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With the rapid development of artificial intelligence, various medical devices and wearable devices have emerged, enabling people
to collect various health data of themselves in hospitals or other places.+is has led to a substantial increase in the scale of medical
data, and it is impossible to import these data into memory at one time. As a result, the hardware requirements of the computer
become higher and the time consumption increases. +is paper introduces an online clustering framework, divides the large data
set into several small data blocks, processes each data block by weighting clustering, and obtains the cluster center and cor-
responding weight of each data block. Finally, the final cluster center is obtained by processing these cluster centers and
corresponding weights, so as to accelerate clustering processing and reduce memory consumption. Extensive experiments are
performed on UCI standard database, real cancer data set, and brain CT image data set. +e experimental results show that the
proposed method is superior to previous methods in less time consumption and good clustering performance.

1. Introduction

In recent years, smart medical care has emerged with the
vigorous development of artificial intelligence (AI) tech-
nology. At present, the application of AI technology in the
medical field involves many aspects such as disease pre-
diction, intervention and consultation, disease diagnosis and
treatment, drug research and development, and health
service management [1]. +e fusion of AI and healthcare
services can help clinicians reduce reading time, aid in early
detection, and improve diagnostic accuracy. +e technology
of clustering plays a very wide role in the fields of medical
data analysis.

As a typical unsupervised learning method, clustering
mines the internal relationship between data samples and
then puts the samples with the same or similar attributes in
the same cluster, which avoids the dependence on the label
data and saves a lot of manpower and material resources [2].
Fuzzy clustering is a typical representative of clustering
methods, and the most classic fuzzy clustering is the fuzzy C-

means algorithm (FCM). Fuzzy clustering improves the
traditional hard clustering partition. +ere are a large
number of derivative algorithms based on the FCM, in-
cluding the probabilistic C-means algorithm (PCM), which
uses probabilistic methods to express fuzzy membership to
improve the limitation of fuzzy membership [3]. Recently,
many researchers have improved the traditional FCM
method from multiple perspectives and applied them in
various scenes [4]. Hua et al. [5] developed a multiview fuzzy
clustering based on the framework of FCM. Gu et al. [6]
proposed a probabilistic FCM method to be used for an-
tecedent parameter learning in Takagi-Sugeno-Kang fuzzy
system. Zhou et al. [7] proposed a new membership scaling
FCM method by selecting the unchanged clustering centers
through triangular inequality, which solves the problems of
slow convergence and a large amount of calculation when a
FCM algorithm is dealing with large data sets. Mishro et al.
[8] proposed a new type 2 adaptive weighted space FCM
clustering algorithm to solve the problem of noise mis-
classification and inaccurate clustering center obtained by
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FCM in the process of MR brain image segmentation. Wang
et al. [9] proposed an FCM algorithm for irregular image
segmentation, which has higher robustness and less com-
putational effort compared to traditional segmentation al-
gorithms. Based on hyperplane partitioning, Shen et al. [10]
developed a feasible and efficient FCM algorithm to deal
with large data sets. Jha et al. [11] designed and implemented
a kernelized fuzzy clustering algorithm using its in-memory
cluster computing technology. Liu et al. [12] proposed a
FCM algorithm based on multiple surface approximate
interval membership for processing artifacts in brain MRI
images.Wang et al. [13] proposed a FCM algorithm based on
wavelet frame, which can effectively remove image noise and
preserve image details. +is algorithm can provide a new
way to segment images in an irregular domain. Li et al. [14]
proposed a domain-qualified adaptive FCM method for
processing MRI brain images with noise and uneven in-
tensity. Zhang and Huang [15] studied the generalization
error of a FCM algorithm from the perspective of theory and
limited the generalization error from the perspective of
convergence, which can provide guidance for the application
of the sampling-based FCMmethod. Wu et al. [16] proposed
an online clustering algorithm by combining FCM algo-
rithmwith an online framework set to solve the problem that
batch learning cannot deal with large-scale data sets. Zhang
et al. [17] combined FCMwith a nonlinear genetic algorithm
and proposed an apple defect detection method to improve
fruit defect detection. Shen et al. [18] proposed a hyperplane
partition method based on FCM to deal with big data
clustering. Recently, the Bayesian fuzzy clustering (BFC)
[19] algorithm is proposed to combine the fuzzymethod into
a probability model. BFC reinterprets the fuzzymethod from
the perspective of probability, expands the value range of the
fuzzy index, and solves the problem that the fuzzy method is
prone to local optimization. +e many characteristics of the
BFC algorithm make it very widely used in medical data
processing. But due to the high complexity of the BFC
method, its efficiency is not high, and it has received great
limitations in practical applications.

