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Excessive lipid accumulation in an obese state is linked with activation and release of detrimental cy-
tokines and chemokines that promote metabolic dysregulation. In fact, emerging experimental evidence
shows that abnormal modulation of T-cells in an obese state correlates with the development and
progression of insulin resistance. Importantly, the evolving concept linking insulin resistance with
impaired immunological mechanisms such as T-cell responses provides new prospects for understanding
the role of inflammation in moderating metabolic complications.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obesity is an independent risk factor of metabolic complications
such as insulin resistance (IR) and inflammation during the path-
ogenesis of type 2 diabetes mellitus (T2D) [1]. Increased adipose
tissue (AT) mass is a hallmark of chronic low grade inflammation
that is characterised by progressive infiltration of T-cells [2,3]. T-
cells play an important role in orchestrating the adaptive immune
response and are the second largest cell population in AT followed
by macrophages [4]. Briefly, findings have shown that CD4þ and
CD8þ T-cells can infiltrate both visceral and subcutaneous AT, with
pro-inflammatory T helper (Th)-1, Th17, and CD8þ T-cells,
concomitant to the development of IR in healthy overweight or
obese human subjects [5]. Hence, T-cells are considered to play an
important role in obesity-induced inflammation and IR.

Although previous studies have described T-cell involvement in
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AT inflammation [6,7], the exact mechanisms and sequence of
events in obesity-induced inflammation and the development of IR
is unknown. Moreover, conflicting reports on T-cell activation and
function in obese AT have been reported. For instance, contrary to
their well-known co-stimulatory effects, B7, CD28 and CD40L
molecules have in fact been shown to maintain immune homeo-
stasis by regulating the development of IR and ameliorating AT
inflammation in diet-induced obese (DIO) mice [8e10]. On the
other hand, recent findings show that OX40, a secondary co-
stimulatory molecule could exacerbate AT inflammation and IR
by promoting T-cell activation in a DIO mouse model [11]. This is in
agreement with other studies showing an increased AT infiltration
of both pro-inflammatory and anti-inflammatory T-cell subsets in
an obese state [12,13]. Surprisingly, contradictory data presented by
others have described decreased anti-inflammatory T-cells,
particularly the regulatory T-cells (Treg) subset in various experi-
mental models of obesity, including human studies [3,14,15].
Therefore, it remains essential to establish the precise involvement
of T-cells in AT inflammation and IR in obesity and T2D. To explore
such consequence, the current study synthesised and critically
assessed available literature reporting on the role of T-cells in
modulating AT inflammation and IR in obesity and T2D.
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Abbreviations

AT adipose tissue
DIO diet induced obese
IFN-g: interferon gamma
IL: interleukin
IR insulin resistance
MHC histocompatibility complex
PRISMA-P: Preferred Reporting Items for Systematic Review

and Meta-Analysis Protocols
PROSPERO prospective register of a systematic review
Stat3 signal transducer and activator of transcription 3
T2D type 2 diabetes
Th1/Th2 T helper 1/2
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2. Methods

This mini-review was prepared in accordance with the
Preferred Reporting Items for Systematic Review and Meta-
Analysis Protocols (PRISMA-P) 2015 guidelines [16]. Moreover, it
forms part of a big project assessing published studies on T-cell
function in T2D which was registered with the international pro-
spective register of a systematic review (PROSPERO), registration
number: CRD42018099745 and has been published [17].

2.1. Search strategy

A comprehensive search was conducted on the Cochrane Li-
brary, Embase and PubMed electronic databases from inception up
to 28 March 2019 by two investigators (TMN and PVD). Unpub-
lished and ongoing studies as well as review articles were screened
for primary findings. In cases of disagreements, the third reviewer
(BBN) was consulted for arbitration. The search strategy was
adapted to each database using keywords and medical subjects
heading (MeSH) terms such as “T-cells”, “adipose tissue”, “obesity”,
“insulin resistance”, “type 2 diabetes mellitus” and their respective
synonyms and associated words or phrases. No language re-
strictions were applied to the search strategy.

2.2. Study selection

This review included both animal and human studies reporting
on the role or effect of T-cells in obesity-induced AT inflammation
and IR. However, reviews, editorials, books, and letters were
excluded. Two investigators (TMN and PVD) independently
reviewed all relevant articles and identified eligible studies. Any
disagreements were resolved by consulting BBN.

2.3. Data extraction

The main outcome of this study was to determine the role of T-
cells in obesity-induced inflammation and IR. Briefly, the extracted
data items included; names of the authors, year of publication,
experimental model used, interventions used and main findings of
each study. The Mendeley reference manager version 1.19.4-dev2
software (Elsevier, Amsterdam, Netherlands) was used to manage
extracted information including identifying and removing study
duplicates.

