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Over a half century, organ transplantation has become an effectivemethod for the treatment
of end-stage visceral diseases. Although the application of immunosuppressants (IS)
minimizes the rate of allograft rejection, the common use of IS bring many adverse
effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical
practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells,
which makes a bridge between innate and adaptive immunity. Among their subsets, a small
portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC).
Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach
transplant tolerance in animal models. In this study, we summarized the properties, ex vivo
generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a
substitute for IS to enable patients to achieve immune tolerance in the future.
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INTRODUCTION

Since Dr. Joseph Murray performed the first successful renal operation between identical twins in
1954, organ transplantation has developed extensively (1). However, transplant surgeons and
immunologists around the world are always looking for better and safer treatment for severe
intra- or post-transplant complications, including rejection, tumor, and infection, which directly
or indirectly result from the allograft itself or application of immunosuppressive agents (2).
Moreover, traditional immunosuppressants (IS) commonly focus on adaptive immunity (T and B
cells); however, once they are activated, stalling the rejection process becomes considerably
difficult (3). Therefore, understanding the various factors that activate T and B cells is significant
to the therapies for anti-rejection. Dr. Ralph Steinman in 1973 first described dendritic cells (DC)
(4). DC are considered to be the most potential antigen-presenting cells (APC), which recognize
non-self or even self-antigen and stimulate powerful adaptive-immune cells, such as effector or
memory T cells (Teff or Tmem) and indirectly induce plasma cells for antibody production (5).
Depleting DC seems to be very effective and technologically advanced for the prevention of organ
transplant rejection, which can result in surprising immunodeficiency and lead to some
unexpected issues in the body (6). Hence, modifying the DC phenotype and function for
inducing transplant tolerance is necessary. A recent study shows prospective strategies to
minimize drug treatment, and a reduction in rejection was achieved by combining reduced
org October 2020 | Volume 11 | Article 5529881
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amounts of IS with immunoregulatory cell therapy in solid
organ transplantation (7). Additionally, many reports focus on
cell therapy in organ transplantation, including mesenchymal
stem cells (MSC), regulatory macrophages (Mreg), tolerogenic
dendritic cells (Tol-DC), and regulatory T (Treg) and B (Breg)
cells (8–11). Herein, our attention is focused on Tol-DC, which
show immunoregulatory functions in autoimmune diseases
(12), infections (13), and cancers (14) as well as organ
transplant issues (8). We review their features, ex vivo
generation, and clinical applications and discuss their diverse
effects on organ transplantation.
THE CHARACTERISTICS AND
BIOMARKERS OF TOL-DC

DC, which are the so-called professional APC, characterize the
bridge to development of an adaptive immune response (specific
cell- and antibody-mediated clearance) from the innate immune
response (15). DC were first distinguished in lymphoid tissues
from other leukocytes on the basis of this idiosyncratic cell shape
and an absence of critical lymphocyte and phagocyte properties
(16) and subsequently identified in essentially all other tissues of
the body. Immediately after transplantation, pattern recognition
receptor (PRR)-mediated danger signals activate DC, leading to
APC maturation, upregulation of costimulatory molecules, and
secretion of proinflammatory cytokines and cytotoxicity (17). At
the present time, four main cell types are generally classified as
DC: conventional DC (cDC), plasmacytoid DC (pDC),
Langerhans cells, and monocyte-derived DC (mono-DC).
Among solid organ transplant models, according to the three
allorecognition pathways (direct, indirect, and semidirect
pathways), DC either derived from donor or recipient tissues
and carrying donor major histocompatibility complex (MHC)-
specific antigens could be recognized in the secondary lymphatic
tissues of recipients to activate a T cell alloimmune response (18).
Nonetheless, in addition to the rejection contribution, DC also
play an essential role in allograft tolerance, which shows DC in
transplanted models have two sides (19–21). Some DC that are
able to suppress immune responses are initially termed as
Tol-DC.

Mature DC exhibit the characteristics of high expression of
the surface MHC-II and costimulatory molecules (CD80/CD86
and CD40). On the contrary, Tol-DC are often characterized by
low expression of MHC-II and CD80/CD86 and CD40, termed
as a state of “semi-maturity” (8). Additionally, Tol-DC are also
featured with increased expression of anti-inflammatory
molecules, such as interleukin-10 (IL-10) and transforming
growth factor-beta (TGF-b), and decreased levels of IL-12p70
and other proinflammatory cytokines (22).

Transcriptome and proteome studies illustrate distinctive
molecular signatures of Tol-DC. Though it is still difficult to
find uniform surface markers to define Tol-DC, it is reported
that some genes, such as CYP24A1, MUCL1, MAP7, CCL18,
C1QB, C1QC, CYP7B1, and CNGA1, could be considered as
possible biomarkers for Tol-DC (23).
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There are also other molecules that can be regarded as the
biomarkers of Tol-DC. The complement subunit C1q was
recently identified as a biomarker for monocyte-derived Tol-
DC, which could suppress CD4+ T-cell activation via increasing
IL-10 secretion (24). Immature DC are a rich source of active
C1q, and the expression of C1q is downregulated when DC are
approaching the mature state (25). Globular C1q receptors
(gC1qR) are one of the receptors expressed in the surface of
mono-DC, and C1q could inhibit the differentiation of DC from
its precursor via combination with gC1qR and DC-specific
intercellular-adhesion-molecule-3 grabbing non-integrin (DC-
SIGN) (26). In addition, C1q is a functional ligand for leukocyte-
associated Ig-like receptor 1 (CD305), which is a transmembrane
protein expressed on both myeloid and lymphoid cells,
restricting DC differentiation and activation (27). In the
immunotherapy of pollen allergic patients, the increased levels
of C1q expressed by Tol-DC in peripheral blood mononuclear
cells (PBMC) represent a candidate biomarker of early efficacy of
allergen immunotherapy (28, 29). Macrophage inhibitor
cytokine (MIC-1) is a divergent member of the TGF-b
superfamily, and the high expression of MIC-1 has been
observed in Tol-DC (30).

Traditionally, the everlasting immaturity of DC is conducive
to the tolerant consequence (31). Recent studies, nonetheless,
show that, in some cases, mature DC could also display the
characteristic of tolerance. For instance, stimulation by
recombinant soluble Schistosoma mansoni egg antigen (rSm29)
could induce mono-DC with high expression of MHC-II and
costimulatory molecules while rSm29 could increase IL-10 level
and decrease levels of IL-12p40 and interferon-gamma (IFN-g)
in cultured mono-DC, which results in a great therapeutic
efficacy on cutaneous leishmaniasis (32).
THE EX VIVO INDUCTION OF TOL-DC

Large amounts of DC can be obtained from monocytes pulsed by
granulocyte/macrophage colony-stimulating factor (GM-CSF)
and IL-4 (33, 34). In rodents, DC are derived from bone
marrow cells; nonetheless, DC are usually derived from
peripheral blood mononuclear cell (PBMC) in human. The
reason why monocytes are considered as the source of DC is
that they are easily obtained and more abundant than other DC
precursors. Generally, DC can be induced to immunologic DC
and Tol-DC via different stimulation in vitro. There is currently
many a protocol to induce Tol-DC ex vivo. Usually, protocols of
Tol-DC induction need diverse stimulators and technology, such
as clinically approved drugs, cytokines, experimental inhibitors,
and genetic engineering or biological intervention. The process
of the generation of Tol-DC is summarized in Figure 1.

