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A B S T R A C T   

Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to 
repair large bone damage. Recently, although autologous bone grafting is the “gold standard” for 
improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting 
causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering 
(BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a 
great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are 
poor mechanical properties and single structural property. With the development of BTE, gelatin 
is often used in combination with a range of natural, synthetic polymers, and inorganic materials 
to achieve synergistic effects for the complex physiological process of bone repair. The review 
delves into the fundamental structure and unique properties of gelatin, as well as the excellent 
properties necessary for bone scaffold materials. Then this review explores the application of 
modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, 
including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the 
excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various nat
ural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non- 
metallic materials in the repair of bone defects. The combination of these gelatin-based composite 
scaffolds provides new ideas for the design of scaffold materials for bone repair with good 
biosafety.   

1. Introduction 

Bone is a connective tissue composed of non-homogeneous composites that performs a variety of important functions in the body, 
including movement, support and protection. It functions as a repository for calcium and phosphorus, with its structure primarily 
composed of a mineral phase known as hydroxyapatite (HAp) alongside and organic phase [1,2]. In addition, the extracellular matrix 
composition of bone is mainly 85%–90% type I collagen, 5% non-collagenous proteins, 2%–5% lipid and water [3]. In case of skull 
bone defects less than 8 mm in rat, bone tissue possess the capability to regenerate and self-heal [4]. However large traumas or bone 
defects caused by tumors, congenital diseases, osteomyelitis, etc., autogenous or allogeneic tissue need to be filled to promote bone 
healing [5,6]. Autologous bone grafting is considered the gold standard in clinical treatment for bone defect repair. However, it faces 
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several challenges, such as limited bone supply, the risk of disease transmission, and the difficulty of clinical treatment [7,8]. Bone 
tissue engineering(BTE) is considered an important optimal choice for the development of regenerative bone grafting and repair [9]. 
BTE consists of three key elements: bone tissue scaffolds, seed cells, and growth factors. The construction of bone scaffolds is a hot and 
difficult research topic in bone tissue engineering [10,11]. Bone scaffold materials not only need high mechanical properties to support 
bone defects, but also serve as a medium for information transfer between bone cells, it provides an optimal microenvironment that 
fosters the growth and proliferation of bone cells as well as facilitates the process of biomineralization [12,13]. 

Optimal bone scaffold materials should have structural properties similar to natural bone tissue, including excellent biocompati
bility, mechanical properties, appropriate porosity and biodegradability [14,15]. Gelatin, a natural polymeric material, has gained 
widespread application in bone tissue engineering due to its unique properties [16]. The gelatin is obtained by hydrolysis of collagen, 
and its most abundant sources are pig skin, cow skin, pig bone, and bovine bone. Gelatin is widely used as a drug delivery system for 
osteogenic active molecules and as a scaffold material [17]. The unique arginine-glycine-aspartate (RGD) sequence of gelatin provides 
for the promotion of cell adhesion, proliferation and differentiation [18]. In addition, gelatin can be prepared into shapes such as 
nanofiber scaffolds, hydrogels, and nanoparticles through 3D printing, electrostatic spinning, freeze-drying, and other techniques to 
better accommodate different shapes of bone defects [19,20]. Fig. 1 shows the process of gelatin-based 3D scaffolds for BTE. The 
disadvantages of gelatin are also obvious, it is not able to be used for culturing cells alone and has poor mechanical properties, which 
are not sufficient to be used as a scaffold material. The nature of gelatin as an osteoblast-like matrix analogs and other excellent 
properties have been fully utilized with the introduction of BTE [21,22]. Currently, due to the easy modification of gelatin, it is 
commonly used for compounding with various natural polymer materials, synthetic materials as well as inorganic materials such as 
bioactive ceramics and metal/non-metal inorganic compounds [23,24]. Therefore, modified gelatin or composites with synergistic 
effects of different physiological functions can be prepared, which not only have high mechanical properties, but also osteoinductive 
activity and bone microenvironmental regulation [25,26]. 

The review delves into the fundamental structure and unique properties of gelatin, and the excellent properties necessary for bone 
scaffold materials. Then comprehensively explores the application of modified gelatin 3D scaffolds with various structures in bone 
repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. The paper primarily reviews the exceptional effectiveness 
demonstrated by composite bone tissue scaffolds composed of modified gelatin and various natural or synthetic polymeric materials, as 
well as bioactive ceramics and inorganic metal/non-metal materials, in the repair of bone defects. This review provides new per
spectives and ideas for gelatin research in the field of BTE. 

