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Introduction

For decades the beneficial (synthesis of vitamin D) and the adverse 
(induction of skin cancer) effects of solar UV radiation have been 
known and discussed. Nevertheless, no consensus exists concern-
ing the optimal balance between positive and negative effects of 
UV radiation. Vitamin D can be obtained through UVB expo-
sure or diet. Inadequate sun exposure or too low intake of vitamin 
D can lead to vitamin D deficiency. Deficiency has been reported 
for different latitudes and seasons.1 Higher UVB radiation doses 
are obtained by humans in the South than in the North,2 and 
one might suppose that people in southern regions have a better 
vitamin D status than people in northern regions. In contrast to 
such expectations, the vitamin D status is better in Scandinavia 
than in south Europe.3 This phenomenon has to be explained 
by other factors than ambient UVB, such as differences in skin 
color, diet, genetics or vitamin D supplementation. Such factors 
may play more important roles for the serum 25-hydroxyvitamin 
D (25(OH)D) levels than thought before.

Solar UV radiation can induce direct (UVB) and indirect 
(UVA) oxidative DNA damage and can lead to carcinogenesis. 
Non-melanoma skin cancers (NMSC) have different sun expo-
sure patterns. As suggested from etiologic studies, UVB is the 
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most important spectral region in causing squamous cell car-
cinoma (SCC), while both UVB and UVA may be related to 
basal cell carcinoma (BCC).4,5 The role of UVA in initiation 
of CMM is more controversial.6 The risk of skin cancer is very 
high for xeroderma pigmentosum variant patients with defective 
excision repair of UVB-type DNA damage, e.g., of cyclobutane 
pyrimidine dimers (CPD).7 Epidemiological evidences suggest 
that UVA may be involved in melanomagenesis.8 The newest 
experimental data obtained by use of mouse models indicate that 
not only UVB, but also UVA can induce melanoma.9 Human 
response to UVA radiation cannot be fully elucidated by ani-
mal models, and humans may respond differently. However one 
might expect strong similarities.

CMM is more common among indoor workers than among 
outdoor workers.10 This may have several reasons among them 
elastosis and skin wrinkling caused by chronic UV exposure 
and differences in vitamin D status. Epidemiological evidence 
support the hypothesis that skin aging has a protective effect on 
melanomagenesis.11 The role of vitamin D in CMM induction 
has been reviewed and discussed.12-14 It has been demonstrated 
that vitamin D has anti-proliferative effects on melanoma cells, 
and that CMM patients with high vitamin D status have thin-
ner lesions and better survival.15 Case-control studies from some 
European countries, indicate no association of serum 25(OH)D 
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vitamin D improves it.21 Organ transplant patients with 
long-term immunosuppression often develop NMSC, 
and human papillomavirus infection is an important 
risk factor.22 The risk of developing CMM seems also to 
be associated with immunosuppression.23,24 The immu-
nosuppressive effectiveness of UVA is 3-fold higher 
than that of UVB at standard conditions of noon solar 
exposure.19 Peaks in both the UVB (300 nm) and UVA 
(370 nm) regions in the action spectrum of photoim-
mosuppression suggest that different chromophores 
and mechanisms are involved in the induction of photo-
immunosuppression in these regions. This is important 
since the ratio of UVB to UVA varies with the latitude 
and with the time of the day. It is unclear how these 
variations will affect photoimmunosuppression. In 
addition to the harmful effect of UVA on the immune 
system, UVA-formation of free radicals should be taken 
into account as an important factor in skin carcino-
genesis. Not only primary actions of reactive oxygen 
species in melanoma development and progression is 
involved,25 but also “bystander effects” may play an 
important role,26 where stress-free cells can be stressed 
by nearby stressed cells.

To better understand the impact of UV on vitamin 
D production, erythema induction, DNA damage and 
CMM induction, it is necessary to look at the separate 
roles of UVA and UVB for these processes. A good 
option for such a study is to investigate countries at dif-
ferent latitudes where ratio of UVA to UVB is different. 
UVB is more scattered and absorbed in the atmosphere 
than UVA.27 Thus, the latitude gradient of UVB is 
much greater than that of UVA. However, the latitu-
dinal UVA gradient is more important for melanoma 
than for non-melanomas.28 For epidemiological evalua-
tions, the place of residence can be used in approxima-
tions of UV exposures and their impacts.29

The aim of the present study is to determine the rela-
tionship between daily or seasonal UV radiation doses, 
CMM incidence rates and 25(OH)D levels in blood 
at different geographical latitudes. Dietary vitamin D 
intake will also be taken into account. North-south gra-
dients of 25(OH)D levels and CMM incidence rates 
will be calculated based on epidemiological data, and 
calculations of biological effectiveness depending on 
action spectra and worldwide data of vitamin D status. 
The importance of UVA and UVB in CMM induction 
will be discussed.