2.4. Quality assessment

Two investigators (TMN and VM) with the assistance of a third
reviewer (PVD), assessed the quality of individual studies included
in this review by following Animal Research: Reporting In Vivo
Experiments (ARRIVE) guidelines [18]. The modified Downs and
Black checklist [19] was used to assess quality of included human
studies.

3. Results

3.1. Characteristic features of included studies

An overall number of 125 studies were identified and screened
for eligibility and a total of 29 articles met the inclusion criteria. All
included studies were published between 2008 and 2017. A total of
31 articles were excluded because they were review articles and 59
were irrelevant. Few studies (n¼ 6) were excluded due to study
design, that is, the T-cells assessed in these studies were not AT
resident but from peripheral circulation [20,21] (Fig. 1). Of the
included studies, 24 were animal studies, 11 were human studies
and 6 reported on both animals and humans (Tables 1 and 2). All
human studies were observational studies.

3.2. Quality assessment and risk of bias

All included articles were published in peer-reviewed journals.
For the animal studies, the ARRIVE guidelines were used to assess
the quality of the included studies since it provides a precise
method for scoring in vivo models. The median score and range of
the 24 included studies was 16 (13e18) out of a possible score of 20,
thus all studies met the minimum requirements for publication.
Overall, all studies scored high in the introduction domain with a
median of 4 (3e4) out of a possible score of 4 (overall agreement
92.97%, kappa¼ 0.96). Furthermore, the studies also scored high in
the method and discussion domains with a median of 7 (5e9) out
of the possible score of 9 (overall agreement 76.39%, kappa¼ 0.58)
and 3 (2e3) out of a possible score of 3 (overall agreement 94.44%,
kappa¼ 0.89), respectively. However, the studies scored low in the
results section due to the study design, for example no baselines
results and adverse events reported, resulting in a median of 2
(0e2) out of the possible score of 4 (overall agreement 69.79%,
kappa¼ 0.40) (Table 1S).

For human studies, the Blacks and downs checklist was used to
appraise the included studies and they all scored poorly (<13
points). The median score range of the 11 included studies was 10
(8e13). Overall, the included studies had a lower risk of reporting
bias with a median of 5 (4e7) out of the possible score of 10 (overall
agreement 90.91%, kappa¼ 0.82). In addition, the studies also had a
relatively low risk of internal validity bias with a median of 3 (3e4)
out of the possible score of 7 (overall agreement 88.31%,
kappa¼ 0.95). However, all studies performed poorly on the
external validity and selection bias domains (except one study) with
amedian of 0 (0e2) out of the possible score of 3 (overall agreement
87.88%, kappa¼ 0.76) and 1 (1e3) out of the possible score of 6
(overall agreement 81.82%, kappa¼ 0.64), respectively (Table 2S).

3.3. Overview of included animal studies on the role of T-cells

The search retrieved 24 studies that reported on the role of T-
cells in AT inflammation and IR in various experimental models of
obesity, published between 2008 and 2017. The sections below
briefly discuss the different types of T-cells and their role in
modulating obesity associated complications.

3.3.1. Infiltration of Th1, CD4þ and CD8þ T-cells in AT of obese
animals promotes inflammation and IR

The overall evidence presented in this review clearly shows that
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Fig. 1. Flow chart of study selection procedures.
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DIO mice are among the well-recognized animal models used to
investigate the role of T-cells in obesity (Table 1). Generally, these
animals are fed a high caloric diet, usually rich in fat, which results
in the development of obesity, mimicking that which is observed in
humans. After just five weeks of high fat diet-feeding, Kintscher
and colleagues were the first to show that infiltration of pro-
inflammatory T-cells in the AT may occur before macrophages as
a primary event in AT inflammation, concomitant to the develop-
ment of obesity-induced IR [22]. These findings were further sup-
ported by subsequent studies that reported on an increased
infiltration of interferon gamma (IFN-g) producing Th1, CD8þ T-
cells in AT of DIO mice when compared to controls [6,12,23e25].
Thus, suggesting that T-cells in the AT are likely to play a major role
in mediating inflammation and IR in DIO mice, including humans.
In RAG-null (which are mice lacking CD3 or T-cell receptor) and
CD8-null mouse models, it was further demonstrated that high fat
diet feeding exacerbated AT inflammation [12,23]. However, the
transfer of CD4þ and CD8þ T-cells in these respective models alle-
viated IR and aggravated AT inflammation, respectively.