2. Structure and properties of gelatin and bone scaffold materials 

2.1. Structure and properties of gelatin 

Gelatin is obtained by partial hydrolysis of insoluble collagen originating from pigs, cows, fish, etc., followed by pretreatment and 
extraction procedures [27,28]. Gelatin can be categorized into different types based on different preparation processes. Among these, 
collagen is treated by acid to obtain type I gelatin, which has an isoelectric point (PI = 8–9), while type II gelatin obtained by treatment 
with alkali has an isoelectric point (PI = 4–5) [17,29]. These differences stem from the different chemicals used in the treatment 
process, resulting in subtle changes in gelatin properties. Furthermore, controlling the temperature during the processing allows the 
triple-helical collagen to be fragmented into gelatin with different molecular weights, thus producing gelatin with varying degrees of 
mechanical strength [16,30,31]. Due to its excellent biocompatibility, biodegradability, low toxicity, and low allergenicity, gelatin has 
emerged as an ideal choice for bone tissue scaffold materials [32,33]. Furthermore, as an analogue of the extracellular matrix, gelatin 
possesses a unique RGD sequence, as shown in Fig. 2, which provides a favorable biological environment for bone cell adhesion, 
proliferation, and biomineralization [34,35]. 

2.2. Structure and properties of bone scaffold materials 

In order to successfully repair and support the bone regeneration process, a good bone scaffold material should have structural 

Fig. 1. Gelatin-based 3D scaffold for BTE.  
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properties similar to those of natural bone, including good biocompatibility, biodegradability, porosity and mechanical strength. 
Moreover, it should have good cell adsorption and tissue adhesion, which is conducive to the proliferation and differentiation of seed 
cells and osteogenic regeneration [36,37]. 

The degradation rate of bone scaffolds had an important influence in the process of bone repair. Too fast degradation rate will lead 
to the bone scaffold unable to support the proliferation of host cells of bone tissue, resulting in the obstacle of new bone regeneration, 
while too slow degradation rate will be unable to make enough space for the regeneration of new bone, which is not conducive to the 
continuous regeneration of bone tissue [38]. Therefore, the rate of explanation of bone scaffolds should match the rate of new bone 
regeneration. For example, Tariq et al. prepared composite scaffolds using gelatin and PCL as the main materials by electrostatic 
spinning technique, which showed that the single PCL scaffold had no degradation in 28 days, while the introduction of hydrophilic 
gelatin resulted in the degradation of its composite scaffolds from day 7 to day 28 at a rate of ~31 %–~68%, which was matched with 
the average periosteum recovery time of 2–4 weeks, respectively [39]. Under the action of matrix metalloproteinase (MMP) in vivo, 
gelatin molecules were degraded to collagen fragments and tripeptides, and several studies have been conducted to show that gelatin 
not only possesses excellent biocompatibility, but its degradation products are also beneficial in promoting bone repair. For example, 
Hatakeyama et al. cultured human umbilical vein endothelial cells (HUVECs) with gelatin degradation products, which showed that 
gelatin degradation products significantly promoted the formation of capillary-like structures in HUVECs, stimulating angiogenesis 
and bone regeneration [40]. 

The porosity, mechanical strength and shape of bone scaffolds affect the bone repair process to varying degrees as well [41]. 
Porosity was a key element in evaluating whether the bone scaffold had the performance of new bone molding. Too high porosity 
leaded to lower mechanical strength of the scaffold, while too low porosity might be detrimental to the growth of new osteoblasts and 
vascularization of tissues. The proper porosity and pore size distribution played a key role in osteoblast attachment, migration, 
regeneration, as well as nutrient and metabolic waste transfer [42]. The small pore size (≈100 μm) bioscaffolds have been shown to be 
effective for in vitro bone tissue regeneration in cultured bone, with interconnected pores capable of meeting the oxygen, nutrient, and 
cell attachment requirements of the bone regeneration process. While larger pore sizes (≥300 μm) have also been found to have good 
tissue permeability, allowing for vascularization within the body, which is beneficial for bone regeneration [43,44]. The optimal scale 
of porosity and mechanical strength has been a challenge for scaffold materials. Porosity and mechanical strength similar to bone 
composition were able to have a more positive impact on the bone repair process [45]. El-Bahrawy et al. prepared gelatin composite 
scaffolds with porous hybrid structure by adjusting different gelatin/PVA ratios, which showed that gelatin/PVA porous hybrid 
scaffolds not only had the high porosity and pore size, but also the mechanical properties were close to the compressive strength of 
cancellous bone, and the scaffolds had the potential to repair the damage of cancellous bone [46]. 

