary Fig. 4j, l). The first cluster
was comprised of both glutamatergic and GABAergic neurons,
the second was primarily oligodendrocytes, the third included
oligodendrocytes, as well as the majority of cells from all other
nonneuronal cell types, with the fourth cluster comprised of only
a handful of cells with no dominant cell type. In line with the
previous assessment of a single punch from the mouse SSp, cell
type separation can be distinct for major cell types when lever-
aging larger peak sets than the limited number that can be called
on small cell count datasets. This supports the assertion that
computational improvements to enable peak calling on low cell
count datasets can substantially boost analytical power31.

Finally, we isolated only cells determined to be glutamatergic
neurons based on the full dataset cell type assignment within
Trajectory 1.4 (n= 121 cells). We assessed these cells again using
the full peak set through the same analysis workflow (“Methods”).
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Fig. 6 sciMAP-ATAC shows spatial epigenetic patterns of glutamatergic neurons. a Isolation and UMAP visualization of human VISp glutamatergic
neurons from all cells (top right), colored by punch position. An interactive, three-dimensional UMAP embedding is available as Supplementary Data 4.
b ATAC-seq profiles for glutamatergic neurons along trajectory positions for layer (L)-specific marker genes CALB1 (layers 2 and 3), LMO4 (layer 5), and
CTGF (layer 6b); colored by punch position as in a. c Cells from section 1, Trajectory 4 (T1.4, top) are shown in color on the UMAP of all cells, with other
cells shown in gray (bottom); colored by position as in a. d UMAP of glutamatergic neurons from Trajectory 1.4 after topic modeling on the isolated cells;
colored by position along the trajectory as in a. e DNA-binding motif enrichment for layer-specific factors for Trajectory 1.4 shown in d, with cells split by
their positions along the trajectory. Source data are provided as a Source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21515-7

8 NATURE COMMUNICATIONS |         (2021) 12:1274 | https://doi.org/10.1038/s41467-021-21515-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


As in the UMAP projections on cells from the full experiment,
these cells were positioned along a gradient that reflected their
position along the trajectory (Fig. 6d). We then assessed the
global accessibility of DNA-binding motifs that captured spatially
distinct enrichments through the trajectory reflecting the
expected pattern of transcription factor (TF) activities through
cortical layers (Fig. 6e). This included enrichment for FOXP2
motif accessibility in the outer cortical layers, slightly increased
accessibility for NEUROD6 toward the inner cortex, and
increased the accessibility for RORB motifs in punches 4–6 along
the trajectory, corresponding to canonical cortical layer 4 RORB
expression. Taken together, sciMAP-ATAC is capable of produ-
cing high-quality single-cell ATAC-seq profiles from postmortem
human tissue with a spatial resolution capable of identifying the
major components of cortical lamination, with the capability to
characterize a single spatial trajectory through the cortex.

sciMAP-ATAC in a mouse model of cerebral ischemia. Cerebral
ischemia produces a complex spatially progressive phenotype
with extensive tissue alterations and shifts in cell type abundance
and epigenetic states32–37. Cerebral ischemic infarction induces
gliosis, a process in which glia in the surrounding tissue enter
reactive states that are potentially aimed at restoring tissue
homeostatis, but can involve the loss of normal function (or
adoption of a damaging function) and form a glial scar. Many
components involved in the ischemic cascade are well studied,
including factors that promote postischemic inflammation (e.g.,
IRF1, NF-kB, ATF2, STAT3, EGR1, and CEBPB), and prevent
postischemic inflammation and neuronal damage (e.g., HIF-1,

CREB, C-FOS, PPARα, PPARγ, and P53)38. Reactive gliosis can
be characterized by increased GFAP expression in astrocytes and
increased IBA1 in microglia. Myelination depletion is a hallmark
of cerebral ischemic injury, due to acute oligodendrocyte cell
death and impaired OPC differentiation39,40. Far less is known,
however, about glial cell state transitions in the area surrounding
ischemic infarction in the brain. We reasoned that our sciMAP-
ATAC technology could reveal, with cell type and spatial speci-
ficity, the epigenetic alterations that occur to accompany and/or
drive the ischemic cascade and postischemic pathology.

To accomplish this, we used a transient middle cerebral artery
occlusion (MCAO) mouse model of ischemic injury with
reperfusion (“Methods”; Fig. 7a). Each ischemic (n= 2 animals)
and naive (n= 3) brain was flash-frozen 3 days after surgery,
embedded in TFM, sectioned, alternating between 200 µm for
sciMAP-ATAC and 20 µm for IHC for IBA1 (microglia), GFAP
(astrocytes, Fig. 7b), and counterstained using DAPI. We used
these images to define the infarct area by absence of GFAP-
positive astrocytes, while being surrounded by reactive astrocytes
exhibiting increased GFAP signal at the infarct border (Supple-
mentary Fig. 5a). We next defined two axes for targeting the
sciMAP-ATAC punches, the first progressing from the pial
surface of the cortex to the striatum, all within the infarct core
(punch position axis 1–4), and the second progressing from the
infarct core toward the infarct border (punch position axis 5–8).
GFAP immunolabeling was absent in the infarct core (punch
positions 5–7) but increased at the infarct border in punch
position 8, recapitulating known features of glial scar formation
surrounding the infarct area. We then performed sciMAP-ATAC
on the 200 µm sections along each axis to produce 5081 cells with
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a mean passing reads per cell of 33,832 (estimated mean passing
reads per cell of 225,670 with further sequencing) and a mean of
26.6 high-quality cell profiles per punch (Supplementary Figs. 2a,
f and 5b). TSS enrichment for this preparation was notably lower
than previous preparations ranging from 5.05 (stroke hemi-
sphere) to 7.50 (naive brain), which we suspect is due to several
factors (Supplementarya, Fig. 2e). The first is that the stroke
hemisphere contained many dead or dying cells that exhibit
reduced ATAC signal, which we describe in more detail below,
and the second is that these sections were stored for >3 months
prior to sciMAP-ATAC processing, suggesting that long-term
storage of sections may result in a reduction in data quality.
Despite the reduced TSS enrichment and comparably lower FRiS
(0.79–0.82; Supplementary Fig. 2b), we called 140,772 accessible
genomic loci that were used in subsequent analysis.