Clinical Drugs
Vitamin D3 (VitD3) is a fat-soluble hormone that can be
acquired from food or be biosynthesized in the skin upon
ultraviolet-B radiation and is commonly applied as a drug for
rickets, which is considered to be one of the most commonly
October 2020 | Volume 11 | Article 552988
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used strategies for inducing Tol-DC in vitro. VitD3-Tol-DC
show low expression of MHC-II, CD80, CD86, and CD40 and
high secretion or expression of IL-10, indoleamine-2,3-
dioxygenase (IDO), and even immunoglobul in- l ike
transcript 3 (ILT3) (35–38). Several inflammatory pathways
are involved in this process, such as extracellular signal-
regulated kinase (ERK) 1/2 signaling cascade and specificity
protein 1 (SP1) signaling factor and nuclear factor-kappa B
(NF-kB) (23). A recent study indicates that high expressions of
both MAP7 and MUCL1 genes are observed in VitD3-Tol-
DC (39).

Immunosuppressants (IS) are also commonly used to induce
Tol-DC in vitro. IS, such as rapamycin and dexamethasone
(Dex), are proven to be effective for Tol-DC induction in vitro.
Rapamycin (mTOR inhibitor) could suppress DC maturity with
intermediate levels of MHC-II and costimulatory molecules (40).
Campos-Acuña et al. transferred Tol-DC conditioned by
rapamycin and activated by mono-phosphoryl lipid A to a
murine skin graft model, resulting in a longer allograft survival
period, more Treg proliferation, and cytokine pattern
modification (41). Dex is a steroid widely used for the
prevention and treatment of organ rejection. Polymeric
nanoparticles containing ovalbumin (OVA) and Dex could
change DC to Tol-DC phenotype, which could profoundly
suppress OVA-specific immune responses in vivo (42). Tol-DC
conditioned by Dex with a cocktail of cytokines (IL-1b, IL-6,
TNF-a, and prostaglandin E2 (PGE2)) was tested in a clinical
trial to evaluate the safety of Tol-DC in the treatment of
refractory Crohn’s disease (CrD) (43). Human monocyte-
derived Tol-DC generated from Dex and VitD3 exhibit a
typical tolerogenic phenotype of reduced costimulatory
molecules and low production of proinflammatory cytokines
Frontiers in Immunology | www.frontiersin.org 3
(44). This protocol was also used to treat rheumatoid arthritis
patients (45).

Cytokines
There are several cytokines used to induce Tol-DC in vitro,
and most use IL-10 and TGF-b. Under the stimulation of IL-10,
the expression of MHC-II and costimulatory molecules in DC
could be reduced (46). There are two subpopulations of IL-10-
pulsed DC: CD83highCCR7+HLA-DRhighIL-10+ DC and
CD83lowCCR7+HLA-DRlowIL-10+ DC. The former may
become a promising choice for induction or restoration of
tolerance in vivo because of their stable tolerogenic phenotype,
even stimulated by inflammatory molecules, and they could
induce highly potent Treg (47). TGF-b increases the expression
of programmed death-ligand 1 (PD-L1) on DC, induced T cell
apoptosis, and enhanced Treg differentiation (48). Moreover,
TGF-b secreted by endothelial stromal cells could induce high
expression of Fas-ligand (FasL) in Tol-DC through the ERK
pathway (49). Compared to Dex, rapamycin, and TGF-b, IL-10
could induce stronger Tol-DC. Therefore, IL-10 seems to be the
optimal inducible therapy for some immune diseases (50). In
addition to IL-10 and TGF-b, there are also other cytokines that
could induce Tol-DC in vitro, such as MIC-1, tumor necrosis
factor a (TNF-a)-induced protein 8 like-1 (TIPE1) and PGE2.
The expression of malat-1 circular RNA (circ_Malat 1) is the
mature signal of DC. When treated with recombinant MIC-1 in
vitro, the expression of surface molecules CD83, CD86, and
HLA-DR is suppressed in DC as a result of the inhibition of
circ_Malat 1 and NF-kB pathways. TIPE1, a new member of the
TNF-a-induced protein 8 family, could boost PD-L1 expression
on DC and restrain the signal transduction to T cell activation
(51). Mature DC induced by PGE2 could produce IDO and
FIGURE 1 | An overview of isolation and expansion procedures of Tol-DC from PBMC and their administration in clinical approaches. PBMC are the source of DC in
human. CD14+monocytes were extracted by immunomagnetic separation. Under the stimulation of GM-CSF and IL-4, monocytes were differentiated to DC. The
source of DC can be from either donor-derived or autologous DC loaded with donor peptide. Tol-DC can be induced by clinical approved drugs, cytokines,
experimental inhibitors, and genetic engineering or biological intervention. After purification and identification. Tol-DC can be transferred to the potential patients
through intravenous injection.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhuang et al. Tol-DC in Organ Transplantation
promote immunoregulatory capacity (52). Moreover, Tol-DC
generated by Dex and a maturation cocktail composed of IL-1b,
IL-6, TNF-a, and PGE2 could express more E-type prostanoid
(EP) receptors 2 and 3, which, activated by PGE2, can induce IL-
10 secretion, exhibiting their tolerant function (53).

Inhibitors/Activators of NF-kB and STAT
NF-kB is a family of dimeric transcription factors (54), and
the maturity of DC is related to the activation of NF-kB (55).
LF 15-0195 (LF) is a chemically synthesized analog of the
immunosuppressant 15 deoxyspergualin, which possesses
higher immunosuppressive activity. It is also a blocker of NF-
kB. LF-treated DC are characterized by low expression of MHC-
II, CD80, CD86, and high expression of anti-inflammatory
molecules. These Tol-DC increase CD4+CD25+CTLA4+ and
FOXP3+Treg levels and improve cardiac graft survival (56).
RelB is one of the NF-kB subunits. Tol-DC could be acquired
via silencing RelB using small interfering RNA, and this kind of
Tol-DC also prolongs the survival of the cardiac graft through
promoting the induction of Treg (57). NF-kB inhibitors in the
induction of Tol-DC has already been applied in clinical trials. In
a clinical trial on rheumatoid arthritis, Tol-DC were induced by
Bay11-7082, the inhibitor of NF-kB, which irreversibly inhibited
NF-kB by preventing phosphorylation of IkBa (58).

Signal transducer and activator of transcription (STAT) is
essential in the development and maturation of DC. A total of
seven STAT proteins have been identified (STAT1, STAT2,
STAT3, STAT4, STAT5a, STAT5b, STAT6) (59). The
inhibition or activation of different STAT signals may regulate
the phenotype of DC. STAT1 and STAT2 are important in the
activation of DC. STAT1 is required for the increased expression
of costimulatory molecules in DC (60). Following the stimulation
by IFN-g, the activation of STAT1 could promote the maturation
of DC. However, to inhibit the activation of STAT1 in vitro by
flavonoids, the expression of PD-L1 is decreased in DC, and DC
are tend more to an immature phenotype (61). When STAT1 is
silenced in inflammation-stimulated DC by siRNA, the
expression of CD83 and CD86 are also decreased, and the
expression of anti-inflammatory molecules are increased (62).
Similarly to STAT1, STAT2 is required for the activation and
cross-presentation of DC under the stimulation of toll-like
receptor (TLR) ligands (63).