Inspired by the above ideas, this paper proposes the
online weighted Bayesian fuzzy clustering method
(OWBFC) and uses an online clustering framework, which
not only retains all the advantages of the Bayesian fuzzy
clustering algorithm but also improves the efficiency of the

Bayesian fuzzy clustering method through the online clus-
tering framework. We verify the OWBFCmethod on a series
of real-world data sets. Compared with the existed Bayesian
fuzzy clustering algorithms, the contributions of our study
are concluded as follows:

(1) OWBFC combines the probability method with the
fuzzy method and realizes the fuzzy clustering
through the probability method, which has the
common advantages of the probability method and
the fuzzy method.

(2) In the process of solving the parameters, the Markov
chain Monte Carlo method (MCMC) is used for
sampling instead of a closed solution, so the global
optimal solution of the parameters can be obtained
in OWBFC.

(3) +e online clustering framework is used in OWBFC
to deal with the problem that large data sets cannot
be imported into memory, and the weighting
mechanism is used to improve the clustering
efficiency.

2. Related Work

+e BFC algorithm combines the probabilistic method with
the fuzzy method. From the perspective of prior knowledge
and Bayesian theory, it expands the range of the fuzzy index
of the traditional fuzzy method. +e BFC algorithm uses the
MCMC strategy [20] and particle filter method [21, 22] to
solve the optimization problem. +e maximum posterior
probability (MAP) is used to process fuzzy clustering, and
the normal distribution is further used to predict the number
of clusters. +erefore, the BFC method is superior to the
previous fuzzy or probabilistic methods in many aspects.
However, the algorithm complexity of BFC is relatively high.
+is shortcoming makes the BFC method not suitable for
large-scale data, and its application range is greatly limited,
which does not meet the current actual needs. +e BFC
algorithm aims to solve fuzzy clustering from the perspective
of probability. +e probability model of BFC consists of
three parts, namely fuzzy data likelihood (FDL), fuzzy
membership prior (FCP), and cluster center prior, as fol-
lows. +e fuzzy data likelihood is as follows:

p(X |U,C) � 
K

k�1
FDL xk | uk,C(  � 

K

k�1

1
Z uk, m,C( 



N

n�1
N xk | μ � cn,Λ � u

m
knI( , (1)

where X, U, and C are matrices of training data, fuzzy
member, and cluster centers, respectively. K and N repre-
sent the numbers of samples and the numbers of clusters,
respectively. ukn is the membership of data point xk in cluster
n. +e parameters m, cn, and I represent the fuzzy index, the

cluster center, and the identity matrix, respectively. And,
Z(uk, m,C) is the normalization constant, andm is the fuzzy
index. Since Z(uk, m,C) will be eliminated by the following
equation (2), it does not need to be calculated.

+e prior of fuzzy membership is expressed as
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p(U|C) consists of three parts as follows: F1 � Z(uk, m,C),
F2 � 

N
n�1 u−m D/2

kn , and F3 � Dirichlet(uk|α). F1 is to elim-
inate the normalizing constant in equation (1). F3 is the
Dirichlet distribution as follows:

Dirichlet(x|α) �
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where xn ≥ 0, n� 1,. . .,N and
N
n�1 xn � 1.+e parameter α is

the Dirichlet prior parameter, which controls the mem-
bership degree of the sample. +rough Dirichlet distribu-
tion, the BFC algorithm breaks the constraint that the fuzzy
index in the FCM algorithm must be greater than 1, so that
the fuzzy index in the BFC algorithm can take any value.