We performed topic modeling, followed by clustering, cell type
identification, and visualization of the cell × topic matrix
(Fig. 7c–e), which revealed comparable cell type proportions
across biological samples with exceptions for microglia/macro-
phages and a chromatin-disrupted cluster that were highly
enriched within the infarct. We profiled cell type proportions
along both of the axes (Supplementary Fig. 5c); however, the pial
to striatum axis (punch positions 1–4) in stroke hemisphere
samples is completely within the infarct core. In contrast, the
infarct core-to-border axis (punch positions 5–8) progresses from
the center of the infarct to the glial scar along the infarct border,
capturing a transition zone of reactive gliosis, and is the spatial
trajectory that we focus on in our subsequent analysis.

Along this progression, we found that the stroke hemisphere
had diminished neural cell types (depletion of glutamatergic and
GABAergic neurons, oligodendrocytes, and astrocytes), as well as
a progressive increase in cells within a cluster exhibiting globally
disrupted chromatin structure up to punch position 7 and a drop
at punch position 8 upon entering the infarct border (Supple-
mentary Fig. 5d). This state is predominantly characterized by
globally increased chromatin accessibility, with a decrease in TSS
enrichment, a decrease in FRiS, and an increase in reads falling
within distal intergenic regions, which is likely caused by cell

death (Supplementary Fig. 5e, f). In addition to the global effects
on chromatin structure, the chromatin-disrupted cell population
also showed strong enrichment in one of the topics (Topic 30;
Fig. 7e, left). A gene ontology (GO) enrichment analysis of the
peaks that define topic 30 revealed that cells within the ischemic
hemisphere undergo a chromatin state shift as a result of the
ischemic cascade, which leads to enrichment for processes
canonically associated with ischemia (Fig. 7e, right). Most
notably, positive regulation of synaptic membrane adhesion,
synaptic depression, assembly, transmission, and membrane
potential were all enriched in ischemia-derived cells, indicating
that CNS synaptogenesis is upregulated in a subset of cells 3 days
post ischemia41,42. In addition, while the percentage of microglia
increased in the stroke condition (13.2%) as compared to
contralateral (6.7%) and naive (4.3%), depletion of immune
response processes (B-cell-mediated immunity, humoral immune
response mediated by circulating immunoglobulins) were seen in
ischemia-derived cells. This recapitulates previous findings that
acute ischemic immune response is followed by poststroke
immunodepression and dysregulation43,44.

Spatially progressive chromatin features in cerebral ischemia.
To directly characterize the relationship between space and epi-
genetic state in cerebral ischemia, we assessed TF DNA-binding
motif enrichments for each cell and performed a regression for all
cells across the infarct core-to-border axis (punch positions 5–8)
in the stroke and contralateral hemispheres. We used the differ-
ence between linear model coefficients for paired affected (stroke)
and unaffected (contralateral) hemispheres along with the sig-
nificance of the hemisphere motif enrichment differences to
identify TFs that undergo spatially progressive regulatory changes
(“Methods”). In total, we identified 95 TF motifs that were sig-
nificantly altered with a spatial component, many of which have
been previously reported as key factors identified in cerebral
ischemia (Fig. 8a, b). KLF9, a member of the Kruppel-like factor
family, demonstrated the most significant increase in accessibility
with proximity to the peri-infarct area. The 17 KLF family TFs are
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key factors in neuronal development, plasticity, and axon
regeneration and are ubiquitously expressed in the CNS. Several
KLF family members, namely KLF2, 4, 5, 6, and 11, have been
specifically linked to cerebral ischemia pathogenesis45,46. Notably,
KLF2 and KLF11 have been shown to contribute to the protection
of the blood–brain barrier in cerebral ischemia47–49. However, as
DNA-binding motifs within the KLF family are similar, members
of the KLF family other than KLF9 may be driving this motif
accessibility change. Finally, we assessed the accessibility of
individual elements and identified 73 accessible chromatin sites
that varied significantly through the 5–8 axis of spatial progres-
sion (“Methods”; Supplementary Fig. 5g).

We next explored the cell type specificity of the KLF9 motif
accessibility changes (Fig. 8c). In the stroke hemisphere
chromatin-disrupted cell subset, we observed a reduction in
KLF9 motif accessibility in all punch positions except punch
position 8, at the infarct border, with all cell types other than
microglia showing a reduction in accessibility at the center of the
infarct core (punch position 5). Uniquely, microglia are largely
unaffected and have comparable KLF9 TF-binding motif
enrichment at the infarct core in comparison to the contralateral
hemisphere. In addition to KLF9, we also identified STAT3 as
varying significantly over space (Supplementary Fig. 5h), which
was also an enriched GO term in stroke cells (Fig. 7e). STAT3 has
been extensively studied in the JAK/STAT3 pathway, which is a
key regulator of apoptosis in cerebral ischemia injuries with
reperfusion50, as well as an initiator of reactive astrogliosis under
diverse conditions51. Accordingly, we found that STAT3 was
largely absent from astrocytes in punches positions 5–7, but was
enriched in the reactive astrocytes at the infarct border zone at
punch position 8. In contrast, we find that RE1-silencing factor
(REST) is significantly elevated at the ischemic core and decreases
with proximity to the infarct border. Accordingly, REST has been
shown to form a histone deacetylase complex that is a director
repressor of SP1 in cerebral ischemia, a TF we identify as varying
significantly over space, in the opposite direction of REST37

(Supplementary Fig. 5i).
Finally, we sought to characterize chromatin accessibility

profiles of cells isolated from a single punch at the glial scar
(Fig. 8d). To do this, we isolated two punches (punch 40 and
punch 48), both originating from the same section (15.SB2), from
punch position 8 of the stroke (punch 40) and contralateral
hemisphere (punch 48). We processed the cells in isolation as
described in prior individual punch analyses, using the peak set
from the full experiment. We performed DNA-binding motif
enrichment analysis across all cells52 and then performed cell-
type-specific comparisons for a glial (oligodendrocyte) and
neuronal (glutamatergic neuron) cell type. In oligodendrocytes,
56 TF motifs were significantly different between the stroke and
contralateral hemisphere, many of which (44; 78.6%) corre-
sponded to higher enrichment in stroke as compared to
contralateral. Specifically, we found BCL11B (CTIP2), a negative
regulator of glial progenitor cell differentiation to be significantly
increased at the glial scar (Fig. 8d, left)53. Conversely, we found
RXRG, a positive regulator of OPC differentiation, and
remyelination, to be significantly depleted (Fig. 8d, left)54.
Together these findings indicate impaired ability of OPCs to
differentiate into mature oligodendrocytes at the glial scar. In
glutamatergic neurons, we found neuron-associated TFs such as
NEUROD2 to be significantly depleted in the stroke hemisphere,
which corresponds with decreased neuronal cell types at punch
position 8 in the stroke hemisphere. In accordance with our
infarct core-to-border axis (punch positions 5–8) analysis, we
found that seven of the KLF family of TFs (KLF2–4, 6–8, and 12)
were significantly depleted in glutamatergic neurons at the glial
scar in the stroke hemisphere (Fig. 8d, right; KLF4 and

KLF7 shown). Interestingly, previous studies have found that in
response to cerebral ischemia, KLF4, 5, and 6 are induced in
astrocytes, while KLF2 is depleted in endothelia and induced in
microglia55. With these data, we identify that motif enrichment
for many members of the KLF family not only significantly vary
over space across all cell types, we also indicate novel depletion of
multiple KLFs specifically in glutamatergic neurons at the
ischemic glial scar.

