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Abstract

Activation of nuclear factor kB (NF-kB) by interleukin-1b (IL-1) usually results in an anti-apoptotic activity that is rapidly
terminated by a negative feedback loop involving NF-kB dependent resynthesis of its own inhibitor IkBa. However,
apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1
in human epithelial cells. Under these conditions NF-kB remains constitutively active and turns into a pro-apoptotic factor
by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-
induced lack of IkBa recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac.
Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we
quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted
to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the
mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by
the prediction of independent data. Weak constitutive IKKb phosphorylation is shown to be a decisive process in IkBa
degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments
show that translational inhibition is predominantly responsible for lack of IkBa recurrence following IL-1+UVB stimulation. In
case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IkBa. This shows that the
processes leading to activation of transcription factor NF-kB upon stimulation with ultraviolet B radiation with and without
interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced
translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular
setting.
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Introduction

The transcription factor nuclear factor kB (NF-kB) is of

fundamental importance in anti-apoptotic signalling and in-

flammation, since it is activated by a multitude of stimuli, and

causes a wide range of cellular responses. Constitutive NF-kB
activation contributes to the maintenance of a variety of cancers

by inducing expression of anti-apoptotic genes [1,2]. Manifold

strategies to fight cancer are therefore based on NF-kB
inhibition [1,3]. In resting cells, almost all NF-kB resides in

the cytosol and is kept inactive by its binding to the inhibitor of

kBa (IkBa).
Canonical activation of NF-kB by pro-inflammatory cytokines,

like interleukin-1b (IL-1), is mediated by a signalling cascade

resulting in activation of the IkB kinase complex (IKK). In

particular, its catalytic subunit IKKb is phosphorylated at Ser177/

181 [4] and subsequently phosphorylates the NF-kB inhibitor

IkBa at Ser32/36. Accordingly, IkBa becomes polyubiquitinated

and is proteasomally degraded, consequently liberating NF-kB.

Free NF-kB translocates to the nucleus, where it activates the

transcription of responsive genes, including the one encoding its

inhibitor IkBa [4,5]. Newly synthesised free IkBa translocates to

the nucleus where it binds to NF-kB, thus terminating NF-kB
activity and initiating nuclear export of the complex. Since NF-kB
dependent genes account for proliferation, inflammation, and anti-

apoptosis, this autoregulatory negative feedback loop ensures

proper cellular function. Dysregulation causes constitutive NF-kB
activation, which is linked to maintenance of a variety of cancers

as well as chemo resistance [1,2].

The complex feedback behaviour of the NF-kB signalling as

well as the importance of this behaviour in cellular systems have

given rise to a variety of deterministic and stochastic mathematical

models [6]. These models crucially aided in the understanding of

many of the fascinating details of this signalling system, e.g. the

role of the different IkB isoforms [7,8], the influence of IKK on

NF-kB responses [9,10], the regulation of IKK phosphorylation

[11,12,13,14], single cell dynamics [15,12], cross-talk mechanisms
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[16], the balance of life/death decisions [17] or the emergence and

potential role of oscillations [12,18,19].

In contrast to the established role of NF-kB as an anti-apoptotic

factor, we and others revealed that NF-kB becomes a mediator of

pro-apoptotic responses when combined with certain DNA

damaging agents. Co-stimulation of human epithelial cells, or

keratinocytes, with ultraviolet B (UVB) radiation and IL-1 resulted

in enhancement of the UVB-driven apoptotic response via NF-kB-
dependent repression of anti-apoptotic genes [20,21,22,23]. The

final outcome of NF-kB behaviour thereby appeared to depend on

the nature of the DNA damage induced [24]. These observations

demand for a detailed investigation of the underlying mechanisms,

because they may alter the individual strategy for combination

therapies.

Strikingly, enhancement of apoptosis in UVB+IL-1 treated cells

was associated with complete disappearance of the negative

feedback loop of NF-kB through inhibition of IkBa recurrence,

consequently causing sustained NF-kB activation [25]. While

others reported inhibition of IkBa resynthesis in UVC treated

mouse embryonic fibroblasts (MEF) exclusively resulting from

translational inhibition [16], we revealed a more complex

mechanism following UVB+IL-1 stimulation. Using experimental

approaches as well as a strictly reduced mathematical model, we

showed that the catalytic subunit of the Ser/Thr phosphatase

PP2A (PP2Ac) becomes deactivated upon UVB radiation, causing

incomplete IKKb dephosphorylation. Chronically activated IKKb
consequently phosphorylates newly synthesised IkBa, marking it

for proteasomal degradation, thus enabling prolonged NF-kB
activation [25,13].