In addition to increased CD4þ and CD8þ AT infiltration in DIO
mice, the T-cells were reported to release increased pro-
inflammatory IFN-g cytokine which significantly contributed to
AT inflammation [7,26e28]. Remarkably, the removal of T-cells
fromDIOmice improved IR in early stages of obesity [7]. Like IFN-g,
the signal transducer and activator of transcription 3 (Stat3) is
known to be central in modulating cytokine-dependent inflam-
mation and immunity within an obese state [29]. Indeed results
summarised in this review showed that Stat3 transcriptional factor
levels were elevated in both AT and AT-resident T-cells, this
consequence promoted the release of IFN-g in DIO mice [26]. This
study further demonstrated that Stat3-null mice showed improved
IR and reduced AT inflammation. However, it is clear that other
important components such as T-cell receptors remain important
in regulating an inflammatory response within diverse specific
disease conditions. For example, a sub-analysis of mice lacking T-
cell a-chain (CD11a-null) showed markedly reduced accumulation
and activation of T-cells in AT [28]. On the other hand, increased
infiltration of interleukin (IL)-17 producing T-cells in AT was re-
ported in DIO mice [30]. However, contrary to its well-established
pro-inflammatory effects, IL-17 in fact regulated IR and reduced
obesity, as well as AT inflammation in these mice. Nonetheless, a
sub-analysis of IL-17-null DIO revealed increased obesity and IR
[30], suggesting the diverse regulatory effects of Il-17 cytokine on
AT inflammation in an obese state.

3.3.2. The levels of Th2 and tregs are reduced in AT of obese animals
It is well-established that T-cell anti-inflammatory subsets (Th2

and Tregs) decrease whilst the pro-inflammatory subsets increase



Table 1
An overview on included animal studies (n¼ 24).

Author and year Experimental model Intervention used Role of T-cells/Findings

Kintscher et al.,
2008 [22]

Male C57BL/6 J mice None Infiltration of pro-inflammatory T-cells in visceral adipose tissue (AT) preceded that of
macrophages. Furthermore, the T-cells were identified in the initiation of AT
inflammation and the development of IR.

Winer et al.,
2009 [12]

RAG-null and diet induced obese (DIO)
C57BL/6 J mice

CD4þ T cell transfer Increased infiltration of pathogenic interferon gamma (IFN-g) secreting Th1 cells, Th2
and Tregs was identified in an obese state. Moreover, RAG-null mice showed
exacerbated obesity and insulin resistance (IR).
However, the transfer of CD4þ T-cells into RAG-null DIO mice reversed weight gain and
IR.

Rocha et al.,
2009 [6]

Male DIO C57BL/6 mice None Visceral AT of DIO C57BL/6mice had higher numbers of both CD4þ and CD8þ T-cells than
lean controls. In vitro T-cells from obese AT released IFN-g than in controls

Nishimura et al.,
2009 [23]

Male DIO C57BL/6 J and CD8null mice CD8þ T cell transfer There was increased infiltration of CD8þ T-cells that preceded the accumulation of
macrophages in AT of DIO mice. However, genetic depletion of CD8þ T-cells lowered
macrophage infiltration and reversed IR. Conversely, the adoptive transfer of CD8þ T-
cells to CD8-null mice aggravated AT inflammation

Feuerer et al.,
2009 [14]

Zú~niga et al.,
2010 [30]

DIO C57BL/6 mice
Male DIO C57BL/6 J and IL17-null mice

Anti-IL-2
None

AT resident Tregs were decreased in obese mice and had no suppressive activity but a
normal proliferative response in obesity.
Stimulation of Tregs by exogenous anti-interleukin (IL)-2 ameliorated obesity-induced
inflammation and IR mediated by increased levels of IL-10
Increased infiltration of IL-17 producing T-cells in obese AT inhibited adipogenesis,
moderated infiltration of immune cells in AT and regulated glucose metabolism.
Moreover, IL-17 deficient mice developed severe obesity and display altered glucose
metabolism compared to the wild type.

Yang et al., 2010
[7]

Male DIO C57BL/6 mice were None AT T-cells from DIO mice released increased levels of pro-inflammatory cytokines such
as IFN-g upon T-cell receptor (TCR) ligation. Moreover, compared to splenic T-cells, AT T-
cells exhibited markedly restricted TCR diversity. Interestingly, removal of T-cells in
epidydimal fat enhanced insulin sensitivity in early stage of obesity

Strissel et al.,
2010 [24]

Male DIO C57BL/6 mice None Enhanced priming for IFN-g production suggested the contribution of CD4þ and/or CD8þ

T-cells to cell-mediated immune responses promoting AT inflammation and IR in
obesity. T-cell enrichment and IFN-g gene induction occurred subsequent to AT
macrophage recruitment and the development of IR

Miller et al.,
2010 [33]

