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Celastrol (1), obtained from the roots of Tripterygium wilfordii Hook F., is most likely to
become an antitumor drug, but with severe cytotoxicity. Due to the lack of modifiable
sites in the structure of celastrol, the structural diversity of the modified products
obtained by synthesis in the previous studies is insufficient, which hinders the pace of its
patent medicine. This study describes a method of microbial transformation to increase
the modification site of celastrol and reduce its toxicity. The screening of endophytes
from native plants was introduced in this context, which led to two novel stereoselective
oxidation products such as S-16-hydroxyl celastrol (2) and A-ring aromatized S-16-
hydroxyl celastrol (3), along with a rare 7,9-octadecadienoic acid ester of celastrol (4).
Their structures were determined by extensive spectroscopic data analysis, especially
1D and 2D NMR. Compared with 1, compounds 3 and 4 exhibited similar antitumor
activity in U251, A549, KG-1, and B16 cell lines. Compound 2 had slightly decreased
antitumor activity when compared with compound 1. Furthermore, compound 2–4
showed lower cytotoxicity against BV-2 (about 21-fold lower, 2: 92.82 µM, 3: 34.25 µM,
and 4: 74.75 µM vs. celastrol: 4.35 µM), and also identical trends against H9c2 and
PC12 cell lines.

Keywords: celastrol, bio-transformation, endophyte, reduce toxicity, hydroxylation

INTRODUCTION

Celastrol (1) is a quinone methide pentacyclic triterpenoid isolated from the roots of Tripterygium
wilfordiiHook F., which exhibits multiple promising biological activities, including anticancer, anti-
inflammation, anti-obesity, and anti-diabetic activities (Liu et al., 2015; Chen et al., 2018; You et al.,
2021). However, it also associated with limitations such as poor water stability (Qi et al., 2014),
low bioavailability (Zhang et al., 2012; Shi et al., 2020), narrow therapeutic window, and undesired

Abbreviations: 1D and 2D NMR, one-Dimensional and two-Dimensional Nuclear Magnetic Resonance; TLC, Thin
Layer Chromatography; IC50, 50% Inhibiting Concentration; NOESY, Nuclear Overhauser Effect Spectroscopy; HPLC,
High Performance Liquid Chromatography; RP-HPLC, Revise Phase, High Performance Liquid Chromatography;
HRESIMS, High Resolution Electrospray Ionization Mass Spectrometry; DEPT, Distortionless Enhancement by Polarization
Transfer; 1H-1H COSY, Homonuclear Chemical Shift Correlation Spectroscopy; HMQC, Heteronuclear Multiple Quantum
Correlation; HMBC, Heteronuclear Multiple Bond Correlation.
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side effects. These limitations have greatly hindered its clinical
application, and have thus attracted considerable interests from
pharmacologists and chemists.

In the past two decades, many chemical synthesizers have
tried to modify the structure of celastrol through chemical
modification, resulting in more than 190 new entities (Sun
et al., 2010; He et al., 2020; Hou et al., 2020). The modifiable
sites in the structure, however, are very limited, with the most
frequent transformations in the structure–activity relationship
studies involving the C=O-2, C(OH)-3, CH-6, and COOH-
30 groups (Tang et al., 2015; Jiang et al., 2016; Li et al.,
2019). Previously, the C-30 carboxylic group was the prime
modification site of celastrol. The classical aim of C-30
carboxylic group modification was to improve the water
solubility by conjugation with alcohol, amine, amino acid,
urea, or carbamate (Shang et al., 2021). Celastrol has also
been conjugated with other anticancer agents with different
mechanisms of action through the C-30 carboxylic group
to generate hybrids with improved activities and reduced
toxicity. The derivatization of C-3 hydroxyl group with
hydrophilic groups such as piperazine, and C-6 sulfonation and
sulfidation could increase antiproliferative activities. Although
these derivatives improved the solubility and absorbance, the
consequent infertility, cardiotoxicity, and hematopoietic system
toxicity should not be ignored. Therefore, it is important to
explore the diversity of celastrol derivatives providing alternative
sites for chemical modification.