Compared to STAT1 and STAT2, STAT3 is considered to be
the negative inhibitor of DC. The activation of STAT3 induces the
tolerogenicity in DC, whereas the inhibition of STAT3 induces
matures DC. Human DC treated with IFN-a are characterized by
high expression of PD-L1 and decreased production of IL-12.
However, IFN-a-induced PD-L1 expression is downregulated by
inhibitors of p38, Jak, and STAT3 (64). STAT3-deficient DC
could enhance immune activity, including increased
proinflammatory cytokine production, antigen (Ag)-dependent
T cell activation, and resistance to IL-10–mediated suppression
(65). The tolerogenicity of DC is correlated to the activation of
STAT3. Thymic stromal lymphopoietin (TSLP) can induce the
activation of DC with high expression of costimulatory and
proinflammatory molecules. STAT5 is required for TSLP-
dependent activation, which is a critical component for the
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promotion of Th2 response immunity during airway
inflammation (66). JQ1 is an inhibitor of STAT5. When LPS-
activated DC are treated with JQ1, STAT5 phosphorylation and
nuclear accumulation is inhibited. As a result of the prevention of
STAT5, the expression of CD83 in LPS-DC and the level of IL-
12p70 released by DC are decreased (67). The activation of
STAT5 may have connection with the maturation of DC
followed by external stimulus.

In conclusion, the expression of NF-kB And STAT is critical
in the induction of Tol-DC. The inhibition of STAT1, STAT2,
and STAT5, but not the activation of STAT3, contribute to the
induction of Tol-DC.

Genetic Engineering and Biological
Intervention
There are also other protocols that can induce Tol-DC in vitro.
Strategies of genetic engineering have also been used to induce
Tol-DC, including gene knockout, knockdown, and transgenic
over-expression of dominant active or negative mutants
of molecules (68). For example, promoting the expression of
IL-10-related genes in DC could attenuate liver fibrosis in mice
via increasing Treg induction. This kind of IL-10+DC is
characterized by low expression of costimulatory molecules
(69). Nuclear paraspeckle assembly transcript 1 (NEAT1) is
proven to use NACHT, LRR, and PYD domain-containing
protein 3 (NLRP3) inflammasomes as molecular decoys for
miR-3076-3p, so knockdown NEAT1 could facilitate the
tolerogenic phenotype in DC, which prevents progression of
experimental autoimmune myocarditis and induces immune
tolerance in a heart transplantation model (70). The metastasis
associated in lung adenocarcinoma transcript 1 (MALAT1)
overexpression promotes DC-SIGN expression by functioning
as an miR155-5p sponge in the DC cytoplasm, which derives DC
to Tol-DC with low expression of costimulatory molecules and
high IL-10 secretion, protecting mice from acute rejection after
cardiac transplantation (71). Apart from these, some biological
interventions have also been used to induce Tol-DC, such as
mesenchymal stem cells (MSCs) (72), induced pluripotent stem
cells (iPSCs) (73), and recombinant Schistosoma mansoni
antigens (32). Cai et al. generated Tol-DC from murine iPSCs
and injected these Tol-DC 7 days before transplantation into the
recipients, resulting in a decreased expression of perforin/
granzyme B, increased secretion of TGF-b, and proliferation of
CTLA4+GITR+Treg in mice with prolonged cardiac graft
survival (73).
THE FUNCTION OF TOL-DC

The reason why Tol-DC could become a replacement for IS in
future organ transplantation is their ability to decrease T cell
proliferation and lead to T cell apoptosis, anergy and
hyporesponsiveness. Meanwhile, they also can promote Treg
induction to induce the tolerance. These two processes could
be summarized as contact-dependent and -independent
mechanisms. The contact-dependent mechanism means direct
October 2020 | Volume 11 | Article 552988
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contact between lymphocytes and Tol-DC, which contained surface
receptors, such as PD-L1, Fas-L, ILT3, and ILT4. In addition, the
contact-independent mechanism means Tol-DC could exert their
immunosuppressive ability via immunomodulatory molecule
release, including immunomodulatory cytokines, such as IL-10
and TGF-b, or enzymes, such as IDO, heme-oxygenase-1
(HO-1), and others. The function of Tol-DC is elucidated in
Figure 2, and the experimental details are shown in Table 1.

Contact-Dependent Mechanism
PD-1 is an important inhibitory molecule expressed on T cells, and
PD-L1 is its ligand expressed on DC. The interaction between PD-
1 and PD-L1 delivers inhibitory signals to T cells and contributes
to the anergy of T cells (90). According to recent literature, cross-
dressed DC in the graft are characterized by high expression of
PD-L1 after murine liver transplantation, and these cross-dressed
DC failed to stimulate proliferation of allogeneic T cells but
markedly suppressed antidonor host T cell proliferation in vitro
(91). DC transfected with PD-L1 recombinant adenovirus could
prolong the survival in rat renal transplantation. The effect is
correlated with the suppression of CD8+T cell and the decreased
secretion of proinflammatory cytokines (92). Fas and Fas-L belong
to the TNF receptor and ligand family, respectively. Fas-L
expressed on DC can induce T cell apoptosis by combining with
Fas expressed on T cells (93). Mono-DC cotransfected with TGF-
b1/Fas-L could prolong the survival time in murine liver
transplantation. The increased level of Fas-L could induce T cell
Frontiers in Immunology | www.frontiersin.org 5
apoptosis (84). Immature DC transduced by lentiviral vectors
expressing human IL-10 and FasL genes could significantly
reduce the expression of costimulatory molecules and T cell
proliferation and extend the survival period of rat liver allografts
(94). Tol-DC have a unique subset: CD11bhighIalow Tol-DC. They
can express Fas and inhibit T-cell proliferation in a negative
feedback manner through increased IL-10 levels (49). ILT3 and
ILT4 belong to inhibitory receptors, which can modulate IkB
phosphorylation and degradation through SH2 domain-
containing protein tyrosine (SHP) phosphatases, inhibit the
activation of NF-kB, and induce Tol-DC phenotype (95). The
number of ILT3/ILT4+ DC in patients who received long-term
rapamycin after renal transplantation is significant increased. The
increased ILT3/ILT4+ DC contributed to Treg induction and
expansion of CD8+CD28-T cell (96).

Contact-Independent Mechanism
IL-10 has always been considered a powerful anti-inflammatory
molecule in different diseases (97). IL-10 not only inhibits T cell
proliferation, but also shows the ability to induce Treg. Tol-DC
induced by IL-10 could also release high levels of IL-10.
Prolonged xenograft survival of rat islets in diabetic mice was
observed after an autologous IL-10-pulsed DC administration
without any immunosuppressive treatment. The injection of IL-
10-pulsed DC enriches graft infiltrating regulatory CD8+T cells
and tolerogenic myeloid cells with suppression-associated
phenotypes (80). DC cotransfected Fas-L and IL-10 have more
FIGURE 2 | The function and effects of Tol-DC. Tol-DC are characterized by low expression of costimulatory molecules CD80, CD86, and MHC-II. Tol-DC decrease
the proliferation of T cells through apoptosis, anergy, and hyporesponsiveness. Meanwhile, they can promote Treg and Breg induction. The mechanism of this
process, including contact-dependent and contact-independent mechanisms. Contact-dependent mechanisms include PD-L1, Fas-L, and ILT3/4. Contact-
independent mechanisms include the expression of anti-inflammatory molecules, such as IL-10, TGF-b, IL-35, IL-27, and MIC-1. Tol-DC can also exhibit their
function through the expression of IDO, HO-1, and lactate. The interaction between PD-1 and PD-L1 delivers inhibitory signals to T cells and contributes to the
anergy of T cells. Fas-L expressed on DC can induce T cell apoptosis by combining with Fas expressed on T cells. The increased expression of ILT3/ILT4 in DC
contributes to Treg induction. Similarly, IL-10 and TGF-b can broadly inhibit T cell activation by interfering with T cell receptor signaling and eventually promote Treg
induction by IDO production. In addition, both IL-27 and IL-35 are considered as important regulators of adaptive immune responses. The high expression of IL-27
was correlated with the induction of IL-10 expressing CD4+ T cells, and IL-35 overexpressed DC could increase Treg. DC transfected with MIC expression
adenovirus could enhance T cell exhaustion and Treg proliferation. IDO catalyzes tryptophan degradation to form kynurenines, which consequently, impairs T cell
proliferation and promotes Treg differentiation. HO-1 catalyzes the conversion of protoporphyrin to biliverdin, Fe2+, and CO. HO-1 could promote Treg differentiation
and prevent T cell–mediated inflammatory diseases because of the increased CO level. Tol-DC could produce high levels of lactate that shape T cell responses
toward tolerance, including declines of glycolysis and activation and proliferation in T cell. In addition to T cell modification, Tol-DC can conditionally induce Breg
proliferation, too.
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TABLE 1 | Experimental details of Tol-DC transfer in animal transplant models.