Discussion
sciMAP-ATAC provides a low-cost, highly scalable, hypothesis-
independent approach to acquiring spatially resolved epigenomic
single-cell data with the use of immediately available commercial
tools. In addition, sciMAP-ATAC is translatable to any tissue,
culture, or model system compatible with cryosectioning. While
many methods rely on signal-to-noise optical detection of densely
packed molecules and computationally intensive spatial recon-
struction, sciMAP-ATAC encodes nuclear localization directly
into each library molecule, allowing for rapid subsetting of cells by
localization and mapping of cells across vector space in 3D
between adjacent sections. We demonstrate the use of sciMAP-
ATAC to profile the murine somatosensory cortex, as well as
multi-punch trajectories through the human primary visual cor-
tex, recapitulating known marker gene progression through cor-
tical layering, and cell type composition based on the category and
positioning of spatially registered microbiopsy punches. We fur-
ther show the utility of sciMAP-ATAC to resolve the progressive
epigenomic changes in a cerebral ischemia model system, reveal-
ing distinct trends in chromatin accessibility, cell type composi-
tion, and cell states along the axes of tissue damage and altered
morphology. Application of sciMAP-ATAC to other highly
structured systems or tissues with a gradient of disease phenotype
will be particularly valuable areas for this technology. The primary
limitation of sciMAP-ATAC is that punches are currently per-
formed manually and registered with adjacent imaged sections
post-punching. This limits the precision of desired punch posi-
tions, as well as throughput; however, automated processing of
tissue sections using robotics56, where punch patterns are
designed on adjacent imaged sections and registered to the target
section will enable high precision, as well as increased throughput
into the range of thousands. Furthermore, as spatial tran-
scriptomic technologies evolve, they may enable the acquisition of
chromatin accessibility information; however, substantial technical
hurdles must first be overcome, and profiles produced would be in
aggregate over the feature size and not necessarily single cell.
Finally, here we applied the sciMAP strategy to assess chromatin
accessibility; however, it can, in theory, be applied to any single-
cell combinatorial indexing technique to enable spatially registered
single-cell genome19, transcriptome57, chromatin folding58,
methylation59, or multi-omic60–62 assays.

Methods
Mouse brain and human VISp cortex sample preparation. A step-by-step
protocol describing the sciMAP-ATAC methods can be found at Protocols.io. All
animal studies were approved by the Oregon Health and Science University
Institutional Animal Care and Use Committee. Male C57Bl/6 J mice aged 8 weeks
were purchased from Jackson Laboratories for the mouse whole brain sciATAC,
punch dissociation development sciMAP-ATAC, and mouse SSp cortex sciMAP-
ATAC experiments. All mouse cages were kept on a 12 h light/dark cycle at a
temperature of 70 °F and within a humidity range of 30–70%. Animals were
sacrificed by carbon dioxide primary euthanasia and cervical dislocation secondary
euthanasia. Animals were immediately decapitated, intact brain tissue was har-
vested, washed in ice-cold phosphate-buffered saline (PBS; pH 7.4), submerged in
TFM (Cat. TFM-C) within a disposable embedding mold (Cat. EMS 70183).
Human VISp cortex samples were provided by the Oregon Brain Bank 5.5 h
postmortem and were submerged in TFM. The use of human samples in this study
falls under the NIH defined Exempt Human Subjects Research, under Exemption 4
(https://humansubjects.nih.gov/). Embedded mouse whole brain and human VISp
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cortex samples were flash-frozen in liquid nitrogen cooled isopentane by lowering
the sample into the isopentane bath without submerging within 5 min of embed-
ding. Samples were immediately transferred to dry ice, paraffin wrapped to delay
sample dehydration, and stored in an airtight container at −80 °C.

Mouse cerebral ischemia model. Two C57BL/6 9-week-old (P63) female mice
were placed under isoflurane anesthesia (5% induction, 1.5% maintenance) in 30%
oxygen-enriched air. Body temperature was maintained at 37 ± 0.5 °C throughout
the procedure. Middle cerebral artery (MCA) occlusion was performed using a
previously described method by Longa et al. with slight modifications63. Briefly, a
laser Doppler flowmeter (Moore Instruments) probe was affixed over the right
parietal bone overlying the MCA territory to monitor changes in cerebral blood
flow. A midline incision was made, the right common carotid artery (RCCA)
bifurcation was exposed by gentle dissection, and the external carotid artery (ECA)
was permanently ligated distal to the occipital artery using electrocautery, such that
a short ECA stump remained attached to the bifurcation. The RCCA and internal
carotid arteries (ICA) were temporarily closed with reversible slip knots before an
arteriotomy was made in the ECA stump. A silicone-coated 6.0 nylon monofila-
ment was inserted into the ICA via the arteriotomy and gently advanced to the
ICA/MCA bifurcation to occlude CBF to the MCA territory, and confirmed by a
laser Doppler signal drop of <30% of baseline. After 60 min occlusion, the filament
was gently retracted, the ECA permanently ligated, the slip knot of the common
carotid artery removed, and the incision sites sutured closed. The mice exposed to
MCAO were euthanized 3 days after the MCAO procedure, intact brain tissue
harvested, washed in ice-cold PBS (pH 7.4), submerged in TFM, and flash-frozen in
liquid nitrogen cooled isopentane. Samples were paraffin wrapped and stored at
−80 °C and intact embedded whole mouse brains were sectioned at the time of
experiment.

Sample sectioning. All embedded samples were sectioned in a cryostat (Leica
CM3050) at −11 °C chuck and chamber temperature and collected on Superfrost
Plus microscope slides (Fisherbrand, Cat. 22-037-246). Sectioning was performed
in sets of: one section at 100–300 µm paired with three sections at 20 µm, to
generate sets of four slides consisting of microbiopsy (1) and histology (3) sections
at one section per slide. Slide boxes were sealed with paraffin to prevent sample
dehydration and stored long term at −80 °C.