Biotransformation and biodegradation of toxic substances has
always been one of the self-protection behaviors of organisms
(Li and Zheng, 2020). Aldolization, oxidation, and hydroxylation,
and some decomposition reactions are the main types of
biodegradation mechanisms (Li et al., 2020). However, as
celastrol has strong antibacterial properties, common culturable
strains in the laboratory could not tolerate it. This study aims
to search for celastrol-tolerant symbiotic microorganisms in
T. wilfordii, the native plant of celastrol. We identified five strains
(LGT-1–LGT-5) resistant to celastrol in concentrations of 25–
50 mg/150 ml. Among them, LGT-5 could transform celastrol
into compounds 2 (Wu et al., 2020) and 3 with novel S-16-
OH, and compound 4 bearing rare 7,9-octadecadienoic acid ester
(Figure 1). Herein, the structural determination of compounds
2–4 is described in detail.

MATERIALS AND METHODS

General Experimental Procedures
Nuclear Magnetic Resonance (NMR) spectra were detected at
400 MHz for 1H and 100 MHz for 13C on Bruker AVIII
400 MHz spectrometers (Bruker Daltonic Inc., Billerica, MA,
United States) in methanol-d4 (CD3OD) and chloroform-d
(CDCl3) with solvent peaks used as references. (–)-HRESIMS
data were measured using an Agilent 1290 Infinity II Accurate
Mass Q-TOF-LC/MS spectrometer (Agilent Technologies, Santa
Clara, CA, United States). Column chromatography (CC)
was performed with silica gel (200–300 mesh, Qingdao
Marine Chemical Inc., Qingdao, China) and Sephadex LH-20

(Amersham Biosciences Inc., Shanghai, China). Preparative high-
performance liquid chromatography (HPLC) was performed by
using a Harbor NP7005C pump system (Harbor Sci. & Tech.,
China) equipped with Mgres/headra C18 (250× 20 mm, 10 µm,
Harbor Sci. &Tech., China). Thin layer chromatography (TLC)
was carried out on precoated silica gel GF254 glass plates. Spots
were visualized under ultraviolet (UV) light or by spraying with
10% H2SO4 in 95% ethanol (EtOH) followed by heating.

The Preparation of Celastrol
The root and stem of T. wilfordii (10 kg) was crushed into
granules of about 3 × 4 mm, and was then extracted three
times with 80% EtOH (1 h, v/v, 1:80) using ultrasonic extraction.
The 80% residue was suspended in water (H2O, 1 L) and then
partitioned with ethyl acetate (EtOAc, 3 × 1 L). The EtOAc
extract was evaporated under reduced pressure to yield 220.8 g of
residue, which was subjected to silica gel CC. Elution was carried
out with a petroleum-acetone (Me2CO) gradient (100:0–0:100)
to produce a crude celastrol fraction (petroleum-Me2CO, 100:7)
on the basis of TLC analysis. The crude celastrol fraction was
further subjected to additional chromatography on Sephadex LH-
20 [methanol (MeOH)-dichloromethane (CH2Cl2), 1:1] to yield
celastrol (12.4 g).

Isolation and Identification of LGT-5
Fungus and Cultural Conditions
The fungus LGT-5 was isolated on potato dextrose agar media
from fresh T. wilfordii collected from Yao County (Dali, Yunnan
Province) using a previously described explant culture method
and repeated streaking (Wang et al., 2020). This fungus was
stored in slants of modified Martin Medium (MMM) (tryptone
5.0 g, yeast extract powder 2.0 g, glucose 20.0 g, K2HPO4 1.0 g,
MgSO4 0.5 g, agar 20.0 g, distilled water 1 L, pH 6.2–6.5) at 4◦C
at the Ningxia Medical University, China.

Colony Morphology Observation
The endophytic fungus strain LGT-5 from T. wilfordii was
inoculated in MMM and oat medium (OMA) (oat 30.0 g, agar
20.0 g, distilled water 1 L), respectively. The endophytic fungus
was cultured at 28◦C for 5–7 days. The colony diameter was
recorded and photographed.

