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Abstract
In recent years, it has become increasingly apparent that many neurological disorders are underpinned by a genetic aetiology. 
This has resulted in considerable efforts to develop therapeutic strategies which can treat the disease-causing mutation, either 
by supplying a functional copy of the mutated gene or editing the genomic sequence. In this review, we will discuss the main 
genetic strategies which are currently being explored for the treatment of monogenic neurological disorders, as well as some 
of the challenges they face. In addition, we will address some of the ethical difficulties which may arise.

Introduction

Recent advances in DNA sequencing technology have led 
to an explosion of knowledge about the genetics of human 
disease, and the realisation that many more disorders are 
genetic in origin than previously thought. For example, 
large-scale exome-sequencing projects, such as the Deci-
phering Developmental Disorders study, have identified 
novel pathogenic de novo mutations in patients with undi-
agnosed neurodevelopmental conditions (Fitzgerald et al. 
2015; McRae et al. 2017). The new knowledge has led to a 
surge of interest in the potential for therapies which address 
the genetic root cause of these disorders, rather than attempt-
ing to treat secondary consequences. These approaches 
include conventional gene therapy (also referred to as “gene 
transfer”) which aims to restore function of the mutated gene 
by introducing a functional copy into cells (Friedmann and 
Roblin 1972). In addition, advances in our ability to re-write 
DNA sequences via genome editing, particularly “clustered 
regularly interspaced short palindromic repeats” (CRISPR) 
technology, have sparked interest in their use for the treat-
ment of a variety of disorders. All of these approaches are 
particularly suited to monogenic conditions which, in theory, 
can be cured by correction of the disease-causing mutation. 

In this review, we illustrate the growing therapeutic potential 
of these developing technologies. We also consider the tech-
nical challenges still to be overcome, as well as some ethical 
issues posed by genetic interventions in the brain.

Like many medical innovations, genetic therapies rely on 
basic knowledge acquired in model organisms. Importantly, 
there needs to be evidence that symptoms have the potential 
to be alleviated or even cured. A disorder which highlights 
the value of pre-clinical research is Rett syndrome (RTT), 
a severe neurological disorder caused by mutations in the 
X-linked gene MECP2 (Amir et al. 1999). Mouse models 
recapitulate many features of the human condition (Chen 
et al. 2001; Guy et al. 2001), supporting the conclusion that 
the function of the MeCP2 protein is the same in mice as 
in humans. Importantly, the majority of symptoms can be 
reversed in adult Mecp2-null mice by restoring expression 
of the wild-type protein (Guy et al. 2007; Robinson et al. 
2012). This suggests that RTT is curable well after the onset 
of symptoms. Phenotypic reversibility of a few other mono-
genic neurological conditions has been tested using mouse 
models, with variable results. For example, restoration of 
Ube3a expression in young mice leads to reversal of many 
adverse phenotypes in a model of Angelman syndrome, but 
not all autism-related phenotypes are reversed when the gene 
is activated in older animals (Silva-Santos et al. 2015). These 
findings point to an early window for therapeutic interven-
tion. In all neurodevelopmental disorders of this type, basic 
understanding of the function of the mutated gene and its 
time of action during life is an important pre-requisite for 
intervention.
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What genetic interventions are 
under development?

Gene transfer

The technically most straightforward approach to genetic 
therapy involves introduction of wild-type copies of the 
affected gene into the nucleus of appropriate cells in 
the brain (Friedmann and Roblin 1972). To successfully 
achieve this, a suitable delivery vehicle which can effi-
ciently bring genetic material to the target cells is required. 
At present, adeno-associated viral (AAV) vectors are the 
preferred delivery vehicle for the central nervous system 
(CNS) due to their relatively favourable safety profile and 
the potential of certain serotypes (such as AAV9) to cross 
the blood–brain barrier, infect post-mitotic neurons and 
provide widespread and sustained transgene expression 
throughout the brain (reviewed in Hudry and Vanden-
berghe 2019). The advantages and disadvantages of AAV 
vectors will be considered in more detail later.