Cluster center prior is defined as

p(C) � 
N

n�1
N cn|μc,Σc( . (4)

It is noted that p(C) is to match the high degree of
membership produced by equation (4). μc and Σc are the
mean and variance of all samples, as follows:

μc �
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where c is a parameter that affects the strength of the prior,
which is set by the user, and we use c � 3 in our study. +e
joint likelihood of X, U, and C is obtained by multiplying
equations (1), (2), and (4).

p(X,U,C) � p(X|U,C)p(U|C)p(C)
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(6)

According to map theory, the joint likelihood form of
equation (7) is its negative logarithm, and a factor of 2 can be
multiplied to simplify.+e joint likelihood form is as follows:

J(X,U,C) � 
K
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Finally, BFC uses MAP inference and uses sampling to
filter membership and cluster centers to obtain their optimal
values.

From the above introduction, we can see that the BFC
algorithm breaks through the constraints of the traditional
fuzzy clustering fuzzy index and can obtain the global op-
timal solution, but its time complexity is too high to handle
large data sets.

3. Online Weighted Bayesian Fuzzy Clustering

3.1.WeightedBayesianFuzzyClustering. For large data sets,
it is a difficult problem that the data cannot be imported
into the computer at one time. In this paper, the online
clustering framework is adopted. By dividing the large

data set into several easy-to-handle small data blocks, the
clustering center of each data block is defined as the
representative point. In the process of processing the
data blocks, the representative points of each data block
and the corresponding weights of the representative
points are combined into two new different sets, and
then, the two new sets are processed to get the clustering
center of the whole data and accelerate clustering. Since
the OWBFC method uses a block and weighting mech-
anism to introduce weights for the clustering centers of
each data block, the weighted Bayesian fuzzy clustering
(WBFC) algorithm is introduced, and then, WBFC is
extended to its online version.

To further judge the contribution of each sample point to
the cluster in the process of clustering, this paper introduces
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the WBFC algorithm, which adaptively weights different
sample points to select the representative sample points. +e
objective function of WBFC is defined as

p(X,U,C) � p(X|U,C)p(U|C)p(C)

∝ exp −
1
2



K

k�1


N

n�1
wnu

m
kn||xk − cn||

2⎧⎨

⎩

⎫⎬

⎭ × 
K

k�1


N

n�1
u
αn−1
kn × exp −

1
2



N

n�1
cn − μc( 

T


−1

c

cn − μc( 
⎧⎨

⎩

⎫⎬

⎭
⎤⎦,⎡⎣

(8)

where wk > 0 represents the contribution of the nth sample
to the final cluster division. How to set wk will be described
in detail in the next section. Following [19], the MCMC
parameter optimization strategy is used in the WBFC al-
gorithm. First, we initialize the parameter uk and cn by
Dirichlet distribution and normal distribution. We sample
the U matrix according to U ∼ p(U|X,C)∝p(X,U,C)

using the Gibbs sampling. We judge whether the new
membership sample is accepted. If it is accepted, then uk is

set as uk � uΨk , u
Ψ
k as a new membership sample. +e ac-

ceptation rate Au is computed as

Au � min 1,
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If p(xk,uΨk |C∗)>p(xk, u∗k |C∗), we set the current u∗k as
u∗k � uΨk . +e p(xk, uk|C) is computed as
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+en, we sample C according to
C ∼ p(C|X,U)∝p(X,U,C). We judge whether the new
cluster center sample is accepted. If it is accepted, then cn is
set as cn � cΨn . +e acceptation rate Ac is computed as

Ac � min 1,
p xk, cΨk |C 

p xk, ck|C( 
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If p(X, cΨn |U∗)>p(X, c∗n |U∗), we set the current c∗n as
c∗n � cΨn , cΨn as a new cluster center. +e p(X, cn|U) is
computed as
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Finally, we check the maximum likelihood of all samples
using equation (9). +e whole training process circulates
several times until the model converges. +e training pro-
cedure of WBFC is shown in Algorithm 1.