Mouse whole brain coronal section immunohistochemistry and mapping. To
determine the mouse brain atlas coordinate of each coronal microbiopsy section,
the histological section immediately adjacent to each microbiopsy section were
fixed in 4% PFA for 10 min and counterstained using 300 µM DAPI (Thermo
Fisher, Cat. D1306) in 1× (pH 7.4) PBS (Thermo Fisher, Cat. 10010023) for 5 min.
Slides were rinsed with 1× PBS and mounted in Fluoromount-G (Thermo Fisher,
Cat. 00-4958-02). Slides stained for Satb2 were equilibrated to room temperature
and circumscribed with a hydrophobic barrier pen (Invignome, Cat. GPF-VPSA-
V). Sections were washed twice with PBS for 10 min then blocked for 1 h at room
temperature in permeabilization/blocking buffer comprised of PBS with 10%
normal goat serum (NGS, Jackson ImmunoResearch, Cat. 005-000-121), 1% bovine
serum albumin (BSA, Millipore, Cat. 126626), 0.3% Triton X-100 (TX-100, Sigma,
Cat. 11332481001), 0.05% Tween-20 (Sigma, Cat. P1379), 0.3 M glycine (Sigma,
Cat. G7126), and 0.01% sodium azide (Sigma, Cat. S2002). During the blocking
step, the primary antibody rabbit anti-Satb2 (Abcam Cat. ab92446) was diluted
1:1000 in a buffer containing PBS, 2% NGS, 1% BSA, 0.01% TX-100, 0.05% Tween-
20, and 0.01% sodium azide. The diluted primary antibody was applied to sections
then incubated overnight at 4 °C. The primary antibody was washed from the
sections five times with PBS for 5 min at room temperature. Secondary antibody
AF488 goat anti-rabbit (Thermo Fisher Cat. A32731) was prepared by diluting
1:1000 in the same buffer used to dilute primary antibodies. Sections were incu-
bated with the diluted secondary antibody for 1 h in the dark at room temperature.
Secondary antibodies were washed from the sections three times with PBS for
5 min, then nuclei were counterstained with DAPI for 10 min at room temperature.
After DAPI staining, sections were washed an additional two times then glass
coverslips were mounted with ProLong Diamond Anti-Fade Mounting Medium
(Thermo Fisher, Cat. P36961). Slides were imaged on a Zeiss ApoTome AxioI-
mager M2 fluorescent upright microscope and processed using Fiji software
(v1.52p)64. Coronal section images were mapped to the Adult Mouse Allen Brain
Atlas25 according to anatomical regions.

Mouse cerebral ischemia immunohistochemistry and mapping. One of the
histological sections corresponding to each microbiopsy section was stained for
GFAP to identify the infarct. Slides were equilibrated to room temperature and
circumscribed with a hydrophobic barrier pen. Sections were washed twice with
PBS for 10 min then blocked for 1 h at room temperature in permeabilization/
blocking buffer comprised of PBS with 10% normal donkey serum, 1% BSA, and
0.05% TX-100. The sections were next incubated in primary antibody solution
comprised of 1:1000 goat anti-GFAP (Abcam, ab53554) and 1:5000 rabbit anti-
Iba1 (Fujifilm Wako, NCNP24) diluted in PBS with 1% NGS, 0.1% BSA, and
0.005% TX-100 overnight at 4 °C. The sections were then washed three times with
PBS for 5 min each at room temperature and next incubated for 2 h at room

temperature in secondary antibody solution containing 1:500 donkey anti-goat
conjugated to Alexa Fluor 488 (Invitrogen) and 1:500 donkey anti-rabbit con-
jugated to Alexa Fluor 555 (Invitrogen) prepared in the same buffer as the primary
antibodies. Following the secondary incubation, sections were washed three times
with PBS for 5 min each, counterstained with DAPI for 10 min, washed an addi-
tional two times for 5 min each, then coverslipped with Fluoromount-G. Slides
were imaged on a Zeiss AxioScan.Z1 Slide Scanner and processed using Fiji soft-
ware (v1.52p). Coronal cerebral ischemia section images were mapped to the Adult
Mouse Allen Brain Atlas25 according to anatomical regions using the DAPI
channel, as described above.

Immunohistochemistry fluorescence was quantified using Fiji software (v1.52p).
Punch positions were mapped to regions of interest (ROIs), along with three
negative naive ROIs for each image. Corrected total fluorescence was calculated as
the difference between the integrated density (ROI area × mean fluorescence) of an
ROI for a given punch and the average integrated density of negative naive ROIs.
GFAP-corrected total fluorescence was plotted using geom_boxplot and
geom_smooth, method lm using ggplot (v3.2.1) in R (v3.5.1).

Mouse whole brain dissociation and nuclei isolation. To evaluate the effect of
flash-freezing on chromatin accessibility in mouse brain tissue, we evaluated single-
cell chromatin accessibility profiles from an intact mouse brain, in which one
hemisphere was flash-frozen and one hemisphere remained unfrozen. Both
hemispheres were processed in parallel and underwent dissociation and nuclear
isolation. Tissue was diced in NIB (10 mM Tris HCl, pH 7.5 [Fisher, Cat. T1503
and Fisher, Cat. A144], 10 mM NaCl [Fisher, Cat. M-11624], 3 mM MgCl2 [Sigma,
Cat. M8226], 0.1% IGEPAL [v/v; Sigma, I8896], 0.1% Tween-20 [v/v, Sigma, Cat.
P7949], and 1× protease inhibitor [Roche, Cat. 11873580001]) in a petri dish on ice
using a chilled razor blade. Diced tissue was transferred to 2 mL chilled NIB in a
7 mL Dounce-homogenizer on ice. The tissue was incubated on ice for 5 min then
homogenized via 10 gentle strokes of the loose pestle (A) on ice, a 5-min incu-
bation on ice, then ten gentle strokes of the tight pestle (B) on ice. The homogenate
was then strained through a 35 µm strainer and centrifuged at 500 × g for 10 min.
Samples were aspirated, resuspended in 5 mL of ice-cold NIB, and nuclei were
counted on a hemocytometer. Samples were diluted to 500 nuclei per 1 µL to
facilitate tagmentation reaction assembly at ~5000 nuclei per 10 µL of NIB.