Colony morphology was observed by scanning electron
microscope. LGT-5 was inoculated in MMM, and a sterile cover
glass was inserted into the colony growth medium at an angle
of 45◦. After 2 days of culture, the cover glass was gently pulled
out and washed twice with 0.1 M sodium dimethyl arsenate
buffer, and then fixed in 2% glutaraldehyde solution for 2 h
(the side with hyphae facing upward). After fixation, the cover
glass was washed three times (once every 2 h) in 0.1 M sodium
dimethyl arsenate buffer, and finally fixed in 0.1 M sodium
dimethyl arsenate buffer at 4◦C for more than 12 h. It was then
dehydrated with increasing concentrations of ethanol, 30, 50, 70,
80, 90, and 100% ethanol, for 10–15 min for each concentration.
The samples were incubated twice with 95% tert-butyl alcohol
solution for 15 min each time, and then incubated with 100% tert-
butyl alcohol solution for 15 min. Thereafter, the samples were
placed in the refrigerator at –20◦C for 20 min. After freeze-drying
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FIGURE 1 | The chemical structures of compounds 1–4. Compounds 2–4 were new structures.

and ion sputtering, the prepared samples were placed under a
scanning electron microscope and observed under 10 kV.

ITS-18S Sequencing
The universal primers ITS1 and ITS4 were used for polymerase
chain reaction (PCR) amplification on PCR amplification system
(25 µl): 10 × Taq buffer 2.5 µl, dNTPs (2.5 mmol/l) 2.0 µl,
Taq DNA polymerase (Tiangen Biotech Co., Ltd., Beijing,
China) 0.2 µl, upstream and downstream primers (10 µmol/l)
1.0 µl, DNA template 2.0 µl, and distilled water supplement
to 25 µl. Amplifications were performed using MiniCyclerTM
PCR (PERKINEI, PTC-150, MJ Research) with an initial pre-
denaturation at 94◦C for 3 min; denaturation at 94◦C for 30 s,
annealing at 56◦C for 30 s, extension for 90 s at 72◦C for 40 cycles,
and finally extension for 5 min at 72◦C and preservation at 16◦C.
The PCR products were purified, recovered and sequenced.

Biotransformation Process and Isolation
of Compounds 2–4
The cultivation of the strains was carried out on a shaker at 28◦C
and 180 rpm for 2 days in a 250 ml conical bottle containing
150 ml liquid medium (MMM without agar, 40 bottles).
Thereafter, 50 mg celastrol was added per bottle and further
cultivated for another 5 days. The co-culture supernatant was
filtered and partitioned 4 times with EtOAc (v/v, 1:1) and

n-BuOH (v/v, 1:1). The EtOAc extract was evaporated under
reduced pressure to yield 0.89 g. The EtOAc residue was subjected
to silica gel CC eluting with a petroleum-Me2CO gradient (100:0–
0:100) to produce seven fractions (A-G) on the basis of TLC
analysis. Fraction B was fractionated through reversed-phase
preparative HPLC using a mobile phase of MeOH-H2O (93:7) to
yield five fractions (B1–B5) and compound 4 (25.5 mg). Fraction
B3 was further separated by preparative RP-HPLC by using
MeOH-H2O (85: 15 and 82:18) to yield compound 2 (8.9 mg) and
B3-2. CC of B3-2 over Sephadex LH-20 [petrol-CHCl3-MeOH
(5:5:1)] afforded compound 3 (14.6 mg).

Cytotoxicity Evaluation
Cell counting kit-8 (CCK-8) method was used to screen the
antitumor activities on glioma cells U251 (Cheng et al., 2021),
lung cancer cell line A549 (Liu et al., 2021), acute myeloid
leukemia cells KG-1 (Naimi et al., 2019), and mouse melanoma
cells B16 (de Souza et al., 2021). The cytotoxicity was evaluated
using the PC12 (Hu et al., 2016), BV-2 (Mi et al., 2019), and H9c2
(Hu et al., 2016) cell lines using CCK-8 assay.