Genetically obese diabetic (ob/ob) and
ST2-null mice

Recombinant IL-33 Treatment of AT cultures in vitro with IL-33 induced production of Th2 cytokines, and
reduced expression of adipogenic and metabolic genes. Moreover, administration of
recombinant IL-33 to ob/ob mice led to reduced adiposity and fasting glucose as well as
improved glucose and insulin tolerance.
HFD fed mice lacking endogenous ST2 (a receptor for IL-33) had increased body weight,
impaired insulin secretion and glucose regulation compared to WT controls on HFD

Deiuliis et al.,
2011 [3]

Male Foxp3-GFP ‘‘knockin’’ mice None DIO resulted in increased CD4þand CD8þ T-cells, with a significantly decreased Treg in
visceral AT. Moreover, the number of Tregs inversely correlatedwithmacrophages in the
AT.

Priceman et al.,
2013 [26]

DIO Stat3-null C57BL/6 mice None Regulation of AT T cell subsets by transcriptional factor, signal transducer and activator
of transcription 3 (Stat3) is crucial for DIO and IR. The activity of Stat3 is elevated in both
obese visceral AT and its resident T-cells. Stat3 in T-cells of DIO mice promoted the
release of IFN-g and blunts Tregs in visceral AT. Moreover, mice Stat3 null T-cells showed
reduced DIO and improved IR and glucose tolerance, and suppressed visceral AT
inflammation.

Morris et al.,
2013 [27]

Male DIO C57BL/6 J mice None High fat diet (HFD)-induced obesity promoted conventional CD4þ T-cell proliferation in
mice visceral (AT). Dietary obesity was shown to activate the proliferation of IFN-g
producing CD4þ T cells in adipose tissue

Montes et al.,
2013 [36]

Male DIO C57BL/6 mice AntiCTLA-4 Ig and
AntiCD40L

CD4þ, CD8þ and Tregs were increased in AT of DIO compared to lean controls. However,
the administration of co-stimulatory inhibitors in DIO mice reduced inflammation but
did not improve glucose tolerance

Jiang et al., 2013
[28]

Male DIO CD11-null C57BL/6 J mice None CD8þ T-cells in AT of obese mice showed activated phenotypes with increased
proliferation and IFN-g expression. CD11a-null DIO mice displayed markedly reduced T-
cell accumulation and activation in AT. Furthermore, CD8þ T-cells from wild type mice,
but not from CD11adeficient mice, infiltrated into AT of recipient obese wild type mice

Deng et al., 2013
[25]

Male DIO Major histocompatibility
complex class II (MHC II)-null C57BL/6
mice

None ExpressionMHC II in adipocyte was increased in obesity, which was parallel to increased
pro-inflammatory and reduced anti-inflammatory AT T-cells. This exacerbated AT
macrophage accumulation and M1 polarisation. Alternatively, MHC II-null mice
developed less AT inflammation and IR than wild type mice, despite developing similar
adiposity.

Zhong et al.,
2014 [8]

Male B7-null DIO mice C57BL/6 Adoptive transfer
of Tregs

Reduced B7 expressions in obesity directly impaired Treg proliferation and function in
obese mice and led to exacerbated AT inflammation and IR. B7-null mice had enhanced
AT inflammation and IR in both obese and lean mice.
However, adoptive transfer of Tregs reversed IR and AT inflammation in B7 KO mice.

Yi et al., 2014 [9] DIO CD40-null C57BL/6 mice None CD40 deficiency mice exhibited exacerbated AT inflammation and IR with CD8þ T-cells
being the major contributor. Contrary to its costimulatory effects, CD40 in fact regulated
the development of IR DIO mice by ameliorating AT inflammation.

Wolf et al., 2014
[37]

Male DIO CD40-null and Rag1-null C57BL/
6 mice

Anti-CD40
antibody
Adoptive transfer
of CD40-null T-
cells

CD40 deficient mice exhibited increased weight gain, accumulation of inflammatory
cells, impaired insulin secretion and enhanced pro-inflammatory gene expression in AT.
Conversely, therapeutic activation of CD40 signalling blocked further weight gain,
lowered glucose levels, improved insulin sensitivity and suppressed AT inflammation.
Furthermore, repopulation of Rag1-null mice with CD40-null T-cells provoked AT
inflammation and IR.

T.M. Nyambuya et al. / Metabolism Open 3 (2019) 1000154



Table 1 (continued )

Author and year Experimental model Intervention used Role of T-cells/Findings

Fabrizi et al.,
2014 [31]

IL-21-null DIO C57BL/6 mice None IL-21 and IL-21R mRNA expression was upregulated in DIO and wild type mice in
parallel to macrophage and inflammatory markers. Furthermore, DIO IL-21-null mice,
showed reduced AT inflammation and improved IR due to increased infiltration of Tregs
in AT.