The success of gene transfer has been demonstrated for 
several genetic disorders, and AAV-based therapies have 
been clinically approved for use in humans, including Gly-
bera and Luxturna for the treatment of lipoprotein lipase 
deficiency and RPE65 mutation-associated inherited reti-
nal dystrophy, respectively (reviewed in Ginn et al. 2018). 
More recently, in 2019, Zolgensma was approved for the 
treatment of spinal muscular atrophy (SMA). Introduction 
of a functional SMN1 (survival motor neuron 1) gene into 
motor neuron cells effectively prevents fatal loss of muscle 
function in children with SMA (Mendell et al. 2017).

Genome editing using programmable nucleases

An ideal genetic therapy would correct the mutated gene 
by “re-writing” its DNA sequence to rectify the mistake. 
Not only does this address the root cause of the problem, 
but its effect would be permanent. Initial approaches have 
involved fusing DNA binding domains that can target a 
specific genomic location with high accuracy, to nucleases, 
which generate double-stranded breaks (DSBs) in the DNA 
(reviewed in Cox et al. 2015). These include the CRISPR/
Cas9 system, which is adapted from a bacterial immune sys-
tem, and involves targeting of the Cas9 nuclease to sites of 
interest via guide RNAs (Gasiunas et al. 2012; Jinek et al. 
2012). What happens next is highly dependent on how the 
break is repaired by the cell, which can vary depending on 
factors such as the cell type/state and availability of a repair 
template (reviewed in Ceccaldi et al. 2016).

Precise changes can be introduced into the genome 
using CRISPR/Cas9 if a homologous DNA repair template 

is supplied at the same time, permitting repair by the high-
fidelity homology-directed repair (HDR) pathway (Cong 
et al. 2013; Paquet et al. 2016). Unfortunately, the thera-
peutic potential of HDR-based approaches for in vivo 
genome editing approaches is limited by their inefficiency 
in human cells (Mao et al. 2008). Instead, the predominant 
repair pathway for DSBs in mammalian cells, including 
post-mitotic neurons, is non-homologous end-joining 
(NHEJ), which generates a heterogeneous range of repair 
products (Rothkamm et al. 2003; Ren and Peña De Ortiz, 
2002; reviewed in Chang et al. 2017). It was previously 
thought that repair outcomes were random and were there-
fore of limited therapeutic use beyond gene disruption. 
However, recently it has been shown that consequences for 
a given target site are highly reproducible and can often 
be accurately predicted (van Overbeek et al. 2016; Allen 
et al. 2018; Shen et al. 2018; Chakrabarti et al. 2019). 
The potential of predictable template-free CRISPR/Cas9 
editing has been demonstrated for pathogenic frameshift 
mutations, for example, by identifying targets which pre-
dominantly restore the wild-type reading frame (Shen 
et al. 2018). Other possibilities for therapeutic genome 
editing using programmable nucleases are discussed in 
Wang et al. (2020).

Direct base‑editing

This highly desirable option seemed technically beyond 
reach until a recent breakthrough came with the development 
of programmable DNA base editors, which can change base 
pairs without requiring DSBs, homology-directed repair or 
donor DNA templates (Komor et al. 2016; Gaudelli et al. 
2017). Base editors typically consist of a catalytically 
impaired Cas9 fused to cytidine—or adenosine—deami-
nase enzymes (reviewed in Porto et al. 2020). These artificial 
proteins can be targeted to disease-causing mutations and 
potentially revert them to the wild-type sequence, offering 
permanent correction in a single-dose. “Prime editing” is 
another exciting development, which involves catalytically 
impaired Cas9 fused to an engineered reverse transcriptase, 
and has the potential to correct a broad range of mutations 
(Anzalone et al. 2019).

RNA editing

Instead of editing the DNA, an alternative strategy is to cor-
rect its messenger RNA (mRNA) transcripts. Programmable 
RNA editors have been developed which fuse domains from 
endogenous RNA editing enzymes, for example the deami-
nase domain of RNA-specific adenosine deaminases, to the 
RNA binding domain from a different protein (Montiel-Gon-
zalez et al. 2013; Cox et al. 2017). Engineered guide RNAs 
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are then introduced to recruit the RNA editor to its target 
sequence in the mutant mRNA. In the case of RTT, this 
approach has the theoretical potential to correct at least 36% 
of disease-causing mutations by adenosine-to-inosine edit-
ing (Sinnamon et al. 2020). Introduction of RNA editors into 
the hippocampus of Mecp2-mutant mice corrected ~50% of 
mRNA transcripts and restored MeCP2 function to a similar 
level (Sinnamon et al. 2020). This is likely to be enough for 
significant phenotypic improvement in mouse disease mod-
els, although this is yet to be experimentally tested.