3. Gelatin 3D scaffold 

From the bionic perspective, scaffold materials for bone tissue engineering require a 3D structure [47].To mimic the complexity of 
the extracellular matrix structure and to promote normal cell growth, many scaffold fabrication techniques, such as solvent casting, 
particle leaching, gas foaming, phase separation, freeze-drying, self-assembly, and electrostatic spinning, have been developed for 
gelatin 3D scaffolds [48–50]. Gelatin 3D scaffolds not only provided mechanical support and microenvironment for osteoblasts, but 
also, compared with traditional tissue engineering, cell-based strategies of gelatin-based scaffold materials were currently attracting a 
lot of attention by carrying progenitor cells, cytokines, or biologically active molecules in order to achieve the recruitment of cells and 
accelerate the induction of new bone regeneration [51,52]. MSCs with differentiation ability were the most ideal seed cells for tissue 
engineering. MSCs were able to be closely integrated with gelatin scaffolds and implanted into bone injury sites to effectively stimulate 

Fig. 2. Constitution and structure of gelatin.  
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the regenerative and osteogenic differentiation effects of bone cells [53]. Cytokines or bioactive molecules and gelatin scaffolds were 
adsorbed and mixed through the scaffolds, leading to a slow release, which were widely used in bone repair. Three cytokines, BMP-2, 
BMP-7 and PGDF-BB, which have been clinically approved for use in bone grafts for the treatment of hard-to-heal bone repair surgery 
[54]. There are three main types of gelatin 3D scaffolds (Fig. 3), which are nanofiber scaffolds, hydrogels and nanoparticles [55,56]. 

3.1. Nanofiber scaffold 

Nanofiber scaffolds with a 3D porous structure provide a supportive matrix for cell attachment, differentiation, and new bone 
formation [57,58]. The scaffolds have a high specific surface area, increasing the ability of the scaffolds to attach a large number of 
cells. Scaffolds with varied pore sizes are fabricated by various methods such as freeze-drying and electrostatic spinning [59,60]. 
Scaffolds with pore sizes of 200 μm facilitate bone regeneration because they facilitate nutrient transport and metabolite drainage, as 
well as provide space for new bone formation and vascularization [61]. The mechanical properties of nanofiber scaffolds should be 
similar to those of natural tissues to protect cells from tensile forces. Electrostatic spinning is currently the most widely used method for 
fabricating nanofiber scaffolds [62,63]. Within this method, a polymer solution is mixed with an appropriate volatile solvent and 
loaded into a syringe. The polymer is ejected under mechanical pressure, when a voltage is applied, the droplet at the needle changes 
from a sphere to a cone (Taylor cone) and extends from the tip of the cone to obtain fibrous filaments, which pile up in a reciprocal 
manner to form a porous scaffold [64,65]. The size of the pores in the scaffolds is changed by varying the current, flow rate, voltage, 
and the distance between the collection plate and the syringe. For example, Sneh et al. prepared Gelatin-PCL-nHAp nanocomposite 
scaffold materials by electrostatic spinning technique, which showed a significant increase in cell survival rate and enhanced cell 
adhesion and proliferation [66]. 

3.2. Hydrogel 

Hydrogel is a polymeric material with a 3D mesh structure which can swell in water and retain a large amount of water [25,67]. 
Gelatin hydrogels contain a large number of hydrophilic groups such as hydroxyl, carboxyl and amino groups in the molecular chain 
segments which absorb a large amount of water to maintain the soft physical properties and provide more possibilities for modification 
[68,69]. Modified gelatin hydrogels can be prepared by physical cross-linking, enzymatic cross-linking, and chemical cross-linking 
[70]. The common methods for physical cross-linking are plasma, UV radiation and dehydrogenation heat treatment, which pro
duce no potentially cytotoxic chemicals. However, the modified gelatin hydrogel network prepared by physical cross-linking has a low 
degree of crosslinking [71]. Chemical cross-linking can be achieved by adding a cross-linking agent to activate a gelatin molecule and 
the activated gelatin molecule is directly bonded to another gelatin molecule by chemical bonding, or the cross-linking agent is 
chemically bonded to the active functional group of the gelatin and is stabilized in that form in the structure of the gelatin [68,72]. 
Commonly used cross-linking agents include 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, EDC, aldehydes (such as formalde
hyde, glutaraldehyde), epoxy compounds (such as ethylene oxide, glycidyl ether), plant polyphenols (such as tannic acid, ferulic acid), 
etc. Currently, enzyme cross-linking is mainly used for polymeric materials with glutamine aminotransferase, tyrosinase, and 
horseradish peroxidase. Enzyme cross-linking can not only improve the mechanical properties of modified gelatin scaffolds but also 
enhance their osteogenic effects, which forming a dense 3D network structure through cross-linking with amino acid residues of gelatin 
polymers without the use of chemical cross-linking agents and organic solvents [73,74]. 