Envisaging these two different mechanisms, the aim of the

present study was to quantify the contribution and importance of

UVB-induced translational inhibition compared to PP2Ac-initiat-

ed posttranslational IkBa degradation with regard to the

elimination of the negative feedback loop of NF-kB. Using

a systems biological approach, we coupled our previously de-

veloped IKKb phosphorylation model [13] to a minimal NF-kB
model. The model not only reproduces several experimental data

sets, but in turn also produces reliable predictions. We show that

unlike translational inhibition, UVB-induced PP2Ac deactivation

is crucial for sustained NF-kB activity in human epithelial cells

following IL-1+ UVB stimulation, while both processes are

required to induce IkBa degradation following UVB irradiation

alone.

Results and Discussion

Development of a Reduced Order Mathematical Model of
NF-kB Signalling Including UVB-induced Effects
In order to address the question of which UVB-induced

mechanism is decisive in inhibiting IkBa recurrence, we designed

a mathematical model of the relevant processes (model MRef,

Figure 1 and File S1). As described in detail in the Material and

Methods section, our model comprises two parts, an adapted

version of our recently published model of IKKb phosphorylation

[13] and a module describing the IkBa-NF-kB interactions,

inspired by the model of Lipniacki et al. [26] and modified due to

more recent findings (e.g. [16,12]). Additionally, we applied model

reduction strategies to further decrease the model size (see Material

and Methods), as a smaller model tends to be more discriminative

and less prone to overfitting, due to a lower number of degrees of

freedom.

While MRef (Figure 1) includes both UVB-induced PP2Ac

deactivation and translational inhibition, we also developed two

model variants, one lacking UVB-induced PP2Ac deactivation

(model MP) and the other lacking translational inhibition (model

MT). We now strived to identify which of the models adequately

describes the experimental data and to validate the model by

independent experiments in an iterative process of modelling and

experimental work.

Lack of IkBa Recurrence is not Exclusively Due to UVB-
induced Translational Inhibition
Data from quantified Western blots and electrophoretic

mobility shift analysis (Figure 2) show that following IL-1

stimulation, IKKb is rapidly phosphorylated and subsequently

dephosphorylated. Almost complete dephosphorylation is reached

after about 75 min. IKKb phosphorylation induces complete

IkBa degradation, followed by its resynthesis yielding an overshoot

after about 90 min. Accordingly, NF-kB activity increases rapidly

and decreases to a low level after about 2 h. In contrast, combined

IL-1 and UVB stimulation causes only incomplete dephosphor-

ylation of IKKb, and NF-kB remains active because IkBa does

not recur. Upon UVB stimulation alone, IkBa degradation follows

much slower kinetics.

All models were fitted to the measured time courses, minimising

the x2 value.
The models MRef and MT convincingly reproduced the

experimental data, reflected by x2 values of 38.1 and 39.3,

respectively (Figures 2 and S1). In contrast, model MP failed to

reproduce the IkBa overshoot upon IL-1 stimulation and the

sustained IKKb phosphorylation upon IL-1+UVB stimulation

(x2 = 58.2, Figure S2). Therefore, we rejected the hypothesis that

translational inhibition alone was responsible for the observed

behaviours following UVB irradiation with and without IL-1

costimulation.

PP2Ac Deactivation and Translational Inhibition Both
Contribute to the Observed System Behaviour
Since the fit quality did not allow for discrimination between

models MRef and MT, we used simulation studies to select an

additional experiment for model discrimination: addition of the

proteasome inhibitor MG132 15 min after IL-1+UVB stimulation,

when IkBa degradation is completed, allows the investigation of

IkBa synthesis without IkBa degradation. Accordingly, model

MRef predicted a moderate IkBa increase to about the initial level,

while model MT predicted a 4 fold increase compared to the initial

IkBa level (Figure 3A). The experimental data confirmed the

prediction of model MRef but not the prediction of model MT

(Figure 3A).

In order to exclude that model MT might be able to reproduce

the experimental data if they were known a priori, we performed

a new fit including the newly found experimental data. Still, model

MT could not convincingly reproduce the experimental data,

while model MRef could, as reflected by x2 values of 98.9 vs. 42.7

(Figures S3 and S4). Conclusively, both UVB-induced trans-

lational inhibition and PP2Ac deactivation contribute to the

system behaviour.