Induction strategy Phenotype of Tol-DC Intervention Transplanted
model

Mechanism Reference
No.

DC pretreated with
Cobalt Protoporphyrin
(COPP)

HO-1highMHC-
IIlowCD40lowCD80lowCD86low

Donor-derived Tol-DC(day -7, 5 × 106

i.v.)
Allogeneic
mouse cardiac

IFN-g+ T cell↓,
alloantibody production↓

(74)

DC infected with
Recombinant human
growth differentiation
factor 15(GDF15)
expression adenovirus

GDF15highCD40lowCD80low Autologous Tol-DC (day -7, 1 × 106 i.v.) +
Rapamycin (day 0-7,1mg/kg, i.p.)

Allogeneic
mouse cardiac

T cell exhaustion↑, CD4+

FOXP3+Treg↑
(75)

DC treated with
recombinant IL-35/Ebi3

MHC-IIlowCD86lowCD80low Donor-derived Tol-DC (day -1, 1 × 105

i.v.)
Allogeneic
mouse cardiac

CD4+CD25+

FOXP3+Treg↑
(76)

DC cultured with urine
induced pluripotent
stem cells

CD11bhighCD11chighMHC-
IIlowCD86lowCD80low

Donor-derived TolDC (day -7, 1 × 106

i.v.)
Allogeneic
mouse cardiac

CD4+CD25+

FOXP3+Treg↑, cytotoxic
T cell↓, TNF-a↓, IL-1b↓,
IL-6↓

(77)

DC2.4 cells transduced
with pAd5/F35-GFP-
Jagged-1 viruses

Jagged-1highMHC-
IIintermediateCD80intermediateCD86intermediate

Exogenous Tol-DC (day -1, 5 × 106 i.v.)+
anti-CD40L mAb (day 0, 2, 4 and 6,
0.25mg, i.p.)

Allogeneic
mouse cardiac

CD4+CD25+

FOXP3+Treg↑, TGF-b↑,
IFN-g↓

(78)

DC infected with Relb
shRNA expressing
lentivirus, activated by
LPS

RelblowMHC-
IIlowCD86lowCD80lowCD83low

Donor-derived Tol-DC (day -7, 5 × 106

i.v.)
Allogeneic
mouse cardiac

CD4+CD25+

FOXP3+Treg↑
(57)

DC pretreated with LF
15-0195

MHC-IIlowCD86lowCD40low Exogenous Tol-DC (day -7, 5 × 106 i.v.) Allogeneic
mouse cardiac

CD4+CD25+CTLA4+T
cell↑, CD4+CD25+

FOXP3+Treg↑

(56)

DC treated with 0.1ng/
ml GM-CSF

CD11chighMHC-IIlowCD80lowCD86low Autologous Tol-DC (day -1, 1 × 106 i.v.) +
anti-CD3 Ab (day -1, 300mg, i.v.)

Allogeneic
mouse islet

T cell activation↓,
alloantibody
production↓, CD4+

FOXP3+Tregs↑

(79)

DCs treated with IL-10 MHC-IIlowCD40lowCD86lowCD205lowIL-
12p70lowTNF-alowIL-6lowIL-10high

Autologous Tol-DC (day -1, 2 × 106 i.v.) Xenogeneic
(rat-mouse)
islet

Graft-infiltrating
CD8+CD28- and
CD8+PD1+ suppressor T
cell↑

(80)

DCs conditioned with
TGF-b, activated by
LPS

MHC-IIintermediateCD80lowCD86lowIL-
12p70low

Donor-derived Tol-DC (day 0, 5× 105

i.v.)
Syngeneic
mouse islet

FOXP3+Treg ↑ (81)

DCs conditioned with
TNF-a and a1-
Antitrypsin

MHC-IIlowCD86lowCD80lowIL-6lowIL-
12lowIL-10high

Autologous Tol-DC (day 0, 2 × 106 i.v.) Allogeneic rat
kidney

FOXP3+Treg↑, TGF-b↑,
IL-6↓, IFN-g↓

(82)

DCs treated with 0.4ng/
ml GM-CSF

CD11chighMHC-IIlowCD80lowCD86low Autologous Tol-DC (day -1, 1 × 106 i.v.)
+ anti-CD3Abs (day −1, 1, 3, 5 and 7,
1mg, i.p.)

Syngeneic
mouse skin

CD8+ FOXP3+Treg↑ (83)

DC cotransfected with
plasmids encoding
EGFP-hTGF-b1 and
EGFP-hFasL

TGF-bhighFas-LhighCD85lowCD80low Exogenous Tol-DC (day -5, 2× 106 i.v.) Allogeneic rat
liver

IL-10↑, IL-1↓, IL-12↓ (84)

DC treated by GM-CSF,
IL-10 and FLT3L

MHC-IIlowCD86lowCD40lowCD80low Donor-derived Tol-DC (day -7, 2× 106

i.v.)+Penicillin (day 0, 500u/10g,
subcutaneous)

Allogeneic rat
kidney

IL-2↓, IFN-g↓, IL-4↑, IL-
10↑, CD4+CD25+

FOXP3+Treg↑

(85)

DCs stimulated by VitD3
and IL-10

CD14highMHC-
IIlowCD86lowCD83lowCD80lowPD-L1high

Donor-derived Tol-DC (day -7 and 3, 5-
10× 106 i.v.)+CTLA4 Ig (day -7 and -4,
12.5 mg/kg, day −1, 0, 2, 4, 7 and 10,
20mg/kg i.v.) + Tapered rapamycin
maintenance

Allogeneic
monkey kidney

CD4+CD95+Tmem↓,
CD8+CD95+Tmem↓
CTLA4 and PD-1
expressed on Tmem↑

(86)

DCs stimulated by VitD3
and IL-10

CD14highMHC-
IIlowCD86lowCD83lowCD80lowPD-L1high

Donor-derived Tol-DC (day -7 and 3, 5-
10× 106 i.v.)+CTLA4 Ig (day -7 and -4,
12.5 mg/kg, day −1, 0, 2, 4, 7 and 10,
20mg/kg i.v.) + Tapered rapamycin
maintenance

Allogeneic
monkey kidney

Donor-specific
EomeslowCTLA4highCD8+

central Tmem↑

(87)

DCs stimulated by VitD3
and IL-10

CD14highMHC-
IIlowCD86lowCD83lowCD80lowPD-L1high

Donor-derived Tol-DC (day -7 and 3, 5-
10× 106 i.v.)+CTLA4 Ig (day -7 and -4,
12.5 mg/kg, day −1, 0, 2, 4, 7 and 10,

Allogeneic
monkey kidney

Donor-specific
EomeslowCTLA4highCD8+
T cell↑, IL-17↓

(88)

(Continued)
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capacity to inhibit T cell activation and prolong the survival
period of allografts than Fas-L alone (94).