Test Sample Preparation
Compounds 1–4 were prepared with dimethyl sulfoxide (DMSO,
solvent) to obtain 50 mmol/l mother liquor, and then diluted with
complete medium to obtain concentrations of 8.0, 4.0, 2.0, or
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1.0 µmol/l. The complete medium consisted of 90% DMEM basic
medium supplemented with 10% fetal bovine serum.

Culture Conditions
A 100 µl test cell suspension (containing 5× 103 cells) was added
to each well of a 96-well plate and incubated at 37◦C, 5% CO2 for
24 h. The supernatant was then discarded, 100 µl sample solution
was added, and the cells were incubated for 48 h. Thereafter,
the supernatant was discarded, and 3 holes set for each sample
solution. The samples were washed with PBS buffer, stained with
CCK-8 (2 h), and enzyme-linked immunosorbent assay used to
determine the absorbance at 490 nm.

Cell proliferation inhibition rate (%) = (OD value
administration hole OD value control hole)/OD value blank
hole× 100%.

Cell survival rate (%) = (1 – cell proliferation inhibition
rate)× 100%.

Statistical Methods
The median inhibitory concentration (IC50) was calculated using
the probit analysis method in IBM SPSS statistics 22, and one-way
ANOVA software GraphPad prism 6.02 was used for intergroup
comparison at p < 0.05 level, which was considered to be
statistically significant.

RESULTS

Structural Determination of Compounds
2–4
Compound 2 is a light-yellow powder with solubility in
chloroform, methanol, ethyl acetate, and other lower polar
solvents. Its molecular formula of C29H38O5 was determined
using the HRESIMS data of the ions as [M–H]- at m/z 465.2720,
in combination with the NMR data analysis. The 1H NMR
(Table 1) that was acquired in CD3OD showed resonances,
including six singlet methyl groups at δH(ppm) 0.78 (s, H3-
27), 1.27 (s, H3-28), 1.30 (s, H3-29), 1.47 (s, H3-25), 1.56 (s,
H3-26), and 2.21 (s, H3-23). A group of proton peaks in the
downfield region of 6.44 (d, J = 1.2 Hz, H-1), 7.23 (dd, J = 7.2,
1.2 Hz, H-6), and 6.54 (d, J = 7.2 Hz, H-7) resembled the
resonances attributed to A and B rings in celastrol. Compared
with celastrol, one additional oxymethine signal at δH 4.00 (dd,
J = 8.8, 6.8 Hz, H-16) indicated that compound 2 could be a
hydroxylation product of compound 1. This was also supported
by the 16 Da difference in mass number between compound
2 and 1. The comparison of 13C NMR (Table 2) between
compounds 2 and 1 indicated that one methylene (CH2, at 36.1
δC) in compound 1 was transformed to oxymethine (CH-O,

TABLE 1 | 1H NMR spectroscopic data for compounds 1–3 in CD3OD and 4 in CDCl3a.

No. 1 2 3 4b 1c

1 6.46, d (1.2) 6.44, d (1.2) 6.68 s 6.51 s 6.50, d (1.2)

6 7.21, dd (7.2, 1.2) 7.23, dd (7.2,1.2) a: 3.40, dd (20.4, 5.6) 7.06, d (7.6) 7.07 dd (7.2, 1.2)

b: 3.02, brd (20.4)

7 6.47, d (7.2) 6.54, d (7.2) 5.91, brd (5.6) 6.34, d (7.6) 6.34, d (7.2)

11 2.21, m a: 1.55, m 2.04, m a: 1.82, m –

1.90, m b: 2.18, m b: 1.66, m

12 1.88, m a: 1.80, m a:1.98, m a: 2.13, m –

1.29, m a: 1.88, m b:1.56, m b: 1.65, m

15 2.12, m a: 2.41, brdd (14.4, 8.8) a:2.45, brdd (14.4, 9.2) a: 1.77, m –

1.73, m b: 1.77, brdd (14.4, 6.8) b:1.68, brdd (14.4, 8.0) b: 1.29, m

16 2.13, m 4.00, dd (8.8, 6.8) 4.03, dd (9.2, 8.0) 2.08, 0.93, m –

0.93, m

18 1.66, m 1.80, m 1.80, m 1.58, m –

19 a: 2.47, brd (15.6) a: 2.07, dd (14.4, 6.8) a: 1.75, m a: 2.48, d (16.0) –

b:1.73, dd (15.6, 7.2) b: 1.59, m b: 1.68, m b: 1.73, d (16.0)