Tissue microbiopsy acquisition and nuclear isolation. Tissue microbiopsies were
acquired from 100–300 µm sections. Punches were isolated in four experiments:
(1) mouse dissociation development sciMAP-ATAC (384 punches), (2) mouse SSp
cortex sciMAP-ATAC (96 punches), (3) mouse cerebral ischemia sciMAP-ATAC
(240 punches), and (4) human VISp cortex sciMAP-ATAC (192 punches; for
details refer to Supplementary Fig. 1). Microbiopsy coronal sections were accli-
mated to −20 °C in a cryostat (Leica CM3050) and microbiopsy punch tools (EMS,
Cat. 57401) were cooled on dry ice prior to punching to prevent warming of tissue.
Microbiopsy punches were acquired according to location identified from section
atlas mapping, and frozen microbiopsies were deposited directly into 100 µL of ice-
cold NIB in a 96-well plate. Punch deposition into each well of the 96-well plate
was visually confirmed under a dissecting microscope. To facilitate tissue dis-
sociation and nuclear isolation, 96-well plates of microbiopsy punches were then
gently shaken (80 r.p.m.), while covered for 1 h on ice. We then tested mechanical
dissociation by varying the number of triturations performed via multichannel
pipette per well (punch dissociation development sciMAP-ATAC). We found the
following averaged metrics across the four dissociation methods: 15 triturations
(26 cells per punch, 5679 unique passing reads per cell, 0.844 FRis), 30 triturations
(35 cells per punch, 7189 unique passing reads per cell, 0.835 FRis), 60 triturations
(28 cells per punch, 7611 unique passing reads per cell, 0.827 FRis), and 100
triturations (8 cells per punch, 7611 unique passing reads per cell, 0.821 FRis).
Given that 60 trituration mechanical dissociation yielded the highest number of
cells per punch, with otherwise comparable metrics, we proceeded with 60 tri-
turations for all future experiments. Post-mechanical dissociation, sample plates
were then centrifuged at 500 × g for 10 min. While nuclear pellets were not visible,
we found that aspiration of 90 µL of supernatant and resuspension in an added
30 µL of NIB results in a final isolated nuclear volume of 40 µL with ~15,000 nuclei
per well (for microbiopsy punching conditions: 200 µm section, 250 µm diameter
microbiopsy punch used in the human VISp and mouse cerebral ischemia pre-
parations). Nuclei were split across four 96-well plates such that nuclei were ali-
quoted to 10 µL, or ~3750 nuclei per well. This enabled four independent indexed
transposase complexes to be utilized for each individual punch, or 384 uniquely
indexed transposition reactions in one experiment. To calculate the approximate
resolution for each preparation, we took the cubed root of the cylindrical volume.

Location indexing via tagmentation. Transposase catalyzed excision of the
chromatin accessible regions via tagmentation results in the addition of unique
molecular identifiers (indexes) for each tagmentation reaction. Uniquely indexed
transposase adapter sequences are reported in Supplementary Table 2. To encode
microbiopsy punch location into library molecules, we recorded the corresponding
tagmentation well within each 96-well plate to the user-identified microbiopsy
punch location. The incorporation of location information is therefore inherently
encoded by the first tier of indexing in our established sci-ATAC-seq method.
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Tagmentation reactions were assembled at 10 µL of isolated nuclei at 500 nuclei per
1 µL, 10 µL 2× tagmentation buffer (Illumina, Cat. FC-121-1031), and 1 µL of 8 µM
loaded indexed synthesized Tn5 transposase was added per well (See Picelli et al.
for transposase synthesis protocol)65. As an alternative to Tn5 synthesis, EZTn5
transposase (https://www.lucigen.com/EZ-Tn5-Transposase/) can be purchased
commercially and diluted, salt adjusted, and loaded with sci indexes according to
the sciMAP-ATAC protocol66. Each assembled 96-well plate of tagmentation
reactions was incubated at 55 °C for 15 min. For the mouse whole brain sci-ATAC-
seq preparation on fresh and frozen tissue, as well as the sciMAP-ATAC pre-
parations, four 96-well plates of tagmentation were used (384 uniquely indexed
tagmentation reactions). For whole brain sci-ATAC-seq preparation on fresh and
frozen tissue experiment, tagmentation wells were pooled separately for fresh and
frozen hemisphere samples. For the microbiopsy punch-derived experiments, all
reactions were pooled post-tagmentation.

Combinatorial indexing. To lyse nuclei and release bound transposase, PCR plates
are prepared with protease buffer (PB), primers, and sparsely sorted nuclei and then
incubated. Uniquely indexed PCR primer sequences are reported in Supplementary
Table 2. Post-denaturation, the remaining PCR reagents are added and incor-
poration of the PCR primers results in incorporation of the secondary index for
single-combinatorial indexing. For the denaturation step, 96-well PCR plates of 8.5
µL PB (30mM Tris HCl, pH 7.5, 2 mM EDTA [Ambion, Cat. AM9261], 20 mM
KCl [Fisher, Cat. P217 and Fisher, Cat. A144], 0.2% TX-100 [v/v], 500 µg/mL serine
protease [Fisher, Cat. NC9221823]), 1 µL 10 mM indexed i5, and 1 µL indexed i7
per well were prepared. Pooled tagmented nuclei were stained by adding 3 µL of
DAPI (5mg/mL) per 1 mL of sample. Each sample was then FAN sorted using BD
FACSDiva software (v8.0.1) on a Sony SH800 FACS machine at 22 events per well
per 96-well Tn5 plate (e.g., 88 for 384 indexes) into prepared 96-well plate(s). Event
numbers were selected based on the expected success rate of events as actual cells for
a given target cell doublet rate (see “Doublet rate estimations” section below).
Across the sciMAP-ATAC experiments, four PCR plates (384 uniquely indexed
wells) were utilized for the initial punch-derived sci-ATAC-seq preparation from
whole brain-derived punches, two PCR plates (192 uniquely indexed wells) were
used for the mouse SSp cortex experiment, one full and one partial plate (128
uniquely indexed wells) for the human VISp experiment, two plates (192 uniquely
indexed wells) for the mouse cerebral ischemia experiment, and finally two PCR
plates (192 uniquely indexed wells) were utilized for the nonspatial whole brain sci-
ATAC-seq preparation on fresh and frozen tissue. Transposase denaturation was
performed by sealing each sorted plate and incubating at 55 °C for 15min. Plates
were immediately transferred to ice post-incubation and 12 µL of PCR mix (7.5 µL
NPM [Illumina Inc. Cat FC-131-1096], 4 µL nuclease-free water, and 0.5 µL 100×
SYBR Green) was added to each well. For each experiment, plates were then sealed
and PCR amplified on a BioRad CFX real-time cycler running CFX Manager (v3.1)
software, using the following protocol: 72 °C for 5:00, 98 °C for 0:30, cycles of (98 °C
for 0:10, 63 °C for 0:30, 72 °C for 1:00, plate read, 72 °C for 0:10) for 18–22 cycles.
PCR plates were transferred to 4 °C once all wells reached mid-exponential
amplification on average. Each PCR plate is then pooled at 10 µL per well and DNA
libraries are isolated using a QIAquick PCR Purification column. Each pooled PCR
plate library is then quantified using a Qubit 2.0 fluorimeter, diluted to 4 ng/µL with
nuclease-free water, and quantification of library size performed on Agilent Bioa-
nalyzer using a dsDNA high sensitivity chip. Libraries were then sequenced on a
NextSeqTM 500 sequencer (Illumina Inc.) running NextSeq500 NCS (v4.0) software
loaded within a range of 1.2–1.6 pM with a custom sequencing chemistry protocol
(read 1:50 imaged cycles; index read 1:8 imaged cycles, 27 dark cycles, 10 imaged
cycles; index read 2:8 imaged cycles, 21 dark cycles, 10 imaged cycles; read 2:50
imaged cycles) using custom sequencing primers supplied in Supplementary
Table 2.