TGF-b plays a pivotal role in transplant tolerance, which
broadly inhibits T cell activation by interfering with T cell
receptor signaling and eventually promotes Treg induction by
IDO production (98). If there is a decrease of the expression of
TGF-b2 receptors on DC, both T and B cell activation and
reduction of the expression of Foxp3 in Treg would occur (99).
Smad7 is a potent negative regulator of TGF-b signaling. The
presence of Smad7 could prevent the binding of Smad2 and
Smad3 to the TGF-b2 receptor, and this inhibitory effect is
essential for TGF-b signal transduction. Rodent DC derived
from Smad7 deficiency are resistant to the development of
experimental autoimmune encephalomyelitis (EAE) due to an
increase of protective Treg and inhibition of encephalitogenic
effector T cells in the central nervous system (100). TGF-b gene
modified DC exhibit the immature phenotype with low
expression of MHC-II, CD80, CD86, and CD40, which could
downregulate antigen presentation of bone morrow-derived
immature DC. The high expression of TGF-b inhibits T cell
proliferation and delays the progress of murine inflammatory
bowel disease (IBD) (101). Tol-DC generated from TGF-b
increase the frequency of Tregs in islet graft and shows long-
term graft survival (102). DC cotransfected with plasmids
encoding TGF-b and FasL show low expression of CD85 and
CD80. These Tol-DC decrease Banff rejection activity index and
allow graft function recovery in rat liver grafts, which is
correlated to the increased expression of IL-10 and decreased
expression of IL-1 and IL-12 (103).

In addition to classical immunomodulatory molecules, such
as IL-10 and TGF-b, there are also other cytokines released from
Tol-DC, which could regulate T cell activation and Treg
proliferation. IL-35 and IL-27 are the members of IL-12 family.
Both IL-27 and IL-35 are considered important regulators of
adaptive immune responses (104). Under LPS stimulation,
mono-DC secrete high levels of IL-35 to prevent the
maturation of DC. IL-35 could activate STAT3 and STAT4
signal pathways in DC. On day 1 prior to transplantation, IL-
35 overexpressed DC could increase IL-10 and Treg levels in
cardiac recipients and lead to prolonged allograft survival (76).
IL-27 is mainly produced by DC stimulated by microbial
products or other immune stimuli. IL-27 could promote the
differentiation of Th1 and type 1 regulatory (Tr1) cells but inhibit
Th2 and Th17 cells (105). Overexpression of IL-27 combined
with the application of rapamycin could definitely improve
cardiac allograft acceptance. The high expression of IL-27 is
Frontiers in Immunology | www.frontiersin.org 7
also correlated with the induction of IL-10 expressing CD4+T
cells (106). Moreover, DC transfected with MIC expression
adenovirus could enhance T cell exhaustion and Treg
proliferation and consequently promote the survival of cardiac
allograft (100, 107).

IDO is known to act as a bridge between DC and Treg. IDO
catalyzes tryptophan degradation to form kynurenines and
consequently impairs T cell proliferation and promotes Treg
differentiation (108). Most Tol-DC are characterized by high
expression of IDO. Before rat renal transplantation, recipient rats
were preinjected with autologous Tol-DC treated with donor
alloantigens. The renal allograft exhibited a lighter rejection
response and longer graft survival time. This remission was
thought to be correlated with increased Treg. However, when
IDO is silenced by siRNA in rats, the rejection response is
aggravated (85). a1-Antitrypsin is a circulating glycoprotein.
a1-Antitrypsin-pulsed DC are characterized by decreased
expression of MHC-II, CD80, and CD86 and high expression
of IDO. After transferring these IDO+ Tol-DC, the kidney
allograft survival period is prolonged and Treg increase (87).
Human soluble CD83 (hsCD83) is able to inhibit DC maturation
and cause the anergy of Teff. In both heart and renal transplant
models, the injection of hsCD83 down-modulates the expression
of costimulatory molecules and up-modulates IDO in DC, which
can prolong the allograft survival period (109, 110).

HO-1 is an enzyme that catalyzes the conversion of Fe-
Protoporphyrin-IX (Heme group) to biliverdin, ferrous ion,
and carbon monoxide (CO). HO-1 could promote Treg
differentiation (111) and prevent T cell–mediated inflammatory
diseases because of the increased CO level (112). CO can reduce
both mitochondrial membrane potential and ATP production,
which results in mitochondrial dysfunction in DC. The high
expression of HO-1 in DC can resist LPS-induced maturation
and release high levels of IL-10. HO-1 expressing DC could
modulate the severity of lung inflammatory responses in murine
models of airway inflammation with increased Treg (111). Cobalt
protoporphyrin (CoPP) is the agonist of HO-1, and DC treated
with CoPP are characterized by high expression of HO-1.
Adoptively transferring donor-derived high HO-1 expressing
immature DC 7 days before transplantation effectively blocks
the activation of both T and B cells in cardiac allograft mice (74).

In addition to IDO and HO-1, NO, PGE2, and adenosine also
exhibit great capacity to induce Tol-DC. Chloroquine (CQ), an
antimalarial drug, also induces Tol-DC and, consequently,
promotes the expression of NO synthase and, finally, results in
the inhibition of T cell activation (113). After transferring CQ-
TABLE 1 | Continued

Induction strategy Phenotype of Tol-DC Intervention Transplanted
model

Mechanism Reference
No.

20mg/kg i.v.) + Tapered rapamycin
maintenance

DCs stimulated by VitD3
and IL-10

CD14highMHC-
IIlowCD86lowCD83lowCD80low

Donor-derived Tol-DC (day -7 and 3, 5-
10× 106 i.v.)+CTLA4 Ig (day -7 and -4,
12.5 mg/kg, day −1, 0, 2, 4, 7 and 10,
20mg/kg i.v.) + Tapered rapamycin
maintenance

Allogeneic
monkey kidney

Donor-Specific
CD4+CTLA4high T Cell
proliferation

(89)
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pulsed DC to EAE mice, a decline of glial reactivity in the central
nervous system is observed (114).