Results

Daily UV doses. Calculations of daily integrated biolog-
ical effective UV doses for different latitudes are shown 

in Figure 1. Daily relative erythema UV doses, doses for photo-
immunosuppression and vitamin D production are dependent on 
the transmission of UV to the ground at different geographical 
regions. Longer days during the summer at higher latitudes tend 

and melanoma, but there is no reason to believe that a good status 
of vitamin D is disadvantageous.16

Photoimmunosuppression contributes to the adverse effects of 
UV radiation.17,18 UV radiation suppresses immunity,19,20 while 

Figure 1. UV doses per day at different latitudes on the northern hemisphere for 
erythema induction (A), vitamin D production (B) and induction of immunosup-
pression (C).
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doses in the summer. Around 1.5 times higher serum 25(OH)D 
levels were observed during the summer than during the winter 
in most of the countries (Fig. 5). This observation is worthy of 
being remarked, and, therefore, we expanded on this finding in 
Figure 5B. After integration of summer- and winter UV doses for 
vitamin D production at different latitudes, the summer to win-
ter ratios were compared with reported summer to winter ratios 
of 25(OH)D levels. Such a procedure will minimize the role of 
different baseline levels and focus on the role of the sun. The 
absence of any correlation between theoretical and experimental 
ratios is remarkable and will be discussed.

Discussion

The annual fluence of ambient UV varies strongly with geo-
graphical localization. Furthermore, personal sunbathing habits 
are important for health effects. Self-reported sun exposures are 
difficult to obtain and unreliable, which introduces large uncer-
tainties in evaluations and predictions. Therefore, we decided to 

to reduce north-south differences 
(Fig. 1). The ratios between sum-
mer UV doses at 20°N and 70°N are 
about 2 for both erythema induction 
(Fig. 1A) and vitamin D produc-
tion (Fig. 1B), and about 1.3 for 
photoimmunosuppression (Fig. 1C). 
Vitamin D effective daily doses (Fig. 
1B) and erythema doses (Fig. 1A) 
are comparable. At high latitudes 
(Scandinavia) production of vitamin 
D and induction of erythema is sig-
nificant only from April to October, 
whereas in the tropics the variations 
during a year are small (Fig. 1A and 
B).

UV penetration. The ratio of 
UVA to UVB on the skin surface for 
a typical summer day is about 45 at 
60°N latitudes and about 25 at the 
Equator (Fig. 2). At noon both ratios 
are about 1.7 times larger below than 
above the epidermis (Fig. 2). The 
ratio of UVA to UVB in the middle 
of a summer day is more stable and 
smaller at the Equator than in Oslo 
and Stockholm (Fig. 2).

Annual UV doses. North-south 
gradients of annual biological effec-
tive UV doses were calculated using 
action spectra for DNA damage,30 
for erythema31 and immunosuppres-
sion inductions19 (Fig. 3). An action 
spectrum with only a small peak in 
the UVA region gives a much smaller 
north- south gradient than does the 
UVB weighted action spectra.

Latitude gradient of CMM incidence rates. Countries 
located in a wide latitudinal range (Norway, Sweden, Finland, 
New Zealand and Australia) have similar latitudinal gradients 
of CMM incident rates (Table 1; Fig. 4). However, in Germany 
there is a ‘negative’ gradient for CMM rates. Furthermore, 
Australia’s and Norway’s incident rates for females do not follow 
a linear approximation (Fig. 4). The incidence rates in Norway 
are larger than those in the other Scandinavian countries. Finally, 
it seems that incidence rates are lower in the southern part of 
Germany than in the northern part. The slopes of the incidence 
rates of CMM in Australia are smaller (being 0.23 ± 0.14, p = 0.12 
for females) than that of CMM rates when northern countries are 
taken into the picture. For females these slopes are around 0.59 ± 
0.06 (p < 0.0001) while for males they are around 0.90 ± 0.06 (p 
< 0.0001). CMM incidence rates for males in Norway are larger 
(0.94 ± 0.12, p < 0.0001) than the rates when other countries are 
included in the analysis (0.90 ± 0.06, p < 0.0001).