3.2. Online Weighted Bayesian Fuzzy Clustering. +e WBFC
algorithm aims to introduce object weights based on the BFC
algorithm, so more representative sample points can be
selected while clustering. Based on the characteristics of the
WBFC algorithm, we further proposed the online version of
WBFC algorithm called OWBFC algorithm. Inspired of the
online algorithm advantage, the OWBFC algorithm can
handle large data sets based on the WBFC algorithm.
OWBFC divides the large-scale data into several easy-to-
process data blocks. +en, OWBFC uses the WBFC

algorithm to process each data block, merges the cluster
center of each data block into a new set, calculates the weight
of each cluster center, and merges the obtained weight.
Finally, the new cluster center set and the corresponding
weight set are processed to obtain the final cluster center.
+e weight factor wn in OWBFC is computed as follows:

wq � 

Kl

k�1
ukq, q � 1, . . . ,Q, (13)

where wq represents the weight of representative points of
each data block. Here, we give the training procedure of the
OWBFC algorithm as shown in Algorithm 2. +e parameter
Kl represents the number of sample points in the lth block,
ukq is the membership of xk in cluster q, andQ represents the
number of clusters. First, we divide the training data X into d
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blocks asX � X1, . . . ,Xd , and each blockXl has Kl sample
points, l� 1, 2, ..., d.Ul and Cl are the fuzzy membership and
clustering center matrices, respectively. We run the WBFC
algorithm in the first block X1 and obtain the fuzzy
membership and clustering center matrices in X1. +en, we
run the WBFC algorithm in the rest blocks with the clus-
tering center matrix Cl-1.

4. Experiments

4.1.Data Sets andExperiment Settings. In the experiment, we
use several medical data sets, including two cancer data sets,
Armstrong-2002-v2 and Bhattacharjee-2001 [23], three
medical data sets, and brain images in the UCI database [24].
Armstrong-2002-v2 is a data set to distinguish the expres-
sion of leukemia genes. It is divided into three categories,
with a total of 72 samples. Bhattacharjee-2001 is a lung
cancer classification data set, including five categories, a total
of 203 samples. Because of the small sample size of these two
data sets, they are not segmented here.+e heart disease data
set, diabetic retinopathy Debrecen (DRD) data set, and
hepatitis C virus (HCV) for Egyptian patient data set are
three UCI medical data sets. +e heart disease data set
contains 303 samples, and only 14 of them are used in this
article. +e DRD data set contains 1151 samples, and the
HCV data set contains 1385 samples. To facilitate the di-
vision, this study takes 1000 samples for the diabetic reti-
nopathy Debrecen data set. +e HCV data set took 1,200
samples. A total of three brain CT images were selected as
CT1, CT2, and CT3, with pixels of 275× 273, 273×277, and
264× 271. To facilitate segmentation, the pixels of the three
pictures are reduced to 272× 272, 272× 272, and 264× 264,
respectively. +e comparison algorithms include OFCM
[25] and SPFCM [25], which can process large-scale data
clustering. Among them, the two cancer data sets and one
UCI medical data set are used to compare the clustering
effects of OWBFC, OFCM, and SPFCM algorithms without
segmentation. +e remaining two UCI medical data sets are
used to compare the clustering effects and time of OWBFC,
OFCM, and SPFCM algorithms in different proportions of
segmentation. +e brain images are used to show the
running time comparison of OWBFC and BFC. +e
OWBFC, OFCM, and SPFCM algorithms have two pa-
rameters: fuzzy indexm and prior parameter α. In this study,
we set m� 1.7 and α� 1. To visually display the clustering
performance, we use four clustering performance indicators
of accuracy, entropy, F-measure, and purity to show the
clustering results. R � fullt/blockt represents the ratio of the
running time of the whole processing data set and the block
processing data set of the algorithm, fullt represents the
running time on the whole data set, and blockt represents the
sum of the running time on each block. Although this part
loads the data set into the memory at one time, this paper
believes that R is similar to the data that cannot be loaded,
because the total amount of data is the same, whether it is
processed separately or at one time. Our experimental
platform is AMD R5-5600X, six cores, 16G memory,
Windows10 operating system, Matlab2016a.