Doublet rate estimations. An important factor in single-cell studies is the
expected doublet or collision rate. This manifests in droplet-based platforms as two
cells being encapsulated within the same droplet, thus having the same cell barcode
for their genomic information. This is tunable by the number of cells or nuclei
loaded onto the instrument, with typical doublet rates targeted to be at or <5%.
This is also true for combinatorial indexing workflows, where doublets are present
in the form of two cells or nuclei with the same level 1 index—which is the
transposase index for ATAC—that end up in the same level 2 indexing well (i.e.,
the PCR well). This results in an identical pair of indexes for the two cells. This
rate, like with droplet methods, is also tunable by altering the number of indexed
cells or nuclei that are deposited into each well, with a typical experiment targeting
at or below a 5% doublet rate. This rate is approximated by leveraging the “birthday
problem” formulation in statistics, where the transposase index space (days in the
year) and number of indexed nuclei per well (number of people at each table) are
taken into account. These predictions assume that there is complete mixing of
nuclei prior to distribution and that the distribution is unbiased, which are rea-
sonable given the single-nuclei suspension and use of flow sorting for the dis-
tribution process, and hold up when compared to empirical data produced by
multispecies cell mixing experiments18,19,59 (i.e., barnyard experiments, typically
mixing human and mouse cells). However, in the case of sciMAP-ATAC, nuclei are
directly isolated and then indexed within the same well, making a true barnyard
experiment not feasible. Any experiment that would use tissue punches from two

different species into different wells would not capture doublets because of the de
facto unique indexes for each species imparted by the different wells for the first
level of indexing. We therefore assumed that the assumptions that have been made
and tested for standard sci-ATAC-seq and related combinatorial technologies also
apply to sciMAP-ATAC, as the novel components of the workflow are in the
processing prior to the combinatorial indexing stages.

With our set of 384 unique transposase indexes and the sorting of 88 nuclei per
well across experiments, this would result in a doublet rate (i.e., two nuclei of the
same transposase index ending up in the same PCR well) of 10.5% if the yield of
sorted nuclei was perfect. However, we favor speed over precise quantification
during the sorting step, as the actual number of sorted cells does not matter as long
as it ends up being below the target number. We have found that using our fast-
sorting workflow, of the target number of events that are sorted, only between 25
and 50% are true nuclei. The rest of the events are empty droplets. We also note
that these droplets do not contain ambient chromatin based on human–mouse
mixing experiments19. Using the high end of the ~50% true nuclei yield, the
expected doublet rate is 5.4%, in line with other commercially available single-cell
platforms. When factoring in the actual yield with respect to single-cell profiles
produced, the doublet rate is even lower. For example, the punch dissociation
development sciMAP-ATAC preparation produced 8012 single-cell profiles over
384 unique indexed transposition wells, for an average of just under 21 cells
produced per well out of the 88 events that were sorted—a 23.7% yield. The final
expected doublet rate is therefore most accurately calculated according to 21
indexed nuclei produced per well with a transposase index space of 384 for a
doublet rate of 2.5%, which is well within the accepted range.

Sequence data processing. Fastq files were generated from BCL files using
bcl2fastq (Illumina Inc., v2.19.0). Fastq files were aligned, filtered, and analyzed
primarily using the “scitools” software (github.com/adeylab/scitools)22, which
includes wrappers for numerous external tools. Raw sequence reads had their index
combinations matched to a whitelist of expected indexed using “scitools fastq-
dump”, which allows for a hamming distance of two and produces error-corrected
fastq files. These were then aligned to a mouse or human reference genome (mm10
or hg38) via bwa mem (v0.7.15-r1140)67 and sorted using “scitools align”. PCR
duplicate removal and filtering for quality ten aligned autosomal and chromosome
X reads (i.e., excluding mitochondrial, chromosome Y, and unanchored contigs)
was performed using “scitools rmdup” with default parameters and plotted using
“scitools plot-complexity”. Projections of passing reads given increased sequencing
depth was performed using “scitools bam-project” on the pre-duplicate removed
bam file, which generates a model for every single cell based on sampling reads and
calculating the passing read percentage that empirically falls within 2% accuracy19.
Bam files were then filtered to only contain cell barcodes that contained a mini-
mum of 1000 passing reads and a percent unique reads <80 (any overly complex
cell libraries may be doublets and were therefore excluded). For the human VISp
dataset, cells were also filtered to have a TSS enrichment (per cell calculation) of 2
(see section “Quality metric calculations” below).