The challenge of delivery

As mentioned above, AAV-mediated delivery of components 
leads to widespread expression of protein throughout the 
brain (Foust et al. 2009; Chan et al. 2017). An important 
benefit is that expression of the cargo gene is sustained for 
months or years in non-dividing cells. Transgene expression 
has been reported to persist in neurons for more than 4 years 
in humans (Mittermeyer et al. 2011) and at least 15 years 
in non-human primates (Sehara et al. 2017). This is a criti-
cal advantage for gene transfer strategies because it allows 
them to provide long-term correction without the need for 
re-administration.

Issues with gene dosage

Despite the attractions of AAV vectors, they have limita-
tions. An important reservation is lack of control over the 
number of virus particles delivered per cell. This is of par-
ticular concern where the level of the therapeutic agent 
needs to be tightly regulated. For example, while insuffi-
cient MeCP2 leads to RTT, too much MeCP2 is associated 
with the severe neurological disorder “MeCP2 duplication 
syndrome” (Collins et al. 2004; Luikenhuis et al. 2004; Van 
Esch et al. 2005). Accordingly, toxicity due to MeCP2 over-
expression has been observed in preclinical gene transfer 
studies in wild-type animals (Gadalla et al. 2017; Sinnett 
et al. 2017). Furthermore, in female RTT patients half of 
the cells express normal levels of MeCP2, which means that 
indiscriminate delivery of AAV vectors to these cells may 
lead to overexpression-mediated toxicity. Another example 
of a dosage-sensitive gene is UBE3A, whose mutation can 
cause either Angelman syndrome or non-syndromic autism 
as a result of loss-of-function or overexpression, respec-
tively (reviewed in Khatri and Man 2019). To counter this 
problem, the search is on for regulatory elements that could 
be included within the delivery vector, although packaging 
constraints mean that it is often difficult to fit all necessary 
nucleic acid sequences within a single virus.

An important advantage of Cas9 nucleases and DNA/
RNA editors is that they avoid deleterious over-expression 

of this kind since the gene remains under the control of its 
natural regulatory elements. Here again, however, the large 
size of these genome editing proteins makes AAV-mediated 
delivery a challenge. Solutions to this problem include use 
of smaller variants of Cas9 or splitting the transgene into two 
segments which automatically fuse together upon expression 
in the cell (reviewed in Wang et al. 2020). Encouragingly, 
direct injection of dual AAV vectors expressing two halves 
of a split base editor achieved base editing efficiencies of up 
to 59% in the mouse cortex (Levy et al. 2020).

Transduction efficiency

For genetic diseases affecting the brain, the low level of 
neuronal infection by available AAV serotypes is also a 
critically important issue. Although increasing the dose of 
AAV9 vectors enhances brain transduction, this can lead 
to a concomitant increase in transduction of peripheral tis-
sues, such as the liver and heart (Gadalla et al. 2013, 2017). 
Importantly, high doses of AAV vectors should be avoided, 
as this can lead to severe toxicity, including death, in both 
non-human primates (Hinderer et al. 2018; Hordeaux et al. 
2018) and humans (Wilson and Flotte, 2020). While engi-
neered AAV variants can infect the majority of neurons in 
specific strains of mice (Deverman et al. 2016; Chan et al. 
2017; Hordeaux et al. 2018; Huang et al. 2019), serotypes 
that can achieve similar levels in non-human primates have 
not yet been reported. Consequently, therapies that depend 
on the delivery of DNA to most neurons throughout the 
brain await improvements in vector infectivity.