Gelatin hydrogels can be used to protect cells as well as to load certain growth factors or functional drugs to promote bone tissue 
repair. In recent years, smart injectable hydrogels have received increasing attention because they can be used for minimally invasive 
treatments [75]. The smart injectable hydrogel system is a liquid at room temperature and forms a hydrogel when injected into the 
location of bone cracks to fill intricately shaped defects [2,76]. The smart injectable hydrogels are able to shorten surgery time, reduce 
pain after surgery, lessen scar size and allow patients to recover quickly in an economical way. For example, Zhe et al. utilized 
nano-HAp and nano-silicate (SN) compounded with gelatin to prepare MSC-loaded GelMA-HAp-SN composite hydrogel scaffold, 
which was able to activate the highest expression of new bone formation and vascularized tissue [77]. 

Fig. 3. Gelatin 3D scaffolds including nanofiber scaffolds, hydrogels and nanoparticles.  
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3.3. Nanoparticles 

Nanoparticles are be used to deliver drugs and growth factors that exhibit excellent slow release with effective promotion of bone 
regeneration [78]. In addition, nanoparticles could modify the properties of scaffolds, such as superior mechanical properties and 
osteoinductive activity. For stance, Schrade et al. prepared an alginate dialdehyde-gelatin nanoparticle scaffold loaded with clinda
mycin and growth factors, which showed that the modified gelatin scaffold could effectively promote the proliferation of MG-63 cells 
and enhance the inhibition of staphylococcus aureus [79]. 

BTE is a rapidly developing field. The gelatin composite scaffolds have been widely studied in nanofiber scaffolds, hydrogels, and 
nanoparticles, in addition to the application of new technologies such as 4D scaffolds and organoids based on gelatin materials, which 
have demonstrated unique advantages in recent years [80,81]. 4D printing is based on the 3D structure to add a time dimension, so that 
the printed scaffold automatically changes over time with internal and external stimuli, with its unique responsiveness and shape 
change ability will better match the physiological environment of bone defects, which is expected to achieve a more accurate and 
individualized treatment [82]. However, in the process of bone repair was usually accompanied by the regulation of multiple cellular 
activities, the 4D printed scaffolds hardly were respond to multiple synergistic effects, so the design of 4D printed scaffolds with 
multiple stimulus responsed to meet the dynamic changes of the microenvironment in the process of bone repair is an important 
breakthrough point [83]. For example, Chakraborty et al. used SF-gelatin bioink doped with magnetic nanoparticles to achieve me
chanically actuated and thermally responsive mechanical stimulation of cartilage regeneration under prolonged driving by a magnetic 
field [84]. Bone organoids are bionic bone tissues with spatial structure and capable of self-renewal through directed differentiation of 
stem cells, and are genomically stable in long-term expansion in vitro. Bone organoids were usually based on bioactive material 
scaffolds and extracellular matrices to provide strong mechanical supportt [85]. Wang et al. prepared GelMA/AlgMA/HAP Scaffolds 
loaded with bone marrow mesenchymal stem cells through 3D printing, through in vivo cultivation, the organoid formed 
trabecular-like structural features of bone by self-mineralization, and its mechanical properties were comparable to those of natural 
spongy bone [86]. However, bone organoids were influenced by the physiological microenvironment of normal tissues, the complexity 
and sophistication of neural networks, blood vessels and other physiological functions, as well as the normal developmental and 
maturation environment of osteoid organs has not been satisfied at present, which still need to be invested in more comprehensive 
research [87]. 

4. Modified gelatin and its composite materials 

Given the abundance of readily modifiable groups in gelatin, such as hydroxyl, amino and carboxyl groups, gelatin-based scaffolds 
with excellent mechanical properties and outstanding osteoinductive activity can be successfully produced through clever modifi
cation by chemical reactions or physical methods [16,47]. These include the modification of gelatin with methacrylic anhydride (MA), 
dopamine, polyphenols, adipic dihydrazide and maleic anhydrideto optimize its properties for specific applications [88]. The structure 
of the compounds used for gelatin modification is shown in Fig. 4. And for example, Yang et al. prepared a hydrogel biomimetic 
periosteum by combining dopamine-modified gelatin with oxidized hyaluronan and doped with micro/nanobioactive glass, which 
showed excellent adhesion to bone tissue and formed a stable barrier in the region of bone defects [89]. Moreover, Honda et al. used 
epigallocatechin gallate (EGCG) for gelatin modification, which showed a significant increase in the degradation time of the scaffold 
and improved osteoinductivity of the scaffold material with significant bone repair effect [90]. 