Breg Induction
In addition to T cell modification, Tol-DC can conditionally
induce Breg proliferation. When Tol-DC are administered to
nonobese diabetic (NOD) mice, two tolerogenic B-cell subsets,
CD19+B220+CD11c−IL-10+ B cell and B10 cell proliferate (115).
Breg could proliferate through the retinoic acid receptor, which
combines with retinoic acid released from Tol-DC (115, 116).
The remission of IBD in the mouse model after administrating
monocyte derived Tol-DC is correlated with the induction of IL-
10-Bregs. However, whether Breg could be induced by Tol-DC in
transplantation models or not remains to be further explored.
THE METABOLISM MODIFICATION
OF TOL-DC

General Metabolism in Tol-DC
Glycolysis is an indispensable metabolic process in our body,
which can rapidly decompose glucose into ATP and supply
energy (117). LPS, an agonist of TLR4, is widely used to induce
functional DC. However, during this process, DC activation relies
on glycolysis for abundant ATP (118). Citrate is a tricarboxylic
acid (TCA) cycle intermediate, which plays an important role in
LPS-induced DC activation. LPS activates TLR and, consequently,
causes glycolysis inside DC through the generation of citrate and
the synthesis of fatty acids in vivo, which could promote
the expansion of endoplasmic reticulum and Golgi networks
required for DC activation (119). Complement component C1q
subcomponent-binding protein (c1qbp), a multifunctional
chaperone protein, plays an important role in mitochondrial
function and supports mitochondrial metabolism and DC
maturation. The production of citrate regulates DC maturity
via c1qbp-dependent pyruvate dehydrogenase activity (120).
2-deoxyglucose impairs glycolysis in DC, which contributes to
the decreased expression of CD40, CD86, and MHC-II and
production of IL-6, IL-12p70, and TNF and causes a Tol-DC
phenotype (119). The decline of glycolysis in DC could contribute
to impaired maintenance of dendritic shape, motility, CC-
chemokine receptor (CCR)7 oligomerization, and migration to
draining lymph nodes (121). In malignant melanoma, paracrine-
derived Wnt5a protein can alter the metabolic pathway of DC by
stimulating b-catenin signaling pathway, which can shift local DC
populations from a glycolytic state to oxidative phosphorylation
(OXPHOS) and fatty acid oxidation (FAO) via peroxisome
proliferator-activated receptor (PPAR)-g-carnitine palmitoyl
transferase-1 (CPTIA) axis (122). In a recent first-in-human
clinical trial of kidney transplantation, Marin et al. report that
autologous Tol-DC could produce high levels of lactate that shape
T cell responses toward tolerance, including declines of glycolysis,
activation, and proliferation in T cell (123).

During the induction of VitD3-pulsed Tol-DC, genes related
to OXPHOS and the protein O-linked glycosylation pathway are
Frontiers in Immunology | www.frontiersin.org 8
overexpressed (23). 1,25-dihydroxy vitamin D3 is the active form
of vitamin D, which can induce human monocyte-derived Tol-
DC by metabolic reprogramming and upregulate several genes
directly correlated to glucose metabolism, TCA, and OXPHOS
(124). As discussed above, Dex has already been applied to
induce Tol-DC in clinical practice. Garcıá-González et al.
studied the transcriptional profile of mono-DC from
healthy donors modulated with Dex and activated with
monophosphorylate lipid A (MPLA), demonstrating that genes
related to FAO are strongly enriched, predicting the activation of
alternative metabolic processes than those driven by the
counterpart DC (125). Increased expression of inducible nitric
oxide synthase (iNOS) (126) and inhibition of 5’ adenosine
monophosphate-activated protein kinase (AMPK) (127)
decreased OXPHOS and FAO in immunologic DC. The
activation of nuclear factor E2-related factor 2 (Nrf2) can
inhibit the production of iNOS, thereby restoring OXPHOS as
the energy source in Tol-DC (128). Compared to immunologic
DC, Tol-DC possess a steady OXPHOS program and favors FAO
(129). FAO has a regulatory effect on OXPHO. Fatty acids can
suppress the TLR-induced hexokinase activity and perturb
tricarboxylic acid cycle metabolism, which enhances the
production of mitochondrial reactive oxygen species (ROS)
(130). miR-142 is central to metabolic reprogramming. Sun
et al. demonstrated that miR-142 directly targets carnitine
palmitoyltransferase-1a, a key regulator of the fatty acid
pathway to regulate FAO. In miR-142 deficient mice, DC fail
to shift from OXPHOS to glycolysis and show reduced
production of proinflammatory cytokines and ability to activate
T cells in vitro and in vivo models of sepsis and allogeneic
immunity (131).

The production of ROS is proven to be more likely related
with the immunogenic DC. a-Glucans in Mycobacterium
tuberculosis can induce ROS production and lead to DC
maturation and lymphocyte proliferation, which is partly
related to the induction of spleen tyrosine kinase (Syk) (132).
The reduction in mitochondrial ROS production dramatically
decreases the cross-presentation capacity of pDC and strongly
impairs their ability to trigger CD8+T cell responses (133).
Mogilenko et al. also report that reducing mitochondrial ROS
production in DC ameliorates the disease in an IL-23-dependent
model of psoriasis because of the reduction in IL-23 and skin
inflammation (130).

In summary, Tol-DC is usually characterized by increased
OXPHOS and FAO but decreased ROS levels. The phenotype
and metabolism of Tol-DC are summarized in Figure 3.

mTOR and Tol-DC Metabolism
mTOR is known to be divided into two complexes: mTOR complex
1 (mTORC1) and mTORC2. The differentiation of DC induced by
GM-CSF and IL-4 fromhumanmonocytes relies on themammalian
target of mTORC1 activation via phosphoinositide 3-kinase (134).
mTORC1 pathway has a central role in the pathogenesis of some
autoimmune diseases and is a mediator of the Warburg effect that
allows cell survival under hypoxia (135). Rapamycin, an mTOR
blocker, has been widely used to prevent rejection after organ
October 2020 | Volume 11 | Article 552988

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhuang et al. Tol-DC in Organ Transplantation
transplantation. Rapamycin-inducedDC administration is shown to
play an immunosuppressive role in skin transplantation (41).
Polymerized allergoids conjugated to mannan (PM), which can
induce the tolerance of DC, are thought to be vigorous vaccines for
allergen-specific immunotherapy. However, when PM-pulsed DC
are adsorbed to alum, their capacity to generate Treg is impaired.
This phenomenon is related to the inhibition of mTOR by alum,
which alters metabolic reprogramming by transforming glycolytic
pathways and inhibiting ROS production in PM-pulsed DC (136).
PPAR-g is the downstream target of mTORC1, which is upregulated
early in mono-DC differentiation, affecting mono-DC maturation
and function largely through control of lipid metabolism (137). The
relationship between the mTOR signaling pathway and metabolism
may involve multiple mechanisms. Activation of the mTOR
signaling pathway can stimulate hypoxia-inducible factor-1a
(HIF-1a) (138), which is responsible for sustained glycolytic
reprogramming in DC (121). In HIF-1a knockout mice, APC
express lower levels of MHC-II and costimulatory molecules and
are less able to induce T-cell proliferation (139). Graphene quantum
dots (GQD) are atom-thick nano-dimensional carbon sheets with
excellent physico-chemical and biological properties. GQD promote
tolerogenic functions in mono-DC, which prevent the pathologies
caused by inflammatory T cells. This process is mediated by the
reduced activity of mTOR by GQD, which is correlated to the
increase in transcription of autophagy genes and autophagic flux in
DC (140). AMPK is one of the main protein kinases regulating
glucose metabolism and is located upstream of the mTOR.
Polyphenol resveratrol is an antitumor drug that has been used in
clinical trials and can increase the expression and activation of
AMPK and caspase-3 and decrease the expression and activation of
AMPK downstream kinase mTOR (141).

Moreover, mTOR1 and mTOR2 can also affect each other.
mTORC2 can inhibit mTORC1-regulated metabolic function in
DC. mTORC2 knockout DC improves mTORC1 metabolic
activity, which is biased toward glycolytic metabolism to
generate ATP, increased lipid content, and higher viability
stimulated by LPS. Enhanced integrin alpha IIb (Itga2b) and
Frontiers in Immunology | www.frontiersin.org 9
protein kinase 2 (Ptk2)/focal adhesion kinase (FAK) expression
can activate hematopoietic cell signal transducer expression and
enhance mTORC1 activity (142).