Vitamin D at different latitudes. More vitamin D is synthe-
sized in summer than in winter (Fig. 5A) due to higher UVB 

Figure 2. UVA and UVB intensities (normalized to the same value at the Equator) before and after pen-
etration of epidermis in Oslo (A) and in the Equator (B).
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generation is related to skin color34 (which 
is generally darker at low latitudes), and 
CMM risk is also related to skin color 
under similar exposure conditions.

We have calculated the latitudinal 
dependency of annual ambient exposures 
of solar radiation leading to immunosup-
pression, erythema and DNA damage 
(Fig. 3). In view of the similarity of the 
action spectra the latitudinal dependency 
of generation of vitamin D, erythema and 
DNA damage would be similar. When 
comparing latitudinal gradients of UVA 
and CMM incidence rates, similarities 
are found.35 Latitudinal comparisons of 
UVB, BCC and SCC gradients are more 
complicated to carry out. This is due to 
the fact that routine use of sunscreens has 
been shown to be relatively ineffective in 
reducing the rates of BCC, while SCC 
rates did statistically decrease in popula-
tions using sunscreens.36 In addition, the 
latitudinal gradient in Europe of CMM 
incidence rates for males is opposite that 
for SCC, while the gradient of BCC is 

between those of CMM and SCC.28,37 Thus, the UVB impact on 
BCC and SCC rates may be different.

Two features should be remarked: (1) In Europe, notably in 
Germany, CMM is more common in the north than in the south 
(Fig. 4); (2) Migration to sunnier countries leads to an increase 
in CMM risk.38 For the populations of Scandinavia and Australia 
the rates follow almost the same latitudinal gradient, although 
for females the gradient in Australia is uncertain (Fig. 4). These 
populations, as well as those in the other analyzed countries, have 
similar Caucasian skin types, mostly types I–III. It is known 
that in Germany and in central Europe, the skin type is dif-
ferent in north and south, with increasing skin darkness in the 
south.39 Skin pigmentation attenuates penetration of UVB, also 
UVA radiation and, thus, a dark skin type may protect against 
CMM.40 This is probably the reason for the inverse latitudinal 
gradient found for CMM in Germany (Fig. 4). In addition to 
the fact that there may be inconsistencies between different can-
cer registries concerning recording of incidence rates, ‘negative’ 
latitudinal gradients of CMM incidence rates may also be related 
to genetic differences in sensitivities to UVB and UVA. UVB-
induced synthesis of previtamin D3 and UVA-induced effects on 
the deeper skin layers depend on skin pigmentation.41

Sunnier countries have smaller and more stable UVA to UVB 
ratios during most of the daytime of vitamin D generation (Fig. 
2). Interestingly, melanoma mortality rates seem to increase 
with increasing UVA to UVB ratios.28 For a complete evalua-
tion of the relationship between vitamin D photosynthesis in the 
skin and measured 25(OH)D levels in different countries, skin 
pigmentation need to be taken into account. An intake of vita-
min D rich food leads to lower concentrations of 25(OH)D in 
humans with dark skin than with white skin.42 This fits with 

study the crude latitudinal dependency. Place of residence can 
be used as approximation for UV exposures and their impact at 
given locations.29 Thus, mathematical modeling, using relevant 
action spectra, is a valuable tool for estimations of health effects 
of solar radiation.

The seasonal variation of erythemal exposures are similar to 
the seasonal variation of vitamin D generating exposures of solar 
radiation at all latitudes (Fig. 1). This is to be expected in view of 
the similarity of the corresponding action spectra,31,32 both being 
strongly UVB-weighted. Shapes and relative amplitudes of vita-
min D production (Fig. 1B) are similar to previously published 
observations regarding photosynthesis of vitamin D at different 
latitudes.33 The action spectrum of photoimmunosuppression 
has a significant UVA contribution19 which explains the relatively 
high midsummer photoimmunosuppression exposures at high 
latitudes (Fig. 1C).

In agreement with the above data, at all latitudes UVA radia-
tion lasts much longer in the afternoon than the UVB radiation 
(as here exemplified by the data for Oslo or Stockholm and for 
the Equator) (Fig. 1). Thus, if photoimmunosuppression plays a 
role for CMM induction, the afternoon is not a good time for sun 
exposure, since at that time the sun gives minimally of vitamin 
D but still gives much UVA which may be melanomagenic. The 
“danger and benefit” ratio is certainly related to the UVA/UVB 
ratio which increases strongly with decreasing solar elevation, i.e., 
with time before and after noon (Fig. 2).