Chatzigeorgiou
et al., 2014
[10]

Male DIO CD40-null C57BL/6 mice None DIO CD40-null mice displayed worsened AT inflammation and IR when compared to
wild-type mice. The worsened IR was associated with excessive AT inflammation
mediated by increased accumulation of CD8þ T-cells and M1 macrophages. However,
CD40L mice ameliorated IR and AT inflammation.

Poggi et al., 2015
[38]

Male DIO CD28-null C57Bl/6 mice Anti-CTLA4 CD28 deficiency decreased pathogenic T-cells and Treg content within AT without
changing macrophages number.
CTLA4-Ig injections reduced the number T-cells in AT but not inflammatory cytokines
levels

Han et al., 2015
[32]

DIO C57BL/6 FOXP3 mice IL-33 injections DIO mice exhibited reduced AT-resident ST2þ Tregs thereby promoting inflammation
and IR. However, this effect was completely reversed by treatment with IL-33.
Furthermore, IL-33 administration also increased the proportion of ST2 expressing Tregs
in the AT by 3-fold in DIO mice.

Liu et al., 2017
[11]

Male DIO C57BL/6, OX40-KO and B6.Rag2/
Il2rg double knock mice

None Increased expression of OX40 (CD134) on CD4þ T cells, infiltration and expression of
pro-inflammatory cells and genes respectively, was observed in the AT of DIO mice.
Furthermore, DIO OX40-null mice exhibited significantly reduced weight gain and lower
fasting glucose levels than the OX40 knocked in mice.

Chen et al., 2017
[15]

Male C57BL/6 J VAT antigens Oral treatment of visceral AT mixture antigens effectively inhibited weight gain, and
improved IR in HFD mice by increasing the numbers of CD4þFoxp3þ Tregs that were
depleted in obesity

Table 2
An overview of included human studies (n¼ 11).

Author and year Experimental model Intervention
used

Role of T-cells/Findings

Kintscher et al.,
2008 [22]

Individuals with T2D None Adipose tissue (AT) T-cell infiltration correlated with increased waist circumference in patients with type 2
diabetes mellitus (T2D).

Zeyda et al.,
2011 [39]

Overweight and obese
humans

None Th1 and CD8þ T-cells were significantly upregulated in obese AT and correlated with AT inflammation.
Surprisingly, Th2 and Tregs were also increased in visceral AT of individuals with obesity compared to lean
counterparts

Deiuliis et al.,
2011 [3]

Obese humans None Humans with obesity showed increased CD4þand CD8þ T-cells with a decreased Tregs in visceral AT.

Yang et al., 2010
[7]

Obese humans None There was increased infiltration of CD4þ and CD8þ T-cells in visceral AT of obese individuals compared to
lean

Fabbrini et al.,
2013 [68]

Obese humans with
metabolically abnormal IR

None The number of AT resident CD4þT-cells that produce interleukin (IL)-22 and IL-17 were 3e10 fold higher in
obesity compared to lean subjects.

Deng et al., 2013
[25]

Obese women None Obesity enhanced major histocompatibility complex class II (MHC II) expression in adipocytes. Briefly,
adipocytes activated AT resident CD4þ T-cells via MHC class II and leptin to induce AT inflammation

Zhong et al.,
2014 [8]

Obese humans None Reduced B7 expression in obesity impaired regulatory T-cells (Treg) proliferation and function and led to
exacerbated AT inflammation and IR

McLaughlin
et al., 2014 [5]

Overweight and obese
humans

None CD4þ and CD8þ T-cells infiltrated AT with pro-inflammatory T-helper (Th)1, Th17 and CD8þ T-cells being
significantly more frequent. Levels of Th2 in AT were inversely associated with systemic IR.

Fabrizi et al.,
2014 [31]

Obese humans None IL-21 and IL-21R messenger RNA expression was upregulated in stromal vascular fraction from human
obese subjects in parallel to macrophage and inflammatory markers.

Dalmas et al.,
2014 [40]

Obese individuals with and
without T2D

None There was increased infiltration of IL-17 and IL-22-producing CD4þ T-cells in individuals with T2D.
Moreover, CD4þ T-cell derived IL-22 amplified IL-1b driven inflammation in visceral AT and this was
correlated with deterioration of glucose homeostasis.