Chromatin accessibility analysis. The filtered bam file was used for chromatin
accessibility peak calling for each of the five experiments individually, as well as on
a combined bam file from the mouse whole brain sciATAC-seq, mouse punch
dissociation development sciMAP-ATAC, and mouse SSp cortex sciMAP-ATAC
experiments for the combined dataset analysis. Peak calling was run using the
wrapper function “scitools callpeak”, which utilized macs2 (v2.1.1.20160309) for
peak calling, and then filtering and peak extension to 500 bp (ref. 68). Called peaks
from mouse whole brain sciATAC-seq, mouse punch dissociation development
sciMAP-ATAC, and mouse SSp cortex sciMAP-ATAC datasets were merged to
generate a union peak set that was used to compare sciATAC-seq and sciMAP-
ATAC clustering. Peak bed files and filtered bam files were then used to construct
counts matrix of cells × peaks. Latent Dirichlet Allocation using the package cis-
Topic (v0.2.0)69 was performed using the scitools wrapper function “scitools cis-
topic”. Topic enrichments for region type annotations (Supplementary Fig. 4g)
were annotated using cisTopic function annotateRegions, using the Bioconductor
package TxDb.Hsapiens.UCSC.hg38.knownGene (v3.4.7) and annotation database
org.Mm.eg.db (v3.8.2). The topic by annotation heatmap was plotted using cisTopic
function signaturesHeatmap. The cells × topics matrix was biclustered and plotted
using “scitools matrix-bicluster”, which utilizes the Heatmap function in the
ComplexHeatmap package (v1.20.1) in R (v3.5.1)70. Two-dimensional visualization
was performed using UMAP via “scitools umap” and plotted using “scitools plot-
dims”. Visualization of topic weights on the UMAP coordinates was performed
using “scitools plot-dims” with -M as the cells × topics matrix. Clustering was
performed on the cells × topics matrix using the package Rphenograph (v0.99.1) in
R (v3.5.1), which employs Louvain clustering and was executed using the wrapper
function “scitools matrix-pg”71. In addition to topic analyses, we utilized
ChromVAR (v1.4.1)52 to assess the global motif accessibility profiles of cells using
the wrapper function “scitools chromvar” on the bam file with added read group
tags using “scitools addrg”. Boxplots illustrating TFME per cell were generated
using values from the ChromVAR deviations_scores matrix and plotted using
geom_boxplot from the package ggplot (v3.2.1) in R (3.5.1), where lower and upper
hinges indicate first and third quartiles, center line indicates median, upper, and
lower whiskers indicate 1.5 times the inner quartile range (IQR). Data points
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beyond the end of the whiskers are plotted individually. All boxplot comparison
significance calculations were performed using the compare_means function in the
ggpubr package (v0.2.5) indicating paired= FALSE and p.adjust.method set to
Bonferroni–Holm correction in R (v3.5.1).

Quality metric calculations. To generate tagmentation site density plots centered
around TSSs, we first subset filtered experiment bam files into respective annota-
tions. We used the alignment position (chromosome and start site) for each read to
generate a bed file that was then fed into the BEDOPS closest-feature command
mapped the distance between all read start sites and TSSs (v2.4.36, ref. 72). From
this, we collapsed distances into a counts table respective of experiment and
annotation, and generated percentage of read start site distances within each counts
table. We plotted these data using R (v3.6.1) and ggplot2 (v3.3.2) geom_line
function (default parameters) subset to 2000 base pairs around the start site to
visualize enrichment. TSS enrichment values were calculated for each experimental
condition using the method established by the ENCODE project (https://www.
encodeproject.org/data-standards/terms/enrichment), whereby the aggregate dis-
tribution of reads ±1000 bp centered on the set of TSSs is then used to generate
100 bp windows at the flanks of the distribution as the background and then
through the distribution, where the maximum window centered on the TSS is used
to calculate the fold enrichment over the outer flanking windows. The fraction of
reads in a defined read set (FRiS) was used as an alternative to the fraction of reads
in peaks for two major reasons. The first is that FRiP is highly dependent on the
number of peaks that are called, which is, in turn, highly dependent on (a) the
number of cells profiled, and (b) the depth of sequencing. One can increase FRiP
values by sequencing a library more deeply or profiling larger numbers of cells at
the same depth without reflecting any difference in underlying data quality. Sec-
ond, peak calling on a population of cells favors peaks in high abundance cell types,
as they make up more of the data going into the peak calling. Therefore, cells of a
cell type that is lower abundance will have fewer peaks called that are specifically
associated with that cell type, owing to the dominance of signal by the more
abundant cell type and consequently reducing the FRiP of those cells. Using FRiS
instead largely avoids the challenges associated with peak calling by leveraging a
comprehensive reference dataset. For the mouse FRiS calculations, we aggregated
peaks that are available from mouse bulk ATAC-seq and DNAse hypersensitivity
experiments provided by the ENCODE project, followed by peak collapsing,
resulting in 2,377,227 total peaks averaging 744.9 bp. For the human dataset, we
used a human reference dataset for DNAse hypersensitivity28 that contains
3,591,898 loci defined as TF footprints with an average size of 203.9 bp leading to
the lower FRiS values when compared to the aggregate mouse ATAC-seq peak
dataset.

Cell type identification. The identified clusters were assigned to their respective
cell type by examining the chromatin accessibility profile of marker genes that
correspond to known cell types. Gene regions were plotted using “scitools plot-
reads” using the filtered bam file and genome track plots were generated using
CoveragePlots from the analysis suite of tools, Signac (v0.2.5, https://github.com/
timoast/signac). Additional support for identified cell types was performed by
assessing the chromVAR results for global motif accessibility. Marker genes used
for cell type identification included: Gfap, Glul, and Agt for astrocytes, Col19a1 for
all neuronal cell types, Gad1, Gad2, Pvalb, Dlx1, and Dlx2 for GABAergic neurons,
Slc17a7, Drd1, Drd2, Bcl11b (Ctip2), and Ppp1r1b for GABAergic MSNs, also
referred to as SPNs, C1qa, C1qc, and Cx3cr1 for microglia, Mrc1 for macrophages
within the microglia cluster, Kdr and Flt1 for endothelia, Olig1 for al oligoden-
drocyte cell types, Top2a and Cspg4 (NG2) for OPCs, Fyn, and Prox1 for newly
formed oligodendrocytes, and Mobp, Mog, Cldn11, and Prox1 for mature myeli-
nating oligodendrocytes.

Gene ontology enrichment analysis. GO enrichment analysis was performed for
the genomic regions defined within topic 30, the topic enriched in ischemia specific
cells. Single nearest genes to topic 30 regions were identified using GREAT (v4.0.4)
for reference genome mm10 (ref. 73). GO term statistical overrepresentation for
GO biological processes was calculated using Panther (v14) binomial test with false
discovery rate (FDR) correction for overrepresentation of topic 30 genomic regions
in comparison to all mouse (mm10) genes. Data were plotted using ggplot (v3.2.1)
plotting function geom_barplot in R (v3.5.1) with height corresponding to log2 GO
term fold enrichment and colored by GO term −log10 FDR Q-value.