Since vitamin D generation is mostly caused by UVB, just 
as DNA damage and erythema are, while melanomagenesis is 
caused by UVB and also by UVA radiation, we expect the lati-
tudinal gradient of CMM incidence rates to be smaller than that 
of vitamin D generation. However, it is known that vitamin D 

Figure 3. Latitudinal dependency of annual UV doses on the northern hemisphere for immuno-
suppression, erythema and DNA damage.
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people with a dark skin tend to have lower serum 25(OH)D lev-
els, even when food is the main vitamin D source.42

The summer/winter ratio of vitamin D-generating doses 
has a strong latitudinal dependency (Fig. 5B), being two times 
larger in north Norway than in Australia. On the other hand, the 

the evolutionary hypothesis for skin lightening at higher 
latitudes.43 In order to elucidate how the fluence rate of 
UV varies at the bottom of the epidermis during a day, 
we used relevant skin transmission coefficients. To gener-
ate the same amount of vitamin D, dark skin needs about 
six times more UVB than light skin.34 Regardless of this 
fact, Bogh et al. suggested that skin pigmentation is only 
a secondary factor for limitation of vitamin D production 
in darker skin, the baseline levels of vitamin D and total 
cholesterol being more important.44

Vitamin D intake is probably of significant impor-
tance for winter vitamin D status in populations with 
similar genetic constitutions. This suggestion is reflected, 
not only by decreasing summer/winter ratio of 25(OH)
D, but also by shifts from the winter level at 60°N. 
Daily effective vitamin D doses (Fig. 1) are about twice 
as large at 20°N as at 70°N latitudes. Due to UVB dif-
ferences in summer and winter there should be signifi-
cant differences between vitamin D photosynthesis in 
the skin during summer and winter months at northern 
latitudes. However, the calculated effective doses of vita-
min D-generating radiation do not correlate with the 
measured levels of vitamin D (Fig. 5B). In Norway the 
vitamin D intake is 10–20% larger in the north than in 
the south.45 In the late 90s it was reported that the high-
est fish to meat ratios (0.50–1.26) in food was found in 
the northwestern region of the Nordic countries, (i.e., 
in Denmark, Finland, Iceland, Norway and Sweden).46 
In the rest of the region the ratio was only 0.07–0.28.46 
Nutrition is likely to be the most reasonable explanation 
why the best vitamin D status in Europe47 is observed in 
the Nordic countries. The latitudinal variation of multi-
ple sclerosis indicates a beneficial effect of high oral vita-
min D intake in northern Europe, where the prevalence 
decreases with increasing latitude.48 However, Zitterman 
et al. used all age groups in his search for a latitudinal 
gradient of the 25(OH)D level, and found that the level 
decreased with increasing latitude.49 Others researchers have 
found the opposite.50 Our review of 25(OH)D levels shows no 
significant latitudinal gradients, neither for vitamin D status in 
the summer nor for summer/winter ratios, and nor for dietary 
vitamin D intake (Fig. 5A). A high dietary intake of vitamin D, 
especially in winter, may mask the effect of seasonal variation in 
UV-exposure. However, the vitamin D status exhibits clear sea-
sonal variation at all northern latitudes, being high in late sum-
mer and low in late winter. We find no latitudinal trend neither 
for the winter nor for the summer vitamin D status (Fig. 5), in 
spite of the fact that the annual doses of vitamin D-generating 
UVB increase strongly with decreasing latitude (Fig. 4). Several 
possible explanations of this discrepancy can be mentioned: First, 
the sun seeking behavior of the investigated populations may be 
more pronounced in the north than in the south. Second, vaca-
tions to southern latitudes may play a role.51 Third, the average 
genetic constitution may be latitudinally dependent, with darker 
skin types more frequent in the south than in the north. As 
mentioned above, it is well known that under similar conditions 

Figure 4. The age-standardized incidence rates (ASIR) according to the world 
standard population (W) per 100,000 males (A) and females (B) for CMM in differ-
ent countries.