Travers et al.,
2015 [13]

Overweight and obese
humans

None Expression of CD4þ T-cells, macrophages and FOXP3 RNA transcripts were elevated in obesity. Furthermore,
AT CD4þ and CD8þ T-cells expressed increased expression of CD69 and CD25 which was associated with
increasing degree of obesity. In addition, increased T-cell activation correlated with increased expression
and secretion of both pro and anti-inflammatory cytokines in AT.

NB: All studies were observational studies.
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as obesity progresses. Moreover, an imbalance between the mod-
ulation of Th1/Th17 and Th2/and Tregs has been associated with an
exacerbated inflammatory response and the development of IR
(Fig. 2). Evidence presented in this review shows that in addition to
increased expression of major histocompatibility complex (MHC)
class II, frequency of pro-inflammatory Th subsets and cytokines in
AT were inversely proportional to the levels of Th2 subset and IL-13
cytokine in DIO mice [12,25]. Interestingly, MHC-null mice devel-
oped less AT inflammation and IR when compared to wild types,
despite developing similar obesity associated abnormalities [25].

Winer and associates were the first to report on decreased Tregs
in AT of DIOmice, which was linked with the progression of obesity
linked complications [12]. These findings have also been supported
by subsequent mice studies presented by others [3,14,15,25,31,32].
Briefly, it has been shown that stimulation of Tregs with IL-2 im-
proves AT inflammation and IR mediated by increased IL-10 [14].
Furthermore, administration of visceral AT antigens could effec-
tively increase the number of Tregs resulting in the inhibition of
weight gain and IR in mice on high fat diet [15]. Moreover, this
study showed that the number of Tregs inversely correlated with
macrophages in the AT. Alternatively, the expression of pro-
inflammatory IL-21 and its receptor's (IL-21R) mRNA were upre-
gulated in the AT of DIO mice [31]. Interestingly in DIO IL-22-null
mice, amelioration of AT inflammation and reversal of IR was
linked to elevated number of Tregs. The overall findings are
consistent that an obese state, illustrating that high fat feeding is



Fig. 2. Effective modulation of Th1/Th17 and Th2/and Tregs remains important in the
regulation and amelioration of insulin resistance.

T.M. Nyambuya et al. / Metabolism Open 3 (2019) 1000156
responsible for reduced AT-resident ST2þ (IL-33R) Tregs promote
AT inflammation and IR, as demonstrated in DIO or ST2-null mice
[32,33]. Thus, suggesting that some interventions, as seen with
administration of IL-33 in DIO mice [32,33], can be further devel-
oped to directly or indirectly induce the release of Th2 cytokines
leading to increased number of ST2þ Tregs.

3.3.3. Double-edged sword effect of T-cell co-stimulatory molecules
in obese animals

For the successful activation of T-cells, both T-cell receptor and
co-stimulatory molecule signals are required. Thus in the absence
of a co-stimulatory signals, a hypo-responsive state of T-cells
termed anergy is induced despite active TCR signalling and IL-2
expression [34,35]. Therefore, co-stimulatory signals are essential
for T-cell activation and function. Inhibition of CD40 signalling
pathway by administration of anti-CD40L in DIO mice reduced
accumulation of pro-inflammatory macrophages (M1) and AT
inflammation and but did not improve IR [36]. However contrary to
this, CD40-null mice showed exacerbated IR and AT inflammation
mediated by increased accumulation of CD8þ T-cells and M1
macrophages [9,10,37]. Conversely, the activation of CD40 signal-
ling improved IR and suppressed AT inflammation and the repo-
pulation of RAG-null mice with CD40-null T-cells triggered AT
inflammation and IR [37]. In agreement with findings by Montes
and colleagues, DIO CD28-null mice showed a decrease of both pro-
inflammatory T-cells and Tregs in AT without changing macro-
phages number [38]. However contrary to this, B7-null mice
exhibited enhanced AT inflammation and IR in both DIO and lean
mice [8]. In addition, it was shown that adoptive transfer of Tregs
into B7-null mice could reverse AT inflammation and IR. Moreover,
the same study reported on the decreased expression of B7
expression in an obese state [8]. The inhibition of another co-
stimulatory molecule, CTLA-4, in DIO mice could reduce the num-
ber of T-cells in AT but not the levels of pro-inflammatory cytokines
[36,38]. On the other hand, the expression of another T-cell co-
stimulatory marker, OX40, was reported to be increased on CD4þ

T-cells in the AT of DIO mice [11]. Conversely, a sub-analysis of
OX40-null mice showed significantly less weight gain and
improved IR compared to the OX40 knocked in mice.

3.4. The impaired modulation of T-cells in obese human subjects
promotes inflammation and IR

The search retrieved eleven human studies that reported on the
role of T-cells in AT inflammation and IR, published between 2008
and 2015. The specific focus here was to establish whether the
modulatory effect of T-cells on obesity associated complications
compares to that observed in animal models.