4.2. Experimental Results on the Armstrong-2002-v2, Bhat-
tacharjee-2001, andHeartDiseaseDataSet. Tomake SPFCM
and OFCM algorithms run better, according to the sug-
gestions of Havens et al. [25], we set the fuzzy indexm� 1.7.
For the Armstrong-2002-v2 data set, Bhattacharjee-2001
data set, and heart disease data set, the number of clusters is
set to 3, 5, and 5, respectively. Because the sample size of
these three data sets is small, they are not processed in
blocks. Table 1 shows the experimental results of the OFCM,
SPFCM, and OWBFC algorithms. We can see that the
OFCM algorithm and the SPFCM algorithm have similar
clustering performances on these three different data sets,
and it is difficult to compare the advantages and disad-
vantages of the two algorithms. But comparing the OFCM
algorithm, SPCM algorithm, and OWBFC algorithm, it is
easy to see that the OWBFC algorithm has the best clustering
results except for some special cases.

4.3. Clustering Performance on DRD and HCV Data Set.
Like the parameter setting in Section 4.2, the DRD and HCV
data sets are divided into 5%, 10%, and 50% of the whole data
set, and the last column of the HCV data set is selected as the
basis for the number of clusters, the fuzzy indexm� 1.7, and
the number of clusters is set to 4. +e OFCM, SPFCM, and
OWBFC algorithms run independently 10 times on the basis
of random initialization to calculate the maximum, mini-
mum, and average values of accuracy, entropy, F-measure,
and purity. +e clustering results of the two data sets are
shown in Tables 2–5. From Table 2, it can be seen that the
accuracy of the OFCM is slightly lower than that of the
SPFCM algorithm when the number of data blocks is large,
and the accuracy of the OFCM algorithm is higher than that
of the SPFCM algorithmwhen the number of blocks is small.
Overall, the accuracy of OFCM algorithm is similar to that of
SPFCM algorithm, and the accuracy of OWBFC algorithm is
the best. Tables 2–5 show the accuracy, entropy, F-measure,
and purity of these two different data sets. For example,
74.78/74.90/74.66 represents the mean, max, and min ac-
curacy values, respectively. Compared with the OFCM al-
gorithm and SPFCM algorithm, the OWBFC algorithm has
the best results whether it is entropy or F-measure or purity.
Because the OWBFC algorithm uses the MCMC sampling
method to solve the parameters, it can obtain the global
optimization of the parameters. +erefore, the OWBFC
algorithm can obtain better clustering performance. Only
from Tables 3–5, the gap between the three algorithms is not
obvious. Combining with Table 8, it can be clearly seen that
the OWBFC algorithm has good clustering performance and
also greatly reduces the time consumption of the algorithm.
Table 8 shows the running time at different division ratios.
Because the data set name is too long, the abbreviation is
used in the experiment.

4.4. Brain Images. +ree brain images are shown in Figure 1.
We use them to verify the clustering performance of OWBFC
for large-scale image segmentation.We compare the OWBFC
and BFC algorithms in this subsection. According to the
recommendations [19, 25], the parameters α set to 1, and the
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Input:Training data X, fuzzy index m, number of clusters N, number of sampling iteration Niter, weight w
Output:Fuzzy membership U∗ and cluster prototypes C∗
Step 1. Initialize parameters μc and Σc
Step 2. Initial uk ∼ Dirichlet(α � 1N), k � 1, . . . , K

Step 3. Initial yc ∼ N(μy,Σy), c� 1, . . . , C

Step 4. u∗k � uk, c∗n � cn,//assign map sample to current sample
Step 5. For iter� 1,. . ., Niter
//Sample U according to U ∼ p(U|X,C)∝p(X,U,C)

Step 7. for k� 1,. . .,K
Step 8. Sample new membership uΨk by equation (3)
Step 9. Judge whether the new membership sample is accepted by equation (10). If it is accepted, then uk � uΨk
Step 10. if p(xk, uΨk |C∗)>p(xk, u∗k |C∗) //Use Eq. (11)
Step 11. u∗k � uΨk
Step 12. end
Step 13. end
//Sample C according to C ∼ p(C|X,U)∝p(X,U,C)

Step 14. for n� 1,. . .,N
Step 15. Sample new cluster center cΨn from N(cn,Σc/δ)

Step 16. Judge whether the new cluster center sample is accepted by equation (12). If it is accepted, then cn � cΨn
Step 17. if p(X, cΨn |U∗)>p(X, c∗n |U∗) //Use equation (13)
Step 18. c∗n � cΨn
Step 19. end
Step 20. end
Step 21. //Check the maximum likelihood of all samples
Step 22. if p(X,U,C)>p(X,U∗,C∗) //Use equation (9)
Step 23. U∗� U

C∗� C
Step 24. end
Step 25. end

ALGORITHM 1: Weighted Bayesian fuzzy clustering (WBFC) algorithm.