21 1.66, 2H, m 2.16–2.24, m a: 2.20, m a: 1.61, m –

b: 1.45, m b: 1.31, m

22 1.51, m a: 1.50, m 1.55, m a: 1.50, m –

1.93, m b: 1.87, m b: 1.87, m

23 2.21, s 2.21, s 2.15, s 2.22, s 2.22, s

25 1.46, s 1.47, s 1.28, s 1.44, s 1.44, s

26 1.19, s 1.56, s 1.53, s 1.22, s 1.25, s

27 0.73, s 0.78, s 0.81, s 0.60, s 0.58, s

28 1.13, s 1.27, s 1.27, s 1.09, s 1.10, s

29 1.31, s 1.30, s 1.32, s 1.24, s 1.29, s

a 1H NMR data (δ) was measured at 400 MHz in CD3OD (1–3) and CDCl3 (4). Proton coupling constants (J) in Hz are given in parentheses. The assignments were based
on DEPT, 1H-1H COSY, gHMQC, and HMBC experiments. b Data for the 7,9-octadecadienoic acyl group were provided as H-2’: 2.33, 2.14, m; H-3’: 2.33, 1.62, m;
H-4’: 1.23, 1.84, m; H-5’: 2.05, m; H-6’: 2.78, m; H-7’: 5.30-5.43, m; H-8’: 5.30-5.43, m; H-9’: 5.30-5.43, m; H-10’: 5.30-5.43, m; H-11’: 2.05, m; H-12’: 2.23, 1.36, m;
H-13’: 1.87, 1.36, m; H-14’: 1.54, m; H-15’: 1.61, 1.31, m; H-16’: 1.30, 0.89, m; H-17’: 1.31, m; H-18’: 0.89, t, J = 7.2 Hz. c Data of 1 in CDCl3 were also provided as ref.
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TABLE 2 | 13C NMR spectroscopic data for compounds 1–3 in CD3OD and 4 in
CDCl3a.

No. 1 2 3 4b 1c

1 119.9 118.8 109.1 120.5 120.7

2 180.2 178.8 144.5 178.5 178.5

3 148.0 146.3 141.8 147.0 147.2

4 120.6 119.2 122.1 119.9 120.7

5 128.8 127.3 125.9 127.7 127.8

6 136.6 134.7 29.0 135.2 135.7

7 120.3 118.9 121.1 118.5 118.5

8 172.4 172.0 153.5 172.3 173.0

9 44.4 43.2 44.4 43.3 43.3

10 166.6 164.4 141.8 165.2 165.3

11 34.8 32.2 35.2 33.9 34.0

12 30.8 29.8 32.3 29.8 29.5

13 41.4 39.3 38.1 40.2 40.1

14 46.5 44.3 39.4 45.5 45.5

15 31.8 39.8 43.6 31.7 30.9

16 36.1 74.0 76.3 34.7 34.7

17 31.0 35.9 37.2 30.8 29.7

18 45.8 43.8 45.5 44.5 44.7

19 32.1 30.8 32.1 31.2 31.3

20 40.8 39.8 41.3 39.5 39.5

21 29.9 28.3 29.7 29.2 28.9

22 37.7 35.7 37.4 36.6 36.6

23 10.5 8.8 11.8 10.6 10.7

25 39.1 38.1 33.9 38.5 38.6

26 33.3 26.8 30.2 32.7 32.6

27 19.8 19.8 21.6 18.9 18.9

28 32.2 24.6 26.2 31.7 31.7

29 22.4 26.4 27.1 21.7 21.7

30 182.6 182.6 183.8 183.3 182.5

a 13C NMR data (δ) was measured at 400 MHz in CD3OD (1–3) and CDCl3
(4). The assignments were based on DEPT, 1H-1H COSY, gHMQC, and HMBC
experiments, as well as compared to those of celastrol in literature. b Data for the
7,9-octadecadienoic acyl group were provided as C-1’: 179.1; C-2’: 34.1; C-3’:
24.9; C-4’: 29.4; C-5’: 27.4; C-6’: 25.8; C-7’: 128.1; C-8’: 130.3; C-9’: 128.3; C-
10’: 130.4; C-11’: 27.4; C-12’: 29.7; C-13’: 29.9; C-14’: 28.9; C-15’: 29.3; C-16’:
22.8; C-17’: 29.6; C-18’: 14.3. c Data of 1 in CDCl3 were also provided as ref.