Table 1. Characteristics of CMM incidence rates

Country
Slopes 
(Males)

P (Males)
Slopes 

(Females)
P (Females)

Sweden 0.65 ± 0.14 < 0.001 0.55 ± 0.15 < 0.01

Norway 0.94 ± 0.12 < 0.0001 1.01 ± 0.17 < 0.0001

Denmark 1.24 ± 1.13 0.33 0.66 ± 1.32 0.64

Finland 0.63 ± 0.16 0.03 0.66 ± 0.08 < 0.01

Scotland 0.02 ± 0.54 0.97 0.31 ± 1.58 0.88

Germany -0.94 ± 0.39 0.10 -1.05 ± 0.54 0.15

Australia 0.77 ± 0.16 < 0.01 0.23 ± 0.14 0.12

All countries 0.90 ± 0.06 < 0.0001 0.59 ± 0.06 < 0.0001
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UVA/UVB ratio (mainly due to UVB 
variations) do not correlate with the 
lack of a summer and winter latitudinal 
independency of the 25(OH)D level. 
In the Nordic countries there is a clear 
latitudinal gradient for CMM incidence 
rates. This indicates that UV plays a 
major role for CMM induction which is 
of particular importance for the Nordic 
countries, where the seasonal- and lati-
tudinal UVA and UVB variations are 
particularly large.

Methods and Data

Radiative transfer calculations. In the 
calculations for erythema and photo-
immunosuppression effective doses 
(Fig. 1A and C) we used a zonal sea-
sonal total ozone column climatology 
for each latitude based on ozone mea-
surements with the TOMS instrument 
on the Nimbus 7 satellite in the time 
period 1979–1992. For more UVB sen-
sitive vitamin D effective doses (Fig. 
1B) monthly averaged ozone levels that 
were obtained until 1989’s were used.52 
Our accurate multiple scattering radia-
tive transfer model uses the radiative 
transfer equation solver DISORT.53 The 
calculations were done for exposures on 
horizontal surface.

The fluence rate of healthily or car-
cinogenically effective solar radiation is 
defined by the expression: E(t) = ∫I(λ,t) 
φ(λ) dλ. The integration being per-
formed over the wavelength (λ) region 
of the solar spectrum. I(λ,t) is the solar 
irradiance at earth’s surface, φ(λ) is the 
action spectrum that describes the rela-
tive effectiveness of energy at different 

wavelengths in producing a particular biological response, and t 
is time. The daily effective doses from the sun are: D = ∫E(t)dt.

The same zonal seasonal climatology, for each latitude, was 
used to calculate annual UV doses (Fig. 3). In the present work 
we have used CIE proposed action spectrum for UV induced 
erythema in human skin,31 action spectra for imunnosuppression 
induction,19 DNA damage30 and vitamin D production.32

UVA and UVB intensities during the day at the Equator 
(0°) and in Oslo (60°) initial and after penetration of epidermis 
(Fig. 2) were calculated with FastRT simulation tool.54 FastRT is 
based on the pseudospherical approximation (SDISORT)55 and 
is able to ensure high levels of accuracy even for low solar eleva-
tion. It was chosen cloudless 2011’s 197th Julian day (the middle 
of summer’s season) in Oslo for variation of solar elevation dur-
ing the day. Total ozone column 250 Dobson units (DU) was set 

published 25(OH)D levels for summer and winter show no lati-
tudinal dependency of the summer/winter ratio, which is about 
1.2 to 1.8 in most countries (Fig. 5B). The ratio is about 1.3 at 
latitudes between 20°N and 40°N, while a ratio of only 1.1 is 
found for the theoretical vitamin D-generating sun doses (Fig. 
5B).

The CMM rates are significantly higher in Norway than in the 
other Scandinavian countries (Fig. 4). This is probably related 
to skin types, since historically the contact with- and immigra-
tion from Europe and/or Russia is larger in Finland, Sweden and 
Denmark than in Norway, which has had a closer contact with 
England and Ireland where the skin types are light.

We may conclude that 25(OH)D levels in the countries we 
have studied, depend on vitamin D intake, solar UVB doses, skin 
color and other genetic properties. Significant variations of the 

Figure 5. Summer and winter levels of 25(OH)D and dietary intake of vitamin D in populations 
living at different latitudes (A). Theoretically estimated relative summer to winter ratios of vitamin 
D photosynthesis (according to the effective UV doses, Fig. 1B) and the summer to winter ratios of 
measured 25(OH) D levels (B). 25(OH) D levels are taken from panel (A).
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Vitamin D data. 25(OH)D levels and vitamin D intake in 
different countries were retrieved from published articles.3,70-95

Statistical analysis. The data were analyzed using Sigma Plot 
11.0 software from Systat Software, Inc. (Richmond, CA, USA).
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