Transcription factor and site enrichment through trajectories. TF motif
enrichment analysis was performed using chromVAR (v1.4.1) in R (v3.5.1) on all
cells derived from ischemia mouse models, including the ischemic (stroke) hemi-
sphere and contralateral (contra) hemisphere. For the cells × TFME matrix, cells
were annotated by the punch they were derived from, and a linear regression of
TFME as a function of punch location for each cell using the base function lm in R
(v3.6.1). Slopes of the linear model for the ischemic and contralateral hemispheres
were defined as the coefficient of the fit. The statistical significance of the inter-
action between TFME over space and disease condition (stroke versus contralateral
hemisphere) was calculated by performing an analysis of variance (ANOVA, anova
base R v3.6.1) on the interaction of hemisphere on the linear regression defined by

TFME as a function of punch position (TFME ~ punch × hemisphere(stroke/contra)),
and slopes were compared using the lsmeans package function lstrends (v2.30-0).
Slopes were compared between the stroke and contralateral hemispheres by taking
the difference between the slopes (Δ slope= slopestroke− slopecontra). The change in
slope was z-scored to center and scale TFME difference, where z-score Δ slope is
equal to two standard deviations from the mean. Volcano plot of −log10 p value by
Δ slope was generated using the package EnhancedVolcano (v1.4.0) in R (v3.5.1).
Line plots vignettes were generated by plotting volcano plot data using ggplot
(v3.2.1) plotting function geom_smooth, method lm. Heatmaps illustrating cell-
type-specific TFME over space were generated by subsetting ischemia mouse model
cells by cell type, and plotting TFME by punch, compared between stroke and
contralateral hemispheres using package ComplexHeatmap (v2.0.0) in R.

Analysis of putative regulatory elements was performed by assessing the ATAC
peak probabilistic weight per cell (cisTopic predictive distribution) across cells
derived from punches taken from the infarct core to infarct border axis (punch
positions 5–8) in the stroke and contralateral hemispheres, aggregated across all
MCAO mice. This was performed similarly to TFME described above, where
ATAC peak probability per cell was averaged by punch position (punch positions
5–8). ATAC peak probability along the 5–8 axis was fit to a linear model and the
slope in the stroke hemisphere was compared to the slope in the contralateral
hemisphere in order to generate significance and delta-slope values. We found that
3852 peaks out of 104,773 total peaks (4.8%) vary significantly across the 5–8 axis
in MCAO stroke hemispheres in contrast to the contralateral hemispheres. In order
to identify putative regulatory elements which are associated with the progressive
gradient of glial reactivity from the infarct core to the infarct border in stroke
hemispheres, we subset our spatially significant peak set to those which uniformly
increase or decrease along the 5–8 axis in stroke hemispheres. We found 73 sites
which uniformly increase with increasing proximity to the infarct border, and no
sites which uniformly decrease. We report these 73 spatially significant peaks as a
reference for future MCAO regulatory element studies.

Moran’s I spatial autocorrelation analysis. We performed a Moran’s I test to
assess spatial autocorrelation between punch locations, wherein a higher Moran’s I
value signifies a higher chance of cells from the same punch location being nearby
in Euclidean space. Cells sourced from white matter punches were excluded. The
test was performed using the same 27 topic weight matrix used for UMAP pro-
jections. Cells were split by assigned types and processed in parallel in R (v4.0)
using a modified version of the “Moran_I” method in the function graph_test in
monocle3 (v0.2.3.0)74. Briefly, we used a bootstrapping method wherein each
punch location (1–8) was randomly assigned a new location for all punches and all
trajectories, such that all cells from the same punch still shared the same location.
The Moran’s I value was calculated for 1000 iterations using this random location
reassignment strategy. The resulting null distribution was then compared to our
true punch location Moran’s I using the pnorm function to perform an unpaired
one-sided (lower.tail= FALSE) z-test. To account for multiple testing, we applied a
Bonferroni correction to the p values.

Integration with snDrop-seq and scTHS-seq data. We applied cross-data-
modality integration based in canonical correlation analysis (CCA) to coanchor our
sciMAP-ATAC-seq dataset with publicly available snDrop-seq and scTHS-seq
visual cortex datasets29,75 (Fig. 5). For single-cell chromatin accessibility data, we
used Signac (v1.1.0)75 to perform latent semantic indexing (LSI) on the filtered
chromatin accessibility matrices (for both scTHS-seq and sciMAP-ATAC-seq) and
calculated the normalized LSI loadings scores (using dims: 2:30) for anchor
weighting. We then created gene activity matrices using the R package Cicero
(v1.3.4.10)76. Similarly, we preprocessed the snDrop-seq expression matrix using
the standard Seurat 3 (v3.2.1) workflow, where we filtered for variable features
(5000 features), scaled and normalized data, reduced dimensions via PCA and
UMAP. For RNA-ATAC integration, we first learned the transfer anchors based on
the gene activity and expression data by applying FindTransferAnchor (with the
parameters dims= 1:30 and reduction= “cca”). We then used TransferData
(weight.reduction= atac[[“lsi”]]), to project scRNA-seq data labels onto sciMAP-
ATAC-seq cells. We finally created a confusion count matrix based on the label
matches between the snDrop-seq predicted and sciMAP-ATAC-seq labels. Using a
similar method for feature imputation at variable genes, we transferred the scRNA-
seq data onto the sciMAP-ATAC-seq cells and performed PCA on the combined
datasets, followed by visualization via UMAP77. We applied a matching CCA-
based strategy to coanchor scTHS-seq and sciMAP-ATAC-seq cells, using 70,832
overlapping accessibility sites between the datasets. For label transfer, we used the
normalized LSI loadings scores for anchor weighting of the scTHS-seq data and
then compared labels via a confusion matrix (Fig. 5).

Statistics. Data are presented as mean ± SEM unless otherwise specified. Statistical
analysis was generally performed by two-sided, unpaired Wilcoxon nonparametric
test or two-way ANOVA and the Bonferroni method of correction for pairwise
multiple comparisons, or as specified in the figure legends. Significance was
assigned to p < 0.05. All analyses were performed using R version 3.5.1 or scitools
scripts (github.com/adeylab/scitools) unless otherwise specified. Plots were gener-
ated primarily using R ggplot2 version 3.2.1.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed single-cell library sequencing data, as well as single-cell metadata
have been submitted to the National Center for Biotechnology Information Gene
Expression Omnibus (GEO) under the accession code GSE164849. All other data
supporting the findings of this study are available with the article and its Supplementary
Information files, and from the corresponding author upon reasonable request. Source
data are provided with this paper.

Code availability
Data analysis and plotting was performed using functions contained within the publicly
available scitools software suite of single-cell analysis tools (github.com/adeylab/scitools).
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