Like the evidence observed in DIO mice (Table 1), increased
infiltration of T-cells in obese AT of human subjects was consistent
with exacerbated inflammation and it correlated with increased
waist circumference [22]. An overwhelming number of studies
presented in Table 2 reported on increased infiltration of Th1, CD4þ

and CD8þ T-cells in AT of individuals with obesity when compared
to lean counterparts [3,5,7,13,39]. Here, AT infiltrating T-cells were
triggered in individuals with obesity, and this was demonstrated by
elevation of activation markers such as CD69 and CD25, which are
known to indicate immune activation and indirectly the degree of
obesity in this case [13]. This was consistent with enhancement of
pro-inflammatory cytokines like IL-17, IL-21 and IL-22 [31,40].
Elevated CD4þ T-cells in AT of individuals with obesity was also
attributed to enhanced the expression of MHC class II [25], which
strongly highlighted the consistent modulatory effects of T-cells in
obesity induced inflammation.

Furthermore, obese individuals have been shown to present
with reduced expression of B7 co-stimulatory molecule, which
directly impairs both the proliferation and function of Tregs in AT
[8]. In accordance with this, individuals with obesity display
reduced levels of Tregs in AT, inversely correlating with IR [3,5].
However, contrary to this, increased AT infiltration by Th2 and
Tregs was in fact reported in individuals with obesity [13,39].

4. Discussion

Obesity and its associated complications is persistently linked
with impaired immune response and an aggravated inflammatory
response [41]. However, the pathological mechanisms involved in
these processes are not clearly understood. Therefore, this review
aimed to synthesise and critically assess available literature on the
role of T-cell function in AT inflammation in obesity or T2D. Most of
the included studies showed a strong correlation between
increased infiltration of Th1, CD4þ and CD8þ T-cells with an exac-
erbated pro-inflammatory state, leading to the development of IR.
Experimental models of obesity and T2D persistently showed an
enhanced infiltration of IFN-g secreting Th1 cells concomitant to
reduced levels of Tregs [3,6,12,40]. Evidence presented in this study
clearly demonstrated that nutrition plays a major role in the
development of metabolic complications, since it was apparent that
high fat feeding promoted spontaneous development of obesity
that was accompanied by impaired T-cell function in both animals
and human subjects [5,12,13,23]. Although a detailed molecular
signature that better describes the complex relationship between
diet and metabolic dysregulation is not completely understood, AT
function within an obese state remains a major focus of ongoing
studies [42,43].

Nevertheless, as an endocrine organ, the AT can greatly modu-
late an inflammatory response by promoting secretion of cytokines
and chemokines such as IL-6, IL-8, andMCP-1 that are implicated in
promoting ectopic lipid accumulation [41]. In fact, accumulative
data summarised in this review showed a strong association be-
tween an abnormal inflammatory response and impaired glucose
homeostasis that is characterised by an IR state [5,8,9,22]. Anyhow,
a vicious circle has been acknowledged between IR and ectopic
lipid accumulation, together increasing the risk for the develop-
ment of metabolic inflammation [1,44,45]. The current study shows
that adaptive immunity, especially regulation of T-cells is central in
the development of metabolic inflammation and IR [46]. For
instance, one study showed that the regulation of AT T-cell subsets
by Stat3 is crucial in the pathogenesis of IR [26]. The activity of Stat3
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appears to be elevated in both obese visceral AT and its resident T-
cells. Evidence presented in Table 1 indicates that activation of Stat3
promotes the release of IFN-g and hinders that of Tregs in visceral
AT of obese mice. Similarly, Stat3 null mice showed improved
glucose tolerance and suppressed visceral AT inflammation. These
findings suggest that besides vast involvement in other physio-
logical processes [47], the STAT pathway plays a major role in
modulating inflammatory response in obesity.

Evidence synthesised in this review also highlights the impact
co-stimulatory molecules could have in modulating inflammatory
responses within an obese state by inducing T-cell activation [10].
In fact, overwhelming evidence presented here suggests that their
signalling pathways may in actual fact have a protective role in
obesity and in the pathogenesis of T2D [9,37]. This evidence sug-
gests the potential exploration of co-stimulatory molecules in un-
derstanding the role of T-cells in regulating pro-inflammatory
responses and most importantly to determine ways to alleviate
obesity-induced metabolic complications. In the context of obesity,
CD40L is of particular interest since it has been shown that its
administration could alleviate AT inflammation and IR in an obese
state [36]. However, further studies are needed to confirm this
aspect.