at δC 74.0 ppm) in compound 2, which is consistent with the
1H NMR hypothesis.

The proton and proton-bearing carbon signals in the NMR
spectra of compound 2 were assigned using the gHMQC
experiment. In the 1H-1H COSY spectrum of compound 2
(Figure 2), the cross-peaks of (CH)sp2-(CH)sp2; 2 × CH2-CH2;
CH2-CH-O; and a CH-CH2, together with 13C NMR and DEPT
data, indicated that compound 2 was a novel quinone methide
pentacyclic triterpenoid, which closely resembled celastrol. The
additional oxymethine was determined to be at C-16 on basis
of the HMBC correlations from H-16 to C-14, C-18, C-22, and
CH3-28, and from H-18, H2-22, and H3-28 to C-16 (Figure 2), as
well as the NMR shifts around CH-16, such as 1δC−15 + 8 ppm;
1δC−17 + 4.9 ppm; and 1δC−18 –2.0 ppm.

The relative configuration of CH-16 was determined using
the NOESY experiment. The correlations of H3-25/H3-26,

FIGURE 2 | Key 1H–1H COSY (—) and HMBC (H→C) correlations of
compounds 2–4. HMBC correlations for determining differential structure
fragments to compound 1 were assigned in red arrows, while the same
correlations were assigned in blue arrows.

FIGURE 3 | NOESY correlations (H↔H) of 2.

H3-26/H3-28, and H3-28/H3-29 indicated that these methyl
groups remained on one side of the plane, identical to compound
1, while the correlation of H-16 with H3-27 indicated that they
were oriented on the other side (Figure 3). Therefore, OH-16
was in the β orientation. As compound 2 was generated from
the mono oxidation of compound 1, the absolute configuration
of 1 and its derivatives were determined multiple times using
X-ray crystal analysis (Zha et al., 2018). Based on the results of
the above relative configuration analysis and the conservation
of the configuration of natural products from the same species,
the absolute configuration of C-16 was determined as S-
configuration. Therefore, compound 2 was finally determined as
S-16-hydroxyl celastrol.

The retention time for compound 3 peaks at 24.3 min was
shorter than for compound 2 at 26.8 min. The negative HRESIMS
of the quasi-molecular ion at m/z 467.3026 [M–H]- indicated
the molecular formula of C29H40O5, 2 Da larger than that of 2.
The 1H NMR data (Table 1) gave the same oxymethine signal
at δH 4.03, dd, (9.2, 8.0), and similar resonances belonging to
six singlet methyl groups at δH 0.81 (H3-27); 1.27 (H3-28);
1.28 (H3-25); 1.32 (H3-29);1.53 (H3-26); and 2.15 (H3-23) in
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FIGURE 4 | The images of strain growth, mycelium, and phylogenetic tree of
Phomopsis sp. LGT-5. (A) Strain cultured with MMA and OMA medium;
(B) Hyphae morphology from SEM scanning; (C) Evolutionary tree of
Phomopsis sp. L.

comparison with compound 2. All these similar 1H NMR signals
suggest that compound 3, just like compound 2, is also a mono
oxygenated product of celastrol. Detailed analysis of the 1H NMR
of compound 3 indicated that the AA’ coupled system of H-6/H-
7 (7.8 Hz) in compound 2 was transformed to A2X system at
δH(ppm) 3.40 (dd, J = 20.4, 5.6 Hz, H-6a), 3.02 (brd, J = 20.4 Hz,
H-6b), and 5.91 (brd, J = 5.6 Hz). The 0.24 ppm downfield
shifted signal of H-1, and 0.63 ppm upfield shifted proton of H-
7 suggested that the changes occurred around A and B rings.
The upfield carbon resonances of C-1, C-2, C-3, C-5, C-6, C-8,
and C-10 were 1δC –9.7, –34.3, –4.5, –1.4, –105.7, –18.5, and –
22.6 ppm, respectively, while the downshield carbon resonances
of C-4, C-7, and C-9 were 1δC + 2.9, + 2.2, and + 1.2 ppm,
respectively (Table 2). Comparison of the 13C NMR data of
compound 3 with 2 indicated that the characteristic quinone
methide structure in 1 had disappeared and was transformed into
a 1,4-dihydronaphthyl group that has been generated by chemical
modification (Figueiredo et al., 2017). Therefore, the structure of
3 could be described as S-16-hydroxyl dihydrocelastrol.

The method of determining the stereo-configuration of the
oxidation site of C-16 in 3 was the same as that of compound
2. The relative configuration of H3-25/H3-26, H3-26/H3-28, and
H3-28/H3-29 was opposite to H-16 and H3-27 that could be
deduced to the NOESY correlations. Moreover, the absolute
configuration of C-16 was maintained as S-configuration.
Thus, compound 3 was finally determined as S-16-hydroxyl
dihydrocelastrol.

The (-)-HRESIMS at m/z 711.6245 [M–H]- of 4 indicated
the molecular formula of C47H68O5, 262 Da larger than that
of compound 1, indicating that a chemical fragment had been

TABLE 3 | IC50 values (µM) of 2–4 against U251, A549, KG-1, B16, BV-2, H9c2,
and PC12 cell lines (IC50, µM, n = 3).

Celastrol 2 3 4

U251 3.36 43.87 8.12 1.69

A549 4.38 27.03 6.51 4.47

KG-1 4.35 23.21 2.61 3.50

B16 4.35 12.19 13.10 10.13

BV-2 3.04 92.82 34.25 74.75

H9c2 5.39 15.36 7.60 –

PC12 4.85 8.05 5.75 –

–, undetected.

coupled to celastrol by condensation. The 1H NMR of compound
4 gave almost all of the proton resonances corresponding
to compound 1, including six singlet methyl groups, three
sp2 hybridized methines, and some saturated methylene and
methine groups. Besides, the additional signals at δH(ppm) 0.89 (t,
J = 7.2 Hz, H-18’) and four coupled methines proton resonances
at δH(ppm) 5.30–5.43, in combination with the chemical shift
region of 0.9∼2.5 ppm, attributed to saturated groups, indicating
that the additional chemical fragment could be an unsaturated
fatty acyl. This suggestion was supported by the 13C and
2D NMR analysis. In 13C NMR spectrum, the additional 18
carbon resonances, including one methyl, 12 methylene, four sp2

hybridized methines, and one carbonyl (179.1 ppm) indicated
that compound 4 could be a octadecadienoic acid ester of
celastrol. Further 2D NMR analysis including 1H-1H COSY and
HMBC analysis of compound 4 (Figure 2) showed that the diene
site of the fatty acyl is located at C7’ to C-10’ as a butadienyl,
through correlation of H2-6’/H-7’/H-8’/H-9’/H-10’/H2-11’. (1H-
1H COSY) and H-7’ to C-5’ and C-9’, H-8’ to C-6’ and C-10’, H-9’
to C-7’ and C-11’ (HMBC). The slight chemical shift changes
of C-1 (1δC), C-2 (1δC), C-3 (1δC), and C-4 (1δC) indicated
that the 7,9-octadecadienoic acid was esterified at the 3-OH.
Therefore, compound 4 was determined as 7,9-octadecadienoic
acid ester of celastrol.

The Species Identification of LGT-5
The LGT-5 strain was isolated from fresh T. wilfordii Hook F.
and was cultured in MMA and OMA (Motta and Santana, 2012).
The diameter of bacterial colonies on MMA and OMA was 5.52
and 7.49 cm, respectively, after 5 days of growth (Figure 4A).
Scanning electron microscopy could clearly distinguish the
branch of the strain with a diameter of 2.0 µm (Figure 4B).
The universal primers ITS1 (TCCGTAGGTGAACCTGCGG)
and ITS4 (TCCTCCGCTTATTGATATGC) were used for
PCR amplification. Sequence homology analysis with ITS-18S
(Figure 4C) indicated that LGT-5 resembled Phomopsis sp.
76CG/L. Consequently, LGT-5 was named as Phomopsis sp. LGT-
5, and was deposited into the China General Microbiological
Culture Collection Center (CGMCC No. 16088).

The Results of Cytotoxicity Assay
Compounds 2–4 were screened for antitumor activities against
U251, A549, KG-1, B16 cell lines and for cytotoxicity against
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BV-2, H9c2, and PC12 cell lines (Table 3 and Supplementary
Figures 1–6). The activities for compound 3 and 4 against
tumor cells U251, A549, KG-1, and B16 were similar to
celastrol, while the activity of compound 2 declined almost
10 times. When compared with celastrol, the cytotoxicity
of compounds 2–4 declined 11 to 31-folds against BV-2,
but compound 2 and 3 had identical cytotoxicity against
H9c2 and PC12 cell lines with celastrol. The abovementioned
results indicated that the addition of 16S -OH group in
compound 2 and 3 might play a key role in reducing the
cytotoxicity, while the destruction of the conjugate system of
A and B ring in compound 2 and 7, 9-octadecadienoic acid
esterification substituted with 3-OH in compound 4 may also
be important factors to improve antitumor activity and reduce
their side effects.

DISCUSSION

According to incomplete statistics, more than 50% of small
molecule drugs in clinical application are directly or indirectly
derived from natural products, among which the molecules from
microorganisms are used in antibacterial, antiviral, antitumor,
and other aspects due to their structural diversity and unique
biological activities (Newman and Cragg, 2020). For example,
rapamycin, generated by S. hygroscopicus is used as an
immunosuppressant in renal transplantation (Vignot et al.,
2005; Yoo et al., 2017). Romidepsin is a histone deacetylase
inhibitor with antitumor activity, which is used in clinical
treatment of T-cell lymphoma. It was first isolated from Gram-
negative bacteria Chromobacterium violaceum (VanderMolen
et al., 2011). Geldanamycin is also derived from S. hygroscopicus
(Díaz-Cruz et al., 2022), a kind of benzoxazole antibiotic; it
was found to have antiparasitic and antitumor activities in
early studies. But due to poor stability and hepatotoxicity,
preclinical studies have been discontinued. A derivative of
geldanamycin (IPI-504) is still in phase II clinical trial (Di
et al., 2014). Among the 22 kinds of antibacterial drugs on
the market since 2000, 12 of them come from microbial
secondary metabolites (Newman and Cragg, 2020). All these
examples show that microorganisms play a very important
role in the development of new drugs. In the past, the
research of natural drugs mainly focused on the discovery
of secondary metabolites and the evaluation of biological
activity, as well as the chemical modification based on the
original compounds, but ignored the biological modification of
natural products. Celastrol is one of the most classical natural
products with cytotoxic activity, but because of its structural
characteristics, it is unable to obtain a variety of chemical
modification products for further pharmaceutical research. This
study introduces a new method to study celastrol. It overcomes
the serious toxicity of celastrol by using endophyte as a
biotransformation strain, and obtain new structural derivatives.
The method in this study opens another door for the study of
celastrol, and will also provide reference for the study of other
similar drugs.

CONCLUSION

This study described a method of microbial transformation
to improve the modification site of celastrol and reduce its
toxicity. LGT-5 resembled Phomopsis sp. 76CG/L. in sequence
homology analysis with ITS-18S that from T. wilfordii Hook F.,
the native plant of celastrol, and showed strong toxicity resistance
against celastrol. After co-culture with LGT-5, celastrol was bio-
transformed into novel derivatives. Based on rapid isolation and
structural identification, we reported three new compounds (2–
4) with reduced toxicity and structural diversity. The 16S-OH
derivatives of 2 and 3 increased the modification site for further
chemical derivatization.
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