Input: Training data X, fuzzy index m, number of clusters Q, number of sampling iteration Niter, weight wn, number of data blocks d

Output: Cluster prototypes C∗
Step 1. Divide X into d blocks X � X1, . . . ,Xd //Each block has Kl sample points, 1≤ l≤d

Step 2. Initialize w � 1Kl

Step 3. Use algorithm to obtain the U1,C1 � WBFC(X1, Q1, m) with w
Step 4. for l� 2 to d
Step 5. Use algorithm to obtain the Ul, Cl �WBFC(Xl, Ql, m) with Cl-1
Step 6. end
Step 7. C∗ � C1 ∪C2 . . . ∪Cd

Step 8. wq � 
Kl

k�1 ukq, q � 1, . . . , Q

Step 9. C∗�WBFC(C∗, N, m, {w1 ∪ . . . ∪wd})
Step 10. end

ALGORITHM 2: Online Weighted Bayesian Fuzzy Clustering (OWBFC) algorithm.

Table 1: Clustering performance on Armstrong-2002-v2, Bhattacharjee-2001, and Heart Disease data sets.

Data sets Algorithms Accuracy Entropy F-measure Purity

Armstrong-2002-v2
OFCM 0.7235 0.4728 0.7948 0.7331
SPFCM 0.7237 0.4697 0.8011 0.7372
OWBFC 0.7548 0.4632 0.7964 0.7489

Bhattacharjee-2001
OFCM 0.8213 0.2879 0.8637 0.8235
SPFCM 0.8635 0.2455 0.9294 0.8769
OWBFC 0.8792 0.2423 0.9328 0.8817

Heart Disease
OFCM 0.7643 0.4675 0.7921 0.7039
SPFCM 0.7659 0.4678 0.7914 0.7054
OWBFC 0.7768 0.4679 0.7932 0.7258

+e best average performances are shown in bold type in Tables 1–7.
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parameters m set to 1.7. We split brain images at a ratio of
25% and set all classes to 3. Figures 2 and 3 show the clus-
tering results of three brain images by BFC and OWBFC
algorithms, respectively. Table 6 shows the experimental
results on three brain images. Table 7 shows the running time
results of BFC and OWBFC on three brain images. We can

see from Table 6 that the clustering performance of OWBFC
is better than that of BFC. Meanwhile, from Table 7, we can
clearly see that OWBFC has a shorter time consumption
compared with BFC. In summary, compared with BFC, the
OWBFC algorithm not only maintains a good clustering
effect but also consumes less time.

Table 2: Accuracy (mean/max/min) on the DRD and HCV data sets (%).

DRD data set
Block size OFCM SPFCM OWBFC
5 73.16/73.32/72.95 73.26/73.37/73.18 74.78/74.90/74.66
10 73.34/74.44/73.12 73.37/73.54/73.15 74.83/74.97/74.72
50 73.53/73.64/73.31 73.51/73.62/73.43 75.02/75.16/74.93

HCV data set
Block size OFCM SPFCM OWBFC
5 74.16/74.41/74.11 74.17/74.31/74.09 75.61/75.78/75.52
10 74.29/74.44/74.16 74.24/74.42/74.13 75.65/75.80/75.52
50 74.37/74.48/74.31 74.33/74.47/74.25 75.73/75.86/75.66

Table 3: Entropy (mean/max/min) on the DRD and HCV data sets (%).

DRD data set
Block size OFCM SPFCM OWBFC
5 47.72/47.88/47.65 47.77/47.92/47.61 47.34/47.49/47.26
10 47.75/47.89/47.67 47.77/47.91/47.63 47.39/47.54/47.28
50 47.81/47.95/47.76 47.82/47.97/47.74 47.44/47.57/47.33

HCV data set
Block size OFCM SPFCM OWBFC
5 46.65/46.78/46.52 46.79/46.87/46.68 46.84/46.97/46.75
10 46.69/46.78/46.53 46.81/46.89/46.72 46.84/47.03/46.72
50 46.71/46.82/46.66 46.88/46.96/46.75 46.87/47.11/46.76

Table 4: F-measure (mean/max/min) on the DRD and HCV data sets (%).