In conclusion, mTOR is important in the metabolism
modification of Tol-DC. The inhibition of mTOR could induce
the tolerogenicity in DC. The prevention of mTOR activation
could contribute to the transformation of OXPHOS and
decreased production of ROS. In the mTOR signaling pathway,
HIF-1a is responsible for sustained glycolytic reprogramming,
and PPAR-g controls lipid metabolism in DC.

Syk and Tol-DC Metabolism
In addition to the mTOR signaling pathways, Syk can also play an
important role in DC metabolism. The activation of Syk
contributed to the sustained glycolytic reprogramming in DC.
Other than TLRs, C-type lectin receptors (CLRs) are also
expressed on DC as PRR to recognize pathogen-associated
stimuli, such as dectin-1/2. Fungal-associated b-glucan ligands
react with dectin1/2 and induce glycolytic reprogramming in DC
via a Syk-dependent way, which contributes to the production of
IL-1b (143). Dectin-1 binding with annexins which is
expressed on apoptotic cells induce a tolerogenic DC
phenotype. This is a distinct mechanism from that of the
interaction site of pathogen-derived b-glucans and induces
selective phosphorylation of Syk, causes activation of
nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase-2 (NOX2), moderates production of ROS, (144). The
blockade of Syk signaling leads to the improvement of sepsis-
induced acute kidney injury in mice as suggested by the
attenuation of creatinine/blood urea nitrogen in serum, renal
myeloperoxidase activity, and repair of tubular structures in the
kidney. This can be correlated to a decrease in levels of IL-6/MCP-
1 in CD11c+DC and iNOS, NOX2, and nitrotyrosine in
neutrophils (145). Syk signaling may serve as an effective
therapeutic target in innate immune cells to limit inflammatory
cascade, and the inhibition of Syk might prevent glycolysis in DC
and lead to the tolerogenicity of DC.
FIGURE 3 | The metabolism modification of Tol-DC. Tol-DC are usually characterized by increased OXPHOS and FAO but decreased ROS and glycolysis. The
inhibition of mTOR is correlated with the tolerogenic metabolism in DC. AMPK is one of the main protein kinases regulating glucose metabolism and is located
upstream of the mTOR1. The increased expression and activation of AMPK decrease the expression and activation of AMPK downstream kinase mTOR1. The
PPAR-g is the downstream target of mTOR1. The inhibition of mTOR1 can also decrease expression of PPAR-g, which is a response to lipid metabolism in DC.
HIF-1a is responsible for sustained glycolytic reprogramming in DC. The blockage of mTOR1 can influence the expression of HIF-1a. mTOR2 can inhibit mTOR1-
regulated metabolic function in DC. Additionally, the blockade of Syk signaling leads to a decrease in levels of iNOS and NOX2, which contributes to the decreased
glycolysis and ROS in DC. Nrf2/HO-1 can inhibit the production of iNOS, thereby restoring OXPHOS as the energy source in Tol-DC.
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PRECLINICAL AND CLINICAL ATTEMPTS
OF TOL-DC IN ORGAN
TRANSPLANTATION

Autoimmune disease is a series of dysfunctions and tissue
damage caused by the loss of tolerance to self-antigen. Clinical
trials are currently carried out to explore the efficacy and safety of
transferred Tol-DC to treat autoimmune diseases such as type 1
diabetes mellitus (T1DM), multiple sclerosis (MS), rheumatoid
arthritis (RA), and CrD (146). Currently, clinical trials on Tol-
DC are in a preliminary stage. What has been proven so far is the
safety of Tol-DC to the human body. The efficacy of Tol-DC has
a close association with the increase in Treg levels. Further
studies are needed to explore the optimal strategies of Tol-DC
application in clinical practices. However, there is still no study
reporting the efficacy of Tol-DC in human transplantation, so we
would like to discuss the efficacy of Tol-DC in nonhuman
primate renal transplantation and the current registered
clinical trials of Tol-DC related to organ transplantation
in clinicaltrials.gov.

Tol-DC in Nonhuman Primate Kidney
Transplantation
In recent years, the study of Tol-DC for kidney transplantation
has improved. The first preclinical trial of Tol-DC in renal
transplantation showed that donor-derived Tol-DC induced by
VitD3 and IL-10 were characterized by low expression of CD80
and CD86 and high levels of PD-L1. Tol-DC were cotransferred
into rhesus monkey recipients before renal transplantation, with
a combined application of CTAL4Ig [blocker of CD80/86 (147,
148)] and rapamycin and without CNI and steroids, which
showed Tol-DC injection could prolong the survival of grafts
in monkeys (86). CD95 (Fas)+ T cells are considered to have
memory capacity, which includes central (CD28+) and effector
memory (CD28-) T cells in rhesus monkey. Both PD-1 and
CTLA4 are considered markers of exhaustion and expressed on
rhesus CD95+ T cell. The administration of Tol-DC could shift
CD95+ Tmem to an immunosuppressive phonotype with
increased expression of PD-1 and CTLA4 (86). Thereafter,
they further explored the mechanism of prolonged graft
survival after administration of donor-derived Tol-DC.
Eomesodermin (Eomes), a key transcription factor in CD8+

Tmem (149), play a critical role in long-term survival of
antigen-specific central Tmem. The prolonged survival of renal
allografts after both CTAL4Ig and donor-derived Tol-DC
therapy might be related to the maintenance of donor-reactive
EomeslowCTLA4high central Tmem, which displayed a regulatory
phenotype in vivo (87). Compared to CNI, CTLA4Ig may
preserve renal function and improve long-term outcomes in
kidney transplantation (150). The same research team found the
infusion of CTLA4Ig and Tol-DC together could maintain the
expression of CTLA4 in CD4+ T cells in another similar
preclinical trial. The exposure of CTLA4-expressed CD4+ T
cells to donor antigens is essential for the prevention of
Teff responses and the promotion of transplant tolerance (89).
In addition to donor-derived Tol-DC, the effect of autologous
Frontiers in Immunology | www.frontiersin.org 10
Tol-DC is also evaluated in a preclinical trial of rhesus monkey.
Autologous Tol-DC are incubated with vesicles generated from
prospective transplant donor PBMC, and these Tol-DC could
effectively capture vesicles without changing their own
phenotype (88). IL-17 is a proinflammatory cytokine, which
plays an important role in organ rejection. The deficiency or
neutralization of IL-17 is protective against the development of
kidney allograft rejection (151). After transplantation, there was
an increased absolute number of donor-reactive CD4+IL-17+ T
cells in the renal allograft of rhesus monkey in nondonor
antigen-pulsed autologous Tol-DC treated group. However, the
number of donor-reactive CTLA4+IL-17+ T cells did not change
pre- and post-transplantation in the donor antigen-pulsed
autologous Tol-DC treated group. In addition to the inhibition
of donor-reactive CTLA4+IL-17+ T cells, donor antigen-pulsed
autologous Tol-DC also modulated the expression of PD-1 and
CTLA4 in donor reactive T cells (88). In conclusion, the efficacy
of Tol-DC in preclinical trials of kidney transplantation has been
proven. By administrating either the donor-derived Tol-DC or
donor-antigen pulsed autologous Tol-DC, the survival time of
the grafts is prolonged. The prolonged survival of the graft is
correlated with the increased expression of PD-1 and CTLA4 and
the decreased expression of Eomes in donor-reactive T cells.
Meanwhile, the administration of Tol-DC can modulate IL-17-
mediated inflammation in renal transplantation.