Furthermore, it is well-established that metabolites produced in
the AT or other metabolic tissues may play an important role in
immune response regulation [48e51. In fact, it is now well-
established that AT is an active secretory organ that releases me-
tabolites which have the ability to modulate body weight, insulin
sensitivity and inflammation [48]. In the context of the latter, AT
releases both pro- and anti-inflammatory adipokines which when
imbalanced, contribute to the pathogenesis of obesity-linked
complications [49]. One of the most studied AT derived adipo-
kines is leptin, a pro-inflammatory metabolite that is significantly
increased in obesity and has the ability to initiate and propagate a
pro-inflammatory response [49e51]. Briefly, the binding of leptin
to its specific receptor (Lep-R) expressed on T-cells is associated
with activation of the Janus tyrosine kinase (JAK) pathway, which
may results in the phosphorylation and activation of Stat3 [52,53].
Activation of Stat3 is positively correlated with elevated levels of
detrimental cytokines such as IL-6 in obese individuals [53].
Interestingly, like leptin, IL-6 has the ability to activate the JAK-
Stat3 signalling pathway [29]. Therefore, consistent with data
summarised in this review [26], enhanced leptin secretion as a
result of excess AT storage in an obese state may significantly
contribute to the activation of the JAK-Stat3 signalling pathway in
T-cells, thus contribute to aggravation of obesity-associated pro-
inflammation.

On the other hand, AT is also known to secrete adipokines that
oppose the actions of leptin and inhibit the pro-inflammatory
stimuli. One of these adipokines is adiponectin, an anti-
inflammatory metabolite that has been shown to increase insulin
sensitivity and block lipid oxidation by activating the energy
sensing, AMP-activated protein kinase (AMPK) [54,55]. Notably,
adiponectin levels are significantly decreased in conditions of
obesity, including individuals with T2D [56,57]. Concomitant to
this, systematic and vector infusion of adiponectin in DIO mice has
been shown to significantly inhibit the secretion and actions of IL-6
and TNF-a [58,59]. The latter has the ability to further activate and
proliferate T-cells [60]. In addition, adiponectin inhibited cytotoxic
activities of natural killer cells, the secretion of TNF-a and IFN-g as
well as the signalling of pro-inflammatory nuclear factor kappa-
light-chain-enhancer of activated B-cells (NF-kB) through the
activation of AMPK [61,62]. Moreover, adiponectin can also prevent
atherogenesis by inhibiting the expression of the chemokine re-
ceptor 3 (CXCR3) on activated macrophages and thus reduce the
infiltration of T-cells into the atheroma [63]. These findings are
consistent with its effect in blocking the differentiation of Th1 and
Th17 cells in rodents [64]. Interestingly, the inhibitory effect of
adiponectin on T-cell differentiation has been attributed to its
ability to block the CD40-dependent co-stimulatory signalling [64].
Although studies included in the review did not particularly
describe their role in T-cell regulation, in the context of obesity, AT
derived metabolites such as leptin and adiponectin are skewed
towards the pro-inflammatory subset, which could induce and
worsen the activation of pro-inflammatory T-cells.

In summary, and to our knowledge, this is the first systematic
review to comprehensively describe the role of T-cells in obesity,
linking an exacerbated inflammatory state and IR. In addition, this
review highlights the potential protective effects that could be
established by effective regulation of T-cells, leading to the
amelioration of obesity associated complications such as T2D.
Therefore, this study paves the way for future studies to explore
novel avenues in developing new drugs that alleviate AT inflam-
mation and IR linked with an obese state. Also of note, are the
limitaions of the current review. Firstly, the included number of
studies is low especially human studies. Furthermore, all human
studies were observational studies whose evidence is of low
quality. Lastly, due to unavailability of human participants’ char-
acteristics, we were unable to correlate any biochemical and im-
mune markers with degree of AT inflammation and IR. However,
further studies are required to address this aspect.

5. Concluding remarks

Lifestyle modification, including over nutrition coupled with
physical inactivity significantly contribute to the development of
metabolic complications, including obesity and T2D. Diverse mo-
lecular pathways and biological interactions have been explored to
understand the impact of these complications to human health. In
fact, much attention has been focused on the role of inflammation
and immune response in the development of metabolic abnor-
malities. Data summarised in this review demonstrates that
increased infiltration of Th1, CD4þ and CD8þ T-cells in an obese
state coupled with decreased levels of Th2 and Tregs greatly im-
pacts human health by exacerbating inflammation and IR.
Furthermore, despite the double-edged sword effect of T-cell co-
stimulatory molecules, therapeutic interventions targeting CD40L
signalling may have the potential to alleviate inflammation and IR
linked with obesity. Further studies assessing therapeutic in-
terventions aimed at modulating these pathways in metabolic
disease are needed.
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