DRD data set
Block size OFCM SPFCM OWBFC
5 77.96/78.13/77.81 77.93/78.15/77.82 78.42/78.57/78.30
10 77.96/78.15/77.81 77.96/78.17/77.84 78.47/78.60/78.33
50 78.04/78.21/77.85 77.98/78.22/77.88 78.51/78.63/78.38

HCV data set
Block size OFCM SPFCM OWBFC
5 75.02/75.14/74.93 75.02/75.16/74.89 75.96/76.13/75.84
10 75.13/75.25/75.02 75.10/75.24/74.90 76.03/76.17/75.91
50 75.17/75.31/75.05 75.16/75.36/75.03 76.15/76.31/76.02

Table 5: Purity (mean/max/min) on the DRD and HCV data sets (%).

DRD data set
Block size OFCM SPFCM OWBFC
5 74.58/74.63/74.34 74.55/74.67/74.43 75.27/75.43/75.16
10 74.64/74.72/74.49 74.59/74.75/74.48 75.31/75.46/75.24
50 74.72/74.88/74.62 74.66/74.81/74.57 75.37/75.50/75.26

HCV data set
Block size OFCM SPFCM OWBFC
5 74.61/74.79/74.48 74.55/74.67/74.38 75.25/75.37/75.18
10 74.67/74.83/74.54 74.60/74.77/74.45 75.29/75.43/75.16
50 74.71/74.88/74.62 74.66/74.79/74.52 75.33/75.46/75.19
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Table 7: Running time on three brain images (s).

Image BFC OWBFC
Cta 1224.23 345.36
Ctb 1231.14 339.45
Ctc 1219.56 326.72

(a)

Figure 2: Continued.

Table 8: OWBFC running time on different block ratios (s).

Data sets
Block size R

100% 50% 10% 5% 100%/50% 100%/10% 100%/5%
DRD 85.31 67.54 15.67 12.51 1.26 5.44 6.82
HCV 97.25 70.26 17.48 13.16 1.38 5.56 7.38

(a) (b) (c)

Figure 1: +ree brain images used in the experiment. (a) cta, (b) ctb, and (c) ctc.

Table 6: Clustering results of BFC and OWBFC on three brain images (%).

Data sets Methods Accuracy Entropy F-measure Purity

Cta BFC 87.54 23.64 91.26 87.43
OWBFC 88.01 21.98 91.32 88.15

Ctb BFC 88.65 21.38 91.97 88.76
OWBFC 89.23 21.05 92.28 89.61

Ctc BFC 86.91 24.33 90.65 87.15
OWBFC 87.06 23.96 91.43 87.34
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(a)

(b)

(c)

Figure 3: Clustering results of OWBFC on three brain images. (a) cta, (b) ctb, and (c) ctc.

(b)

(c)

Figure 2: Clustering results of BFC on three brain images. (a) cta, (b) ctb, and (c) ctc.

Computational Intelligence and Neuroscience 9



5. Conclusion

With the advancement of science and technology, the col-
lection of variousmedical data has becomemore frequent and
easier, which makes the scale of medical data larger and
larger, and it is impossible to import the data into thememory
at one time, so the hardware requirements for processing
these data become higher and the time consumption in-
creases. +is paper proposes an OWBFC method, which
reduces the memory consumption of the computer and the
time consumption of the algorithm by introducing an online
clustering framework to process the data set in blocks. From
the experimental results, the block processing can effectively
reduce the time consumption of the algorithm. However, the
online clustering framework adopted in this paper needs to
merge and save the cluster centers of each data block in the
process of processing data, which raises the space con-
sumption of the algorithm. +erefore, how to avoid excessive
space consumption while ensuring low time consumption is a
problem worth thinking about.

Data Availability

Armstrong-2002-v2 and Bhattacharjee-2001 data sets can be
downloaded from https://schlieplab.org/Static/Supplements/
CompCancer/datasets.htm. +e other data sets can be
downloaded from http://archive.ics.uci.edu/ml/index.php.
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