In spite of the relatively low efficiency of AAV trans-
duction, it remains possible that transduction of a small 
proportion of neurons may nevertheless yield significant 
therapeutic benefit. In the case of RTT, for example, reversal 
experiments and gene therapy studies in Mecp2-null mice 
have given encouraging results. Activation of Mecp2 expres-
sion in ~ 70 to 80% of cells in the brain led to an impressive 
reversal of most RTT-like symptoms in Mecp2-null mice 
(Guy et al. 2007; Robinson et al. 2012), but also transduc-
tion of 10–40% of cells by direct brain injection with AAV-
MECP2 vectors improved RTT-like symptoms and greatly 
extended survival (Gadalla et al. 2017). Even transduction 
efficiencies as low as 3–5% significantly improved survival 
of adult Mecp2-null mice (Gadalla et al. 2017). These results 
suggest that desirable symptomatic improvements may result 
even if only a small proportion of brain cells have MeCP2 
expression restored.

Immunogenicity

Another challenge is the potential for foreign transgenes 
(e.g. bacterially derived Cas9), to stimulate host immune 
responses. Long-term expression of CRISPR/Cas9 
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components was generally well tolerated in a mouse model 
of muscular dystrophy after one year, although a host 
immune response was detected in nearly all mice injected 
as adults (Nelson et al. 2019). The prevalence of pre-existing 
immunity to AAV capsids (Calcedo et al. 2009; Kay, 2011; 
Mingozzi and High, 2013) and Cas9 nucleases (Charles-
worth et al. 2019; Wagner et al. 2019) in humans is another 
concern. Current engineered capsid variants may not be dif-
ferent enough from naturally occurring AAV serotypes to 
evade detection by neutralising antibodies, although efforts 
are underway to develop highly diverse variants to counter 
this problem (Bryant et al. 2021). Direct administration to 
the immune-privileged brain could potentially mitigate these 
problems, as might immunosuppressive strategies (reviewed 
in Perez et al. 2020).

Genotoxicity

Off-target editing is one of the primary safety concerns for 
the use of genome editors (nuclease-based or DNA base edi-
tors), since undesirable changes could be permanently intro-
duced into the genome (reviewed in Doudna 2020). While 
sustained expression of AAV vectors is an advantage for 
gene transfer strategies, prolonged expression of CRISPR/
Cas9 components may be detrimental as it increases the 
likelihood of off-target editing (Zuris et al. 2014; Ishida 
et al. 2015). This effect may be mitigated by engineering 
high-fidelity variants and/or minimising the duration of Cas9 
expression (reviewed in Zhuo et al. 2021). Alternatively, 
non-viral delivery vehicles, such as nanoparticles, could be 
used. Non-viral delivery of CRISPR/Cas9 components can 
mediate localised genome editing in the brain close to the 
administration site (Staahl et al. 2017; Lee et al. 2018), but a 
drawback is that they are unable at present to provide wide-
spread expression throughout the brain.

An additional concern for AAV-mediated delivery of 
programmable nucleases is accumulating evidence that the 
introduction of DSBs into the genome during editing can 
lead to integration of the AAV vector into the host genome 
(Miller et al. 2003, 2004; Anguela et al. 2013; Hanlon et al. 
2019; Nelson et al. 2019). This problem is largely avoided 
by the use of base editors, which do not tend to generate 
DSBs in the DNA (reviewed in Anzalone et al. 2020). This 
represents a further advantage of the base editing approach.

Efficacy and cost

A critical question for all genetic therapies concerns effi-
cacy. Will the intervention reverse or significantly ame-
liorate symptoms on a long-term basis without causing 
undesirable side effects? Even if animal experiments lead 
us to the strong conclusion that the answer to this question 

is ‘yes’, the leap to humans is inevitably accompanied by 
risk. Due to this uncertainty, arguments for or against 
genetic therapies ebb and flow. An example is the pro-
posal that development of a “cure” for severe neurological 
disorders may in fact be undesirable from several perspec-
tives (Clarke and Abdala Sheikh 2018). For example, in 
the context of RTT it was noted that rapid activation of 
Mecp2 expression in mice resulted in toxicity and lethality 
within a few days (Guy et al. 2007). Sudden re-expres-
sion of MeCP2 in humans, it was suggested, may lead to 
autonomic instability (Clarke and Abdala Sheikh 2018). 
However, due to the low transduction efficiency of current 
delivery vectors, it is unlikely that MECP2 will be cor-
rected in a sufficient number of neurons to cause toxicity. 
Other highlighted uncertainties persist, however, including 
the impact of changes in brain volume and the psychologi-
cal adjustments that would accompany improvements in 
brain function. For this and other genetic disorders of the 
brain, detailed pre-clinical research has the potential to 
minimise the chances of an adverse response, but only 
application of the therapeutic technology in the clinic can 
fully assess outcomes. In the case of RTT, preclinical stud-
ies have confirmed that gene transfer is a promising thera-
peutic strategy for RTT. Accordingly, several candidates 
are currently under development in academic programmes 
and commercially, aiming towards clinical trials within the 
next few years.