Currently, gelatin-based bone scaffold materials are usually combined with various natural or synthetic polymeric materials as well 
as bioceramics and inorganic metallic/non-metallic materials to achieve synergistic effects and are widely used in the field of bone 
tissue engineering for their many performance advantages, such as more mechanical properties, osteoinductive activity, and anti- 

Fig. 4. The structure of the compounds used for gelatin modification.  
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infection [91–93]. 

4.1. Organic polymer materials 

With the introduction of BTE techniques, gelatin-based materials are often composited with functional organic polymers, aiming to 
cope with the diverse and complex physiological demands faced during bone injury healing. The emergence of such composites, which 
often exhibit superior mechanical properties, as well as anti-inflammatory effects and low immunogenicity, has attracted close 
attention and in-depth studies by a wide range of researchers. 

4.1.1. Natural polymer materials 
Natural polymer materials generally have good biocompatibility and biodegradability, which not only promote the adhesion of 

osteoblasts to bone but also promote cell proliferation. Natural polymers include polysaccharide biomolecules, polyphenols, and 
protein polymers, which can modify gelatin by chemical surface modification, physical modification, or enzymatic cross-linking to 
improve the osteoinductive activity and mechanical properties of modified gelatin scaffold materials [94,95]. The major natural 
polymer bone scaffold materials that are commonly used for gelatin modification include chitosan (CS), Alg, silk fibroin (SF) and 
peptide. 

CS, a product of chitin deacetylation, is similar in structure to glycosaminoglycan, the molecular chain is a copolymer composed of 
β-(1,4)-2-acetylamino-D-glucan unit and β-(1,4)-2-amino-D-glucan unit. Chitosan has good biocompatibility, biodegradability, and 
antibacterial activity. It is often used in various skin, nerve, and soft tissue engineering [96,97]. However, the mechanical properties 
and stability of single CS limit application of tissue engineering. Gel-CS based composites are obtained by chemical cross-linking [98]. 
The CS molecular chain contains abundant –NH2 and –OH reactive groups, while the gelatin molecular chain contains –NH2, –OH, 
–COOH reactive groups. Therefore, CS and Gelatin are cross-linked by covalent bonds to obtain Gel-CS based composites. What’s 
importantly, compared with single gelatin or CS materials, the gelatin-CS composite scaffolds have significant advantages in porosity, 
swelling rate, degradation rate, mechanical properties, biomineralization and cell adsorption capacity [2,99]. For instance, Ranga
nathan et al. prepared Gel-CS composites, which showed significant superiority compared to single CS and gelatin in affecting the 
properties of bone regeneration [100]. Moreover, Gel-CS composites can be used as scaffold materials to load seed cells or growth 
factors for more efficient application in BTE. 

SF is a natural polymeric fibrous protein extracted from silk, which can be obtained by degumming the natural silk [101]. SF with 
18 amino acids and has amphoteric charge. Compared with other natural or synthetic fibers, it has unique mechanical properties, such 
as good flexibility, tensile strength and breathability, which has been widely used in the field of tissue engineering [102]. SF can be 
prepared into thin films, hydrogels, and porous sponge materials by using chemical or physical modification methods. In combination 
with gelatin, it can effectively compensate for the poor mechanical properties of gelatin and be better used in BTE. Gel-SF scaffolds 
have good mechanical properties, thermal stability and degradation rate, which can not only provide suitable mechanical support for 
traumatic bone injury, but also accelerate bone regeneration by adsorbing cells on the scaffold [103]. For example, Luetchfork et al. 
prepared a variety of Gel-SF scaffolds in different ratios, which supported the adhesion of MSCs with high efficiency compared to single 
Gel or SF, and had a broad therapeutic potential for bone injury repair [104]. 

Alg, a kind of natural polysaccharide polymers rich in β-D-mannuronic acid and α-L-guluronic acid structural fragments, is 
extracted from the brown algae kelp and Sargassum [105]. Alg shows the advantages of high hydrophilicity, good biocompatibility and 
biodegradability. However, Alg has the weak mechanical properties, lack of intercellular interaction and uncontrolled degradation. 
Compositing sodium alginate with gelatin is able to compensate the shortcomings of both sides and improve the utilization rate and 
therapeutic effect of bone defect repair [106]. For instance, Cheng et al. prepared 3D bio-printed Alg-Gel composites, which promoted 

Table 1 
Characteristics of modified gelatin and natural polymers composite for BTE.  

Natural 
Polymers 

Advantages of single material Disadvantages of single material Characteristics of composite materials Ref. 

CS Biocompatibility; biodegradability; 
antibacterial properties. 

Stability; mechanical strength; 
osteoinductivity. 

Improved mechanical strength; osteoconductivity; 
significant biomineralization effect; and enhanced 
cell adhesion. 

[108] 

SF Good biocompatibility, good 
mechanical strength; and high thermal 
stability. 