The Model Correctly Predicts Additional Experimental
Data
Before investigating the contribution of each of the two

mechanisms in MRef, this model was further validated and

analysed: in order to determine constitutive IkBa degradation,

cells were stimulated with translation inhibitor cycloheximide

(CHX). The observed slow decrease of IkBa with a half-life of

about 6 h was well predicted by our model without any additional

fit (Figure 3B). Subsequent fitting to all experimental data leaves
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the model almost unchanged (Figure S5, Table S1) and provides

the basis for the further investigations. The similar values of the

rate constants of free and NF-kB-bound IkBa, a2 and a3 (Table

S1), represent a noteworthy detail additionally validating the

model: they are in line with findings of Mathes et al. [27] who

showed that free and NF-kB-bound IkBa have similar phosphor-

ylation kinetics. Altogether, the various model validations show

that the model can reliably be used as a starting point for further

analysis and in silico experiments.

Differences of the IkBa Degradation Rate Following UV
Irradiation Can be Explained by Small Absolute Variations
in Constitutive IKKb Phosphorylation
While IkBa degradation following UVC irradiation seems to be

complete after 2 h in mouse embryonic fibroblasts (MEFs) [16],

IkBa degradation following UVB stimulation in our human

epithelial KB cells started after 4 h and decreased to lower levels

after 8 h (see Figure 2). Furthermore, even slower IkBa
degradation following UVB stimulation was reported in earlier

experiments with KB cells, with IkBa being still incompletely

degraded 16 h after UVB stimulation [25]. Since a notable

constitutive basal IKKb activation level existed in the MEFs [16]

but not in human KB cells [13], we investigated the impact of

varying the parameter for constitutive IKKb phosphorylation,

kpconst, on IkBa degradation. While IkBa was completely degraded

after 4 h for ten fold larger kpconst, only 60% of IkBa is degraded

after 16 h for ten fold lower kpconst, indicating that variations of

kpconst can easily explain the observed differences in IkBa
degradation (Figure 4). Note that the value of kpconst is very low,

so that the large relative changes only correspond to low absolute

changes. It is well conceivable that small differences in the

experimental conditions may be responsible for the very low

absolute changes of basal IKKb activation. This shows why even

cell populations from the same cell line may react differently to

UVB stimulation. Importantly, these changes remain almost

unnoticed for the other investigated stimulations (Figure 4) because

the effect of kpconst is easily counteracted by PP2Ac unless PP2Ac is

deactivated by UVB radiation.

Figure 1. Schematic representation of the reference model. System variables are depicted in green, inputs are depicted in red. Abbreviations
and parameter names are explained in Tables S1 and S2. The model variants lacking translational inhibition or PP2Ac deactivation are implemented
by setting uvinh= 0 or kuv= 0, respectively.
doi:10.1371/journal.pone.0040274.g001
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PP2Ac Deactivation is the Predominant Mechanism in
Inhibiting IkBa Recurrence Following IL-1+UVB
In order to investigate in more detail the lack of IkBa

recurrence following IL-1+ UVB stimulation, we now compared

the contributions of the individual processes, UVB induced

translational inhibition and PP2Ac deactivation, to this behaviour.

Up to this point, the obtained results seemed ambiguous: on the

one hand, model MT - but not MP - could reproduce the

experimental data for single and combined IL-1 and UVB

stimulation (Figures S1 and S2). This suggests that PP2Ac

deactivation has a large effect on IkBa inhibition. On the other

hand, model MRef predicts an UVB-induced translational in-

hibition of about 90% (Table S1), indicating that translational

inhibition may be predominant.

Since it is almost impossible to distinguish between both UVB

effects in a cellular setting, we addressed the question by shutting

off both effects separately in silico. Deletion of UVB-induced

PP2Ac deactivation (kuv = 0) leads to IkBa recurrence and decrease

of NF-kB activity. Strikingly, deletion of UVB-mediated trans-

lational inhibition (uvinh = 0) only has a minor effect on IkBa
recurrence and no effect on NF-kB activity (Figure 5A). In this

context, it must be taken into account that translational inhibition

was reported to occur through phosphorylation of the global

translation factor eukaryotic initiation factor-2a (eIF2a) [28,29].
Thus, UVB affects both IkBa and IL-1 receptor (ILR) synthesis in

our model. As a consequence, translational inhibition not only

reduces IkBa resynthesis, but - via reduction of ILR resynthesis -

also signal transduction and downstream IKKb phosphorylation.