A serious caveat to genetic therapies is their high cost. 
For example, Zolgensma for the treatment of spinal mus-
cular atrophy has been dubbed the “most expensive drug 
in the world” costing more than $2 million in the US. 
This means that in countries without national healthcare 
programmes, these therapeutics are only available to the 
privileged. The cost of treatment has been defended by 
claims that it should be measured against the lifetime 
of healthcare treatment that should no longer be needed 
(or at least not to the same extent). Based on precedent, 
it seems likely that costs will decrease as treatments of 
this kind become more routine, but given the rarity of 
some such disorders, bespoke treatments seem destined 
to always be expensive. Social justice requires that novel 
therapies that turn out to be effective should be available to 
all, regardless of socio-economic status. Accordingly, the 
World Health Organisation (WHO 2021) has recognised 
the importance of establishing global guidelines to help 
ensure equitable access to genome editing technologies. 
However, this will remain a challenging issue and it is 
likely that different payment strategies will be required, 
as well as international partnerships to ensure access in 
low- and middle-income countries. Scientists can also play 
a role here, as illustrated by the insistence by the Oxford 
group that the AstraZeneca SARS-CoV-2 vaccine was dis-
tributed on a not-for-profit basis.
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Ethical concerns

Editing in germline cells raises long-standing ethical chal-
lenges and is currently illegal, so genome editing must be 
confined to somatic cells. Fortunately, this is technically 
straightforward, as any modifications introduced into the 
brain genome will only affect the treated individual and 
cannot be passed to future generations. Needless to say, 
rigorous testing will be required to address safety issues 
and minimise the possibility of unexpected consequences 
(Nuffield Council on Bioethics 2016; National Academy of 
Sciences 2020). The need for statutory guidelines has been 
highlighted by a controversial study which claimed to edit 
the CCR5 gene in human embryos, before subsequently 
implanting edited embryos into two women (commented 
on in Cyranoski 2019). The aim of the procedure was to 
disable the CCR5 gene in order to protect the recipients 
from certain strains of HIV infection, but the potential 
for unwanted consequences, including off-target edits or 
increased susceptibility to other diseases, such as West 
Nile Virus, were inadequately investigated, making this 
a high-risk intervention. In light of this scandal, a WHO 
advisory committee was developed to establish interna-
tional guidelines for human genome editing. It will be 
critical that individual scientists, and the scientific com-
munity as a whole, adhere to guidelines and ethical regula-
tions set by regulatory bodies, to protect patients, as well 
as scientific progress.

Concluding remarks

We are in the midst of a technological revolution which 
brings closer the possibility of correcting genetic diseases. 
If the technology brings the promised benefits and allevi-
ates suffering, ethical opposition to manipulation of genes 
may wane. As with all new medical procedures, however, 
these advances cannot be achieved without risk. Willing-
ness to undertake this risk is dependent on the severity 
of the relevant disorder, but also on the attitudes of those 
concerned, including parents/carers and society at large. 
Unfortunately, as in the case of organ transplants and many 
other aspects of medicine in times past, the first usage in 
humans is fraught with uncertainty. This has been high-
lighted by the recent fatalities in the Audentes Therapeu-
tics’ AAV gene therapy trial (AT132) for the treatment 
of X-linked myotubular myopathy (Harrison 2020). It is 
imperative that there is full transparency within the sci-
entific community, particularly with regard to reporting 
adverse effects, to ensure that treatments are both safe and 
effective. However, it is worth noting that the risks of no 

treatment are also very high for severe neurological dis-
orders and, if successful, patients (and their families) will 
reap the rewards of a life-changing therapy for these highly 
debilitating disorders. While a risk-averse (and litigious) 
society may hesitate at the prospect of the unknown, new 
therapeutic horizons will never be explored by stasis.
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