Slow biodegradation, high 
fragility; and presence of residual 
contaminants. 

Good biodegradability; flexibility; tensile strength 
and mechanical properties. 

[109] 

Alg Good biocompatibility; simple gelation 
and easy functionalization. 

Poor mechanical properties; 
uncontrolled degradation; and 
hard to sterilize. 

Improved mechanical properties; regular pore 
structure; good biodegradability; and beneficial to 
cell growth. 

[110] 

Hyaluronic 
acid (HA) 

Good biocompatibility, 
biodegradability; good viscoelasticity 
and easy functionalization. 

Poor mechanical properties; 
difficult to process by electrostatic 
spinning. 

Good biocompatibility, biodegradability and 
mechanical strength; strong cell adhesion is 
conducive to osteoblast growth. 

[111] 

Cellulose Good biocompatibility and easy to 
functionalize. 

Poor mechanical properties and 
slow biodegradation. 

Good mechanical strength; proper porosity; and 
strong cell adhesion. 

[112] 

Fucoidan Good biocompatibility, 
osteoinductivity; easy functionalization; 
easy gelation. 

Slow degradation and poor 
mechanical properties. 

Good antibacterial activity; antioxidant; 
cytocompatibility and hemostatic properties. 

[113]  

E. Wu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e36258

7

the expression of osteogenic genes and proteins. The mechanical strength of the scaffold was similar to that of mouse dermal tissue 
structure with a more regular pore structure [107]. The advantages and disadvantages of common single natural polymers for bone 
repair and the material properties of the compounds with gelatin are summarized in Table 1. 

4.1.2. Synthetic polymer 
Synthetic polymers are formed by the polymerization of repeating monomers. Through designing the polymer functional groups 

and molecular weights appropriately, synthetic polymers exhibit specific structures and properties, such as controlled products and 
suitable mechanical properties. However, compared to natural polymers, synthetic polymers are usually poorer in degradability. The 
modification of gelatin with synthetic polymer materials not only compensates for the weak mechanical properties of gelatin, but also 
can prepare scaffold materials with adjustable properties according to the growth characteristics of bone cells. The major bone 
regeneration synthetic polymer scaffolds, such as PCL, PLA, poly (lactic-co-glycolic acid) (PLGA), and HAp are used for gelatin 
modification. 

PCL is made by ring-opening polymerization of ε-caprolactone, which is a non-toxic, biodegradable polyester with certain rigidity 
and strength. However, its degradation rate is slow, and the hydrophobicity of PCL is not conducive to cell adhesion and proliferation 
[114]. For instance, Yuan et al. prepared a series of composite fiber membranes with different ratios of PCL and gelatin by electro
spinning, which showed that a higher PCL content was beneficial to maintain the fiber structure of electrospun membranes, while a 
higher gelatin content could effectively improve the degradation rate of the scaffolds [115]. In addition, Liu et al. prepared modified 
gelatin scaffolds with different degradation rates according to the different degradation rates of PCL and gelatin, showed that the 
composite scaffold material could increase the adhesion of osteoblasts to bone and could effectively promote the regeneration of 
alveolar bone [116]. 

PLA is composed of polymerized lactic acid monomers that possess several essential characteristics for bone regeneration, such as 
cytocompatibility, thermal stability, and non-toxic degradation products [117,118]. For example, Yu et al. designed bioactive 
resveratrol PLA-Gel porous nanofiber scaffolds with good properties by electrostatic spinning technique, which had effective in 
cartilage injury repair [119]. 

PLGA is a random polymerization of lactic acid and hydroxyacetic acid monomers with good biocompatibility and biodegradability 
[120,121]. PLGA is the most widely used synthetic polymer for bone regeneration applications. Besides, the degradation rate of PLGA 
is able to be regulated from weeks to months by simply changing the ratio of the two monomers [122,123]. For instance, Li et al. 
prepared an injectable PLGA-Gel hydrogel scaffold loaded with simvastatin for enhancing osteogenic healing of alveolar bone. The 
composite hydrogel scaffold was shown to have excellent mobility at 37 ◦C with improved degradation rate and sustained osteogenic 
effect on the regeneration of new bone cells [124]. The advantages and disadvantages of other synthetic polymer materials for bone 
repair as well as the characteristics of composites with gelatin are summarized in Table 2. 

4.2. Inorganic materials 

Inorganic materials used for bone repair mainly include bioceramics, metallic materials and other inorganic materials, which 
usually have excellent mechanical properties and osteoinductive activity to compensate for the shortcomings of natural gelatin [132, 
133]. The following mainly introduced the common inorganic materials composited with gelatin such as HAp, bioactive glasses (BGs), 
silver nanoparticles (AgNPs) and black phosphorus (BP) nanosheets [134–136]. The advantages and disadvantages of other common 
inorganic materials for bone repair applications and the properties of gelatin composites are summarized in Table 3. 