Accordingly, UVB-induced translational inhibition triggers two

roughly balanced effects, one increasing and one decreasing the

intracellular IkBa level. Without PP2Ac deactivation, however,

almost total dephosphorylation of IKKb would occur, preventing

relevant IkBa degradation. In this scenario, the main effect of

translational inhibition is an increase of the time constants, i.e. it

prolongs the time until a steady state concentration is reached. In

conclusion, both UVB-induced translational inhibition and PP2Ac

deactivation are present following IL-1+UVB stimulation, but

PP2Ac deactivation is clearly the most important mechanism for

inhibition of IkBa recurrence.

Cooperation of PP2Ac Deactivation and Translational
Inhibition is Required to Cause Decrease of IkBa
Following UVB Stimulation Alone
Interestingly, a different result is obtained for the contribution of

UVB-induced translational inhibition and PP2Ac deactivation to

IkBa decrease following stimulation with UVB alone.

Deleting both effects separately in silico, we found that neither

PP2Ac deactivation nor translational inhibition alone is sufficient

to induce a significant IkBa degradation (Figure 5B): without

PP2A deactivation, only small amounts of IkBa are degraded so

that efficient translation is not required. Without translational

inhibition, phosphorylated IKKb slowly accumulates, but in low

concentrations so that an intact translational machinery can

counteract this effect. Consequently, the NF-kB activity is much

lower than when both processes are functional (Figure 5B). Others

have reported translational inhibition to be uniquely responsible

for UV-induced IkBa degradation in cells with a much higher

level of constitutively phosphorylated IKKb [16]. Our model also

successfully reproduces this result with accordingly modified

parameter values (Figure S6).

Figure 2. Model results in the reference model. Assuming both UVB induced PP2Ac deactivation and translational inhibition, the model
convincingly reproduces the experimental data for IL-1 (10 ng/ml), IL-1 (10 ng/ml) + UVB (300 J/m2) and UVB (300 J/m2) stimulation. Experimental
data and standard deviations (blue) of phosphorylated IKKb, total cellular IkBa and nuclear NF-kB are compared to the results of the model (red)
fitted to these data. The NF-kB time courses were scaled to a mean of 1 and subsequently averaged. IkBa Western blots were standardised to an
initial value of 1.
doi:10.1371/journal.pone.0040274.g002
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Summarising, in our setting the observed IkBa degradation

following UVB stimulation requires a combination of both,

translational inhibition and PP2Ac deactivation.

Conclusions
We showed that our minimal model of the NF-kB signalling

pathway is completely sufficient to describe NF-kB signalling

following various stimulations including different combinations of

IL-1, UVB, MG132, and CHX. The model quantitatively

reproduces and predicts detailed kinetic data of three proteins in

several experimental settings. It can be used as a reliable building

block in future models of inflammation and apoptosis and is easy

to handle due to its small size. We used the model to unravel the

contributions of two UVB-induced mechanisms, namely global

translational inhibition and PP2Ac deactivation, to the phenom-

enon of sustained NF-kB activity following IL-1+UVB stimulation

and to IkBa degradation following UVB stimulation alone.

Our model finds that translational inhibition cooperates with

PP2Ac deactivation in decreasing the cellular IkBa level upon

UVB irradiation, while PP2Ac deactivation plays the predominant

role in IL-1+UVB treated cells.

Materials and Methods

I) Mathematical Modelling
Our model consists of an adapted version of our IKKb

phosphorylation model [13] and an IkBa-NF-kB module based on

the model of Lipniacki et al. [26] and recent findings (e.g. [16,12]).

As we showed recently, the decoupling of the IkBa-NF-kB module

from the upstream part involving IKKb is possible in the case of

IL-1 stimulation [13].

Our previous model of IKKb phosphorylation [13] was adopted

with some slight modifications:

– The parameter values were not fixed to the fitted values from

the previous model [13]. However, for those parameters

comparable to the previous model the fitted parameter values

were very similar to those of the previous model (Table S1).