Tol-DC induced by VitD3 and IL-10 could maintain a stable
state both in vivo and in vitro. Even stimulated by inflammatory
molecules, Tol-DC are fully resistant to phenotypic maturation
in vitro (152). Rhesus T cells stimulated initially with Tol-DC
failed to proliferate following restimulation with donor
alloreactive antigen in a secondary mixed leukocyte reaction,
which ensures the stability of Tol-DC injection in vivo (86).
Compared to non-Tol-DC treated group, the administration of
donor-derived Tol-DC significantly prolonged the graft survival
period ranging from 50 to 300 days (median=113.5). Graft
median survival time of donor-antigen-pulsed autologous Tol-
DC was 56 days (88). Additionally, there was no adverse effect
observed in these preclinical trials. Meanwhile, the injection of
Tol-DC could not induce the circulating donor-specific allogenic
antibody, which indicated that Tol-DC could function stably for
a long time in the body (86). However, further clinical studies are
needed to address the safety, stability, and feasibility of Tol-DC
transfusion in human transplantation.

Administration Route and Migration of
Tol-DC in Organ Transplantation
Although Tol-DC has been proven effective in rodent and rhesus
monkey organ transplantation, it is also important to explore the
best administration route. The administration route not only
influences the effect of Tol-DC but also the migration of Tol-DC
in vivo. In an experimental autoimmune encephalomyelitis (EAE)
model, intraperitoneal (i.p.) administration of Tol-DC could
effectively suppress clinical manifestation of ongoing experimental
autoimmune myasthenia gravis more than intravenous (i.v.)
administration by regulating T and B cell responses (153). In
clinical trials of Tol-DC that have been reported so far,
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administration routes of intradermal (i.d.) (154, 155), i.p. (156) and
i.v. (157) were all proven to be safe and well tolerated in human.
However, i.v. administration of autologous Tol-DC was proven to
have better immune tolerance than i.d. in rhesus monkeys (158).
Another report demonstrated that 1 day after i.v. injection of Tol-
DC in rat liver transplantation, the number of administrated Tol-
DC was the highest in the liver graft and also detected in other
second lymphoid organs. However, when it came to i.p.
administration, the number of Tol-DC was the highest in
abdominal lymph nodes 24–48 h after injection, but there were
few in the rat liver graft (84). The result implicates that i.v. injection
of Tol-DC is preferred to migrate to the graft than i.p. In Table 1,
we find i.v. injection is the most commonly used route for Tol-DC
administration in animal transplant models. In addition, the i.v.
route is more readily operated in the clinical practice. Taken
together, we recommended i.v. to be the best administration
route of Tol-DC injection in future human clinical attempts
at transplantation.

The migration of Tol-DC is not only influenced by
administration routes, but also by the expression of chemokine
and its receptors. Immature DC are characterized by high
expression of CCR2, CCR5, and CCR6 and access to
nonlymphoid tissues through attraction of CC-chemokine ligand
(CCL)2, CCL5, and CCL21, whereas mature DC are characterized
by high expression of CCR7, which allows DC to recognize the
lymph node-directing chemokines CCL19 and CCL21 (159). Tol-
DC tend more to a semimature state. Tol-DC induced by Dex and
Vitd3 express chemokine receptors characteristic of an immature
phenotype, such as CCR2, CCR5, CXCR1, and CXCR2. However,
under stimulation by LPS, Tol-DC downregulates the expression of
these chemokine receptors and upregulates the expression of CCR7
although the level of expression is lower than activated DC. The
stimulation of LPS induces Tol-DC to migrate in response to
CCL19 and move to the lymph nodes (160). Although using a
model of allotolerance induction, Liu et al. show a striking failure to
tolerate cardiac allografts in CCR7-deficient recipients. The
deficiency of CCR7 contributed to a significantly reduced number
of pDC in peripheral as well as mesenteric lymph nodes. After
single transfer of syngeneic wild-type pDC, the result of cardiac
transplantation in CCR7-deficient recipients has significantly
improved in a dose-dependent manner (161). This report
demonstrates pDC with high expression of CCR7 is considered
as a kind of Tol-DC in transplant models. Additionally, a-1
antitrypsin (AAT) is reported to induce the tolerance of DC, and
the upregulation of CCR7 is observed in AAT-induced Tol-DC
stimulated by inflammatory molecules. The expression of CCR7
induced Tol-DC to migrate to draining lymph nodes in an islet
transplantation model (162). In conclusion, Tol-DC expressed a
relatively low level of CCR7. However, under the external stimulus,
Tol-DC could upregulate the expression of CCR7 and migrate to
the second lymphatic organ to induce the anergy of T cells.

Registered Clinical Trials of Tol-DC in
Human Organ Transplantation
The first Tol-DC clinical trial in living-donor renal
transplantation has been performed to evaluate the safety of
Frontiers in Immunology | www.frontiersin.org 11
administering autologous Tol-DC (NCT02252055) and is still
ongoing. Another phase I clinical trial on Tol-DC in living-donor
renal transplantation is recruiting (NCT03726307) currently. Its
purpose is to evaluate the safety and feasibility of a single
infusion of donor-derived Tol-DC administration 7 days
before transplantation and explore the best injection dose.
Participants will be maintained on a triple immunosuppressant
scheme with mycophenolate mofetil, tacrolimus, and
prednisone. Additionally, a Tol-DC clinical trial for liver
transplantation is being enrolled (NCT04208919). Tol-DC in
living donor liver transplantation phase I/II will be evaluated for
safety and therapeutic effect a week after Tol-DC infusion, and
immunosuppression weaning will be initiated. The levels of
donor special antigen and the change in renal function, quality
of life, and cardiovascular risk factors will be used as indicators of
evaluation. The effect of Tol-DC-based treatment on the
prognosis of organ transplantation is still being evaluated, and
the clinical attempts of Tol-DC therapy are still in Phase I and II
clinical trials.
CONCLUSION AND FUTURE
PROSPECTIVE

Organ transplantation is thought to be the most commonly
used treatment for end-stage visceral diseases. However, the
rejection after operation seriously affects the prognosis of
patients. Although the application of IS effectively prolongs
the survival of patients, the side effects of IS also influence the
life quality of patients. Tol-DC are a small part of DC. They are
characterized by low expression of costimulatory moles and
proinflammatory factor. Tol-DC induce immune tolerance by
inhibiting the activation of T cells and inducing Treg
proliferation. There are various agents that can induce the
tolerance of DC. These agents include anti-inflammatory
cytokines, antisense oligonucleotides targeting costimulatory
molecules, IS drugs, VitD3, and PGE2, and so forth. However,
there is still no consensus as to the optimal protocol to be used
for generation of clinical-grade Tol-DC. More efficient
induction protocols remain to be explored in the future.
There is growing evidence proving that distinct metabolic
reprogramming acts as a regulatory switch in determining the
diversity of DC. Tol-DC possess a prominent and stable
OXPHOS program and favor FAO but decreased ROS. The
targets for the metabolism of Tol-DC are promising tools for
tolerogenic vaccination in the future clinical practice. At
present, several clinical trials of Tol-DC have been reported.
The safety and effectiveness of Tol-DC have been evaluated.
However, clinical trials of Tol-DC have stayed in the elementary
stage. Future studies are required to identify the optimal dose of
Tol-DC and the mechanism of the efficacy. There is still no
published report on clinical trials using tolerogenic DC vaccines
in organ transplantation. However, the preclinical trials of Tol-
DC have been reported. The effect of Tol-DC in organ
transplantation is associated with the induction of Treg in
rhesus monkey. A phase 1 clinical trial for Tol