HAp is a material with high similarity to the mineral composition of bone and is an attractive source of artificial bone material for 
BTE, with good compressive strength, biocompatibility and corrosion resistance [148]. It is commonly used as a replacement material 
for teeth and skeletons. The porous structure of HAp is beneficial as a bone scaffold to support cartilage repair and osteogenic 
regeneration. However, single HAp is brittle, poorly stiffened, slowly degraded, and has poor adhesion to cells. While composites of 
HAp with gelatin are beneficial for cell adhesion and growth, which can also improve its biodegradability and stability [149]. For 
example, Zhu et al. used glutaraldehyde as a cross-linking agent to synthesize porous Gel-HAp scaffold materials with different 

Table 2 
Characteristics of modified gelatin and synthetic polymers composite for BTE.  

Synthetic 
Polymers 

Advantages of single material Disadvantages of single 
material 

Characteristics of composite materials Ref. 

Polyglycolic acid Controllable degradation rat; 
osteoinductivity. 

Poor Biocompatibility; 
adhesion. 

Mechanical strength; osteoinductivity; 
biomineralization effect. 

[125] 

Polyethylene glycol 
(diol) diacrylate 

Flexibility; modifiable; Adhesion; fragile. Mechanical enhancement good 
biodegradability; flexibility. 

[126] 

Ethyl phthalate Good plasticity; good mechanical strength; 
and high thermal stability 

Uncontrolled degradation. Improved mechanical properties, regular 
pore structure; Shape control. 

[127] 

N-allylglycine Controllable mechanical properties; good 
plasticity; Good thermal stability. 

Poor biocompatibility; 
osteoinductivity. 

Controllable degradation and mechanical 
strength. 

[128] 

Poly (vinyl alcohol) Mechanical strength and plasticity. Poor degradation and 
biocompatibility. 

Good biocompatibility mechanical 
strength; and degradation. 

[129] 

Polyorthoesters Mechanical strength; plasticity; 
biocompatibility; stabilization. 

Degradation; 
osteoinductivity. 

Biocompatibility; mechanical strength. [130, 
131]  
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Table 3 
Characteristics of modified gelatin and inorganic materials composite for BTE.  

Inorganic materials Advantages of single material Disadvantages of single material Characteristics of composite materials Ref. 

Calcium 
octaphosphate 

Oteoinductivity; mechanical strength and biocompatibility. Low solubility; slow degradation. High rate of osteogenesis; mechanical enhancement. [137] 

Graphene oxide Mechanical strength; high optical transparency; electrical 
conductivity; 

Slow degradation and low swelling rate Excellent osteogenic effect and mechanical strength. [138] 

Hydrotalcite Excellent adsorbability; adjustable structure; antimicrobial 
activity. 

Poor dispersion; biocompatibility; mechanical 
strength. 

Anti-infection; plasticity; biocompatibility; Osteogenic 
induction 

[139,140] 

AuNPs Antimicrobial activity; mechanical strength; osteoinductivity. Poor dispersion; slow degradation. Anti-infection; Osteogenic; Adjustable performance; 
mechanical strength. 

[141,142] 

Calcium sulfate Tolerance; osteoinductivity; plasticity Poor anti-infection; hyperbiodegradation. Osteoinductivity Excellent biodegradability [143–145] 
Carbon nanotubes Excellent toughness; electroconductibility; high specific 

surface area. 
Biocompatibility. Osteogenic induction; Biocompatibility; excellent 

biodegradability. 
[146,147]  
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concentrations, which could effectively support, cell adhesion and proliferation [72]. What’s more, Conrad et al. made a modified 
gelatin bone scaffold material by incorporating nano-HAp into gelatin-based micro-ribbon hydrogel, which was able to rapidly induce 
endogenous cranial bone regeneration with increased osteoclast activity [150]. 

BGs are silicate glasses composed of basic components such as Na2O, SiO2, CaO and P2O5. Bioactive glass will slowly release soluble 
Si、P、Na and Ca ions when in contact with body fluids, which is conducive to promoting bone repair and angiogenesis [151]. In 
addition, Ce、Mg、Zn、Fe、Sr、Ag、B and other beneficial elements for bone repair can be added to the preparation of bioactive 
glass. For example, Mostajeran et al. prepared SA-Gel-BG/Ce scaffolds by compositing cerium-doped bioactive glass with SA/gelatin, 
which showed a significant increase in the mechanical properties and showed outstanding anti-inflammatory, antimicrobial, osteo
genic as well as angiogenic properties [152,153]. 