Figure 3. Model prediction and validation. (A) The models MRef and MT predict markedly different IkBa concentrations following IL-1 and UVB
stimulation and addition of proteasome inhibitor MG132 15 min post stimulation. The proposed experiment follows the concentration course
predicted by the reference model. This confirms the hypothesis that both PP2Ac deactivation and translational inhibition are relevant processes for
the lack of IkBa recurrence. KB cells were left untreated or stimulated with IL-1+UVB for the indicated time points. The proteasome inhibitor MG132
(MG) was applied 1 h in advance (21 h) or 15 min after initial IL-1 stimulation (+159). The status of IkBa protein was determined by Western blot
analysis. Equal loading was monitored by reprobing the membrane with an anti a-tubulin antibody. The quantified blots were standardised to an
initial value of 1. Parameter values were optimised using the data for IL-1, IL-1+UVB and UVB, but not for IL-1+UVB+MG132 stimulation. (B)
Experimental predictions are perfectly in line with IkBa concentrations following CHX stimulation. KB cells were left untreated or stimulated with the
translation inhibitor cycloheximide (CHX) for the indicated time points. The status of IkBa protein was determined by Western blot analysis. Equal
loading was monitored by reprobing the membrane with an anti a-tubulin antibody. Protein bands shown are extracted from the same membrane
under identical conditions. Parameter values were optimised using the data for IL-1, IL-1+UVB, UVB and IL-1+UVB+MG132 stimulation, but not for
CHX stimulation.
doi:10.1371/journal.pone.0040274.g003
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– Since even small amounts of phosphorylated IKK can have

significant effects on the downstream signalling, we incorpo-

rated IL receptor turnover. We can normalise the system such

that the degradation rate constant can be used for both

synthesis and degradation of the receptor without loss of

generality ([13], supplemental material).

– Furthermore, to account for the possibility that the amount of

PP2Ac available for binding to the IKK complex limits IKKb
dephosphorylation we introduced a Michaelis-Menten term for

the IKKb dephosphorylation process.

– Since constitutive IKKb phosphorylation has been shown to be

relevant for UVB-induced IkBa degradation [16], this process

was also considered.

Note that in contrast to TNFa stimulation, receptor internalisa-

tion following IL-1 stimulation is fast [13].

The downstream part of the model is based on the model of

Lipniacki et al. [26]. However, we simplified this model quite

substantially:

– As we previously showed [13], the state variables IKKa|IkBa
and IKKa|IkBa|NFkB can be eliminated using the quasi-

steady-state approximation, which only marginally affects the

model output.

– Furthermore, the A20 feedback loop does not play a decisive

role for IL-1 induced NF-kB signalling [30,13]. It was therefore

removed from the model.

– Nuclear export of IkBa-NF-kB complex is a very fast process

[26,12]. Therefore we applied the quasi-steady-state assump-

tion to eliminate the state variable IkBan|NFkBn. Nuclear

import of NF-kB is slower, but still considerably fast

(0.0026 s21 [12]). Tentative model reduction using the quasi-

steady-state assumption yielded an only marginally worse fit.

We therefore also eliminated the state variable NFkB.

– Like most NF-kB models (e.g. [7,26,12]), we assume mass

conservation of NF-kB, i.e. NF-kB is neither synthesised nor

degraded in our model. This allows the elimination of another

differential equation. We choose the differential equation

describing the temporal change of IkBa|NFkB.

The effects of the different stimulations are the following: CHX

inhibits ILR and IkBa synthesis. Note that CHX has no effect on

IKK, PP2A and NF-kB in our model, because we assume that

synthesis of these proteins does not occur in relevant amounts at

the considered time scales. IL-1 induces ILR complex formation,

MG132 terminates proteasomal degradation of IkBa, i.e. both
IKKb dependent and independent degradation are inhibited [27].

Potential effects of MG132 on protein synthesis [31] were not

considered. UVB radiation attenuates IkBa synthesis [16] by

a (fitted) fraction uvinh. Since translational inhibition was reported

to occur through phosphorylation of eukaryotic initiation factor-2a
(eIF2a) [28,29], we assumed that the same fraction uvinh of ILR

synthesis is affected. eIF2a phosphorylation occurs almost

immediately following UVB stimulation [32] so that a constant

UVB-induced translational inhibition is assumed.

Taken together, the model equations of the reference model

(Figure 1) read

d

dt
ILR(t)~kilr:(1{chx(t)):(1{uv(t):uvinh)

{kilr:ILR(t){ka:il(t):ILR(t)

Figure 4. IkBa degradation upon UVB stimulation critically depends on constitutive IKKb phosphorylation.Model results of model MRef

for protein levels with kpconst as determined by fitting (red), ten fold larger kpconst (black) and ten fold lower kpconst (blue). For any stimulation except
UVB stimulation alone, the differences are marginal.
doi:10.1371/journal.pone.0040274.g004
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d

dt
ILRc(t)~ka:il(t):ILR(t){ki:ILRc(t)

d

dt
IKKp(t)~kp:ILRc(t):IKK(t)

{
kdp:PP2A(t):IKKp(t)

KmzIKKp(t)
zkpconst:IKK(t)

d

dt
PP2A(t)~{kuv:uv(t):PP2A(t)

d

dt
NFkBn(t)~kv:a3:(1{mg(t)):IKKp(t):IkBaNFkB(t)

{a1:IkBan(t):NFkBn(t)zc6a:kv:IkBaNFkB(t)

d

dt
IkBat(t)~c1a:NFkBn(t){c3a:IkBat(t)

d

dt
IkBa(t)~{a2:(1{mg(t)):IKKp(t):IkBa(t)

{c5a:(1{mg(t)):IkBa(t)

{i1a:IkBa(t)ze1a:IkBan(t)

z(1{chx(t)):(1{uv(t):uvinh):c4a:IkBat(t)

d

dt
IkBan(t)~{a1:IkBan(t):NFkBn(t)

zi1a:kv:IkBa(t){e1a:kv:IkBan(t)

where IKK(t) = 1– IKKp(t) and IkBaNFkB(t) = nfkbtot – NFkBn(t)/kv,

as obtained from the mass conservation of IKK and NF-kB,
respectively. nfkbtot is the concentration of NF-kB if it is completely

Figure 5. Relevance of UVB-induced translational inhibition and PP2Ac deactivation for IkBa and NF-kB upon UVB+/2IL-1
stimulation. Knocking out the processes of UVB-induced translational inhibition or PP2Ac deactivation in silico, their importance for IkBa and NF-kB
in model MRef is determined. (A) Upon IL-1+UVB stimulation, lack of PP2Ac deactivation leads to recurrence of IkBa and decrease of NF-kB activity,
while lack of translational inhibition only leads to a minor increase of the IkBa concentration. (B) Upon UVB stimulation, lack of PP2Ac deactivation
leads to a modest decrease of IkBa concentration and to a modest increase of NF-kB activity, while lack of translational inhibition leads to a slow
increase of NF-kB activity.
doi:10.1371/journal.pone.0040274.g005
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in the cytoplasm. Division by the cytoplasm to nucleus volume

ratio kv is required to account for the different compartments of

IkBaNFkB(t) and NFkBn(t). Tables S1 and S2 describe the meaning

of the system parameters and variables, respectively. The variable

il(t) is a step function reflecting the given IL-1 concentration (0 or

0.000588 mM IL-1), and uv(t), chx(t) and mg(t) are step functions

which are 0 if the respective stimulation is absent, and 1 if it is

present.

The IKKb phosphorylation module can be normalised

without loss of generality, such that the initial conditions

ILR(0) = 1, ILRc(0) = 0, PP2A(0) = 1 are obtained in unstimulated

cells, and IKK(t) + IKKp(t) = 1 (cf. [13]). Without the weak

constitutive IkBa degradation, IkBa and NF-kB would exclu-

sively exist bound to each other in the cytosol. Also, IKK is

almost completely unphosphorylated in unstimulated cells.

Starting from this state, a relaxation period of 120 h before

stimulation was chosen to reach steady state concentrations.

Thus, IKK(2120 h) = 1, IKKp(2120 h) = 0, Ik-
BaNFkB(2120 h) = nfkbtot, NFkBn(2120 h) = 0, Ik-
Bat(2120 h) = 0, IkBan(2120 h) = 0, IkBa(2120 h) = 0.

The measured IKK phosphorylation, cellular IkBa and nuclear

NF-kB correspond to the observables

IKKobs(t)~sIKK :IKKp(t)

IkBaobs(t)~sIkBa:(IkBa(t)zIkBaNFkB(t)zIkBan(t)=kv)

NFkBobs(t)~sNFkB
:NFkBn(t)

Due to the lack of an absolute reference value, the measure-

ments of NF-kB following different stimulations were scaled with

different scaling factors. A unique scaling factor was used for

IKKobs, where the maximal phosphorylation is used as a reference

value [13], and IkBaobs, where the initial cellular IkBa concen-

tration was used as a reference value.

A model variant without UV-induced PP2Ac deactivation

(model MP) was obtained setting kuv = 0. A model variant without

UV-induced translational inhibition (model MT) was created

setting uvinh = 0.

The parameter values and boundaries were derived as follows:

the IL-1 receptor turnover rate constant kilr can be derived from

[33], as shown in [34]. Depending on the number of ILR/cell

(5000–15000 [33]), kilr is between 9.3e–6 s21 and 2.8e–5 s21. For

kp, we adopt the upper bound of 0.095 s21 from [13]. The

remaining parameters of the upstream module were fitted without

bounds.

The association rate constant of IkBa and NF-kB, a1, was fitted
within the bounds 0.3–1 mM21 s21 [7]. An upper bound for the

parameters describing IKK-dependent degradation of free and

NFkB bound IkBa, a2 and a3, can also be derived: Lipniacki et al.

[26] assumed an upper bound of 1 mM21 s21 for a3. Accounting

for the IKK normalisation of the upstream module, this value has

to be multiplied by the maximal IKK concentration reported in

the literature, which is 0.8 mM [8], to obtain an upper bound of

0.8 s21. Since a2 might be equal to a3 [27], we adopted the same

upper bound for a2.

The degradation rate constant of IkBa mRNA, c3a, was fitted

according to the parameter range allowed by different interpreta-

tions of Fig. 5 in [35]: the regression in the paper yields a half-life

of about 30 min. However, half of the initial mRNA is degraded

rather precisely after 45 min. On the other hand, the first 15 min

may not be suitable for half-life determination since an unexpected

increase of mRNA is observed. A good regression without this first

data point is possible and yields a half-life of about 15 min. As

a result, we choose a parameter range corresponding to IkBa
mRNA half-lives from 15 to 45 min for fitting of c3a.

The upper bound of c4a was derived as shown in [26]. The

parameter c6a was chosen according to [12].

For the parameter c5a, describing IKK-independent degradation

of free IkBa, different values can be found in literature: O’Dea et

al. [16] report a value of 0.002 s21, corresponding to a half-life of

about 6 min. However, experimental results may be highly

variable, as apparent in measurements of Truhlar et al. (Fig. 4B

and 4C in [36]): while the half-life in Fig. 4B is clearly smaller than

10 min, it is about 20 min in Fig. 4C. The same variability can be

found in Mathes et al. [27]: while they report a half-life of 10 min

or less, they also present pooled data from several Western blots

suggesting a half-life of 15–20 min (Fig. 1B in [27]). We therefore

fitted c5a within a range corresponding to half-lives between 6 and

20 min.

For i1a we adopted the fitting range as determined by Ashall et

al. [12]. As in previous models (e.g. [12,26]), e1a is assumed as 2?i1a,

as can be derived from [37].

For the total cell volume, volume, a value of 2 pl was measured in

keratinocytes [38], which corresponds to the value assumed by

[26] for fibroblasts.

The ratio of cytoplasmic to nuclear volume, kv, was measured as

2.9 in keratinocytes [39].

The concentration of NF-kB if it is completely present in the

cytoplasm, nkfbtot, can be calculated as

nfkbtot ½mM�~ numnfkb ½molec�
6:022:1017 ½molec=mmol�:cytVol ½l�

where numnfkb, the total number of NF-kB molecules in the cell, is

60000 molecules [40], and the volume of the cytoplasm, cytVol, is

calculated as volume[l]/(1+1/kv).
Lipniacki et al. [26] derive an upper bound for c1a, c1a,max, as

follows: based on biological considerations, they determine the

maximal mRNA production rate as 0.16 molec/s and assume that

this rate is reached when all NF-kB is located in the nucleus.

Consequently

c1a,max~
maxmRNAproduction rate ½mM=s�

max nuclear NFkB concentration ½mM� :

Since the mRNA production rate is counted per cytoplasmic

volume and the NF-kB concentration refers to the nuclear volume,

this corresponds to

c1a,max~
maxmRNAproduction rate ½molec=s�

kv:numnfkb ½molec� :

We therefore obtain a value of 9.2e–7 s21 for c1a,max.

The scaling parameters are fitted without bounds. The maximal

value for the UV-induced translation attenuation factor, uvinh, is 1

(complete inhibition).

Table S1 summarises the model parameterisation.

The MATLAB (The MathWorks) based software toolbox

PottersWheel 2.0 [41] was used for the solution, optimisation

and analysis of the ordinary differential equation systems. The x2

value was chosen as objective function, with
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x2(h)~
XS

i~1

XO

j~1

XNij

k~1

(yijk{y(tijk,h,i,j))
2

sijk2

where S is the number of different experimental settings, O is the

number of observables, Nij is the number of data points for

observable j under stimulation i, yijk is data point k of observable j

under stimulation i with standard deviation sijk, and y(tijk,h,i,j) is the
simulated value of observable j under stimulation i at time point tijk
for the parameter vector h. The notion ‘‘x2 value’’ is adopted from

PottersWheel though a normal distribution of the errors cannot be

guaranteed. However, we draw no conclusions relying on the

assumption of normally distributed errors.

The parameter values of [13] and [26] were used to derive

plausible initial parameter values prior to fitting. Minimisation was

performed with PottersWheel’s pwF3 routine using a trust region

approach. The pwF3 routine performs fits starting from the

parameter values of the currently best fit randomly disturbed by

a factor 10e, where e,N(0,n). We performed 4 subsequent runs

with 1000 fits each, where n= 4, 1, 0.1, 0.01, respectively, keeping

the best fit of the previous run.

II) Experimental Procedures and Data Processing
The human epithelial carcinoma cell line KB (ATCC) was

cultured in RPMI 1640, 10% FCS at 37uC and 5% CO2.

Subconfluent cells were stimulated in colourless medium with 2%

FCS. Cells were stimulated with 10 ng/ml recombinant human

IL-1b (R&D Systems) or co-stimulated with IL-1 and 300 J/m2

UVB using 6 TL12 fluorescent bulbs (290–320 nm, Philips).

MG132 (25 mM, Merck) was added either 1 h prior to or 15 min

after IL-1 and IL-1+UVB stimulation, depending on the specific

experiment. Cycloheximide (CHX) was added at a final concen-

tration of 5 mg/ml. At the indicated time points, the IkBa status

was determined by Western blot analysis using a specific antibody

(L35A5, Cell Signalling Inc). Equal loading was monitored by

reprobing the membrane with an antibody directed against a-
tubulin (DM1A, Neomarkers). Data from electrophoretic mobility

shift analysis as well as IKKb phosphorylation were extracted from

own previously published data [25,13].

The NF-kB time courses were scaled to a mean of 1 and

subsequently averaged. IkBa Western blots were standardised to

an initial value of 1. For each pooled time series, it was further

assumed that the standard deviation of each value was not smaller

than 10% of the maximal value of the respective pooled time

series. Obvious blot artefacts were discarded. Each time series was

generated from 3 independently performed experiments.

Supporting Information

Figure S1 Model results of model MT. Experimental data

and standard deviations (blue) of phosphorylated IKKb, cellular
IkBa and nuclear NF-kB are compared to the results of model MT

(red) fitted to these data.

(TIF)

Figure S2 Model results of model MP. Experimental data

and standard deviations (blue) of phosphorylated IKKb, cellular
IkBa and nuclear NF-kB are compared to the results of model MP

(red) fitted to these data. The IkBa overshoot following IL-1

stimulation, the sustained low level of phosphorylated IKKb

following IL-1+UVB stimulation and the IkBa decrease following

UVB stimulation are not convincingly reproduced.

(TIF)

Figure S3 Model results of model MT, including IL-
1+UVB+MG132 stimulation. Experimental data and standard

deviations (blue) of phosphorylated IKKb, cellular IkBa and

nuclear NF-kB are compared to the results of model MT (red)

fitted to these data. The IkBa overshoot following IL-1 stimulation

is not reproduced.

(TIF)

Figure S4 Model results of model MRef, including IL-
1+UVB+MG132 stimulation. Experimental data and standard

deviations (blue) of phosphorylated IKKb, cellular IkBa and

nuclear NF-kB are compared to the results of model MRef (red)

fitted to these data.

(TIF)

Figure S5 Model results of model MRef fitted to all
experimental data simultaneously. Experimental data and

standard deviations (blue) of phosphorylated IKKb, cellular IkBa
and nuclear NF-kB are compared to the results of model MRef

(red) fitted to these data.

(TIF)

Figure S6 Relevance of altered UVB-induced trans-
lational inhibition and PP2Ac deactivation for NF-kB
activity upon UVB stimulation. This scenario considers a cell

with constitutive IKKb phosphorylation altered by a factor of 3

and PP2Ac activity altered by a factor of 0.01, compared to the

reference scenario (Table S1). Knocking out the processes of UVB-

induced translational inhibition or PP2Ac deactivation in silico,

their importance for the decrease of IkBa in model MRef is

determined. In contrast to the situation in the reference scenario

(Figure 5B), translational inhibition alone is sufficient to induce fast

IkBa degradation upon UVB stimulation.

(TIF)

Table S1 Parameter values and descriptions. Parameter

values of model MRef fitted to all data. Note that the state variables

of the IKKb phosphorylation module are normalised and

dimensionless. Parameters without fit range are fitted without

bounds.

(PDF)

Table S2 Description of the system variables and
inputs.
(PDF)

File S1 PottersWheel model definition file for model
MRef.

(M)
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