Bacterial infections during bone injury impair the healing and repairing ability of bone tissues. The high use of antibiotics in the 
clinic may lead to bacterial resistance, while the unique antibacterial mechanism of AgNPs is almost non-resistant to bacteria and has a 
wide range of antibacterial properties [154]. In addition, AgNPs have photothermal conversion ability, which enhances the anti
bacterial performance and osteoinductive activity, and the composite with gelatin can improve the mechanical properties of composite 
scaffolds [116]. For example, Ou et al. composited nanosilver (nAg), halloysite nanotubes (HNTs) with GelMA to prepare 
nAg/HNTs/GelMA composite hydrogels. The addition of nAg not only improved the mechanical and antimicrobial properties of the 
composite hydrogel, but also regulated the macrophage inflammatory reaction and accelerated bone regeneration. 

BP nanosheets, as a novel two-dimensional nanomaterial, have been widely studied in BTE due to the special physicochemical 
properties, such as excellent electrical conductivity, photothermal conversion ability and excellent biodegradability [155]. Moreover, 
in physiological environment, the degradation products of black phosphorus nanosheets are phosphates, which contribute to bone 
tissue mineralization. For instance, Jing et al. incorporated magnesium-modified BP into GelMA to prepare a photosensitive and 
conductive composite hydrogel, which exhibited effective antimicrobial properties under near-infrared irradiation and induced nerve 
fiber regeneration to promote bone repair [156]. 

In summary, Gelatin had the ability to be compounded with a variety of other bioactive materials in order to prepare gelatin 
composite scaffolds with excellent performance, which could be used to meet different types of bone defects. In addition, bone defects 
in different pathologic states are also worthy of attention, such as postmenopausal osteoporosis and diabetic osteoporosis patients. 
Gelatin composite scaffolds effectively promoted the adhesion and proliferation of osteoblasts, which was contributed to alleviate the 
pathological conditions of bone microstructure degradation and bone mineral density loss in postmenopausal osteoporosis patients 
[157]. Moreover, gelatin scaffold materials were capable of loading active molecules, such as BMP-2, estrogen and other active 
molecules, which accelerated the regeneration process of the bone microenvironment [158]. For the treatment of patients with dia
betic osteoporosis, gelatin scaffolds loaded with anti-inflammatory active molecules or osteogenesis-related growth factors were used 
to improve osteoblast proliferation and differentiation and metabolic processes [159]. At present, although there is no clear case of 
gelatin scaffolds in the research of clinical treatment, it can be found that modified gelatin scaffolds show great potential in preclinical 
treatment in the field of tissue engineering and regenerative medicine from the current research. In particular, gelatin and hyaluronic 
acid/hydroxyapatite composite scaffold materials have been widely used in preclinical studies of cartilage regeneration and wound 
healing [160]. 

5. Summary and prospect 

Gelatin, a natural hydrophilic polymer, has excellent biocompatibility, biodegradability, and superior biological properties in the 
field of bone tissue engineering. To compensate for the insufficient mechanical properties of gelatin, researchers have modified gelatin 
or compounded it with other various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metal/non- 
metal materials to obtain more superior performance of bone tissue engineering scaffold materials. Although the clinical practice 
research on gelatin-based composite scaffold materials in the field of bone tissue regeneration is still in its infancy, mainly focusing on 
preclinical studies such as in vitro cell experiments, mechanical property tests, and animal experiments, this field is undergoing rapid 
development. With the continuous emergence and maturity of advanced technologies such as electrospinning, additive manufacturing, 
3D printing, 4D printing, and bone organoids, scientists have been able to customize biological scaffolds with high biocompatibility 
and excellent matching to the shape of bone defects. These meticulously developed scaffold materials aim to produce bone tissue repair 
materials with higher degrees of matching and functionality for more effective treatment of bone tissue injuries. Therefore, gelatin- 
based composite scaffold materials are gradually becoming one of the most promising scaffold materials in the field of bone tissue 
regeneration [161,162]. 
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Abbreviations 

AgNPs Silver nanoparticles 
Alg Alginate 
BGs Bioactive glasses 
BP Nanosheets black phosphorus nanosheets 
BTE Bone tissue engineering 
CS Chitosan 
EGCG Epigallocatechin gallate 
Gly Glycine 
Gel Gelatin 
HAp Hydroxyapatite 
HUVECs Human umbilical vein endothelial cells 
Hyp Hydroxyproline 
MSCs Mesenchymal stem cells 
PCL Polycaprolactone 
PLA Polylactic acid 
PLGA Poly (lactic-co-glycolic acid) 
Pro Proline 
PVA Polyvinyl Alcohol 
SF Silk fibroin 
3D Three-dimensional 
4D Four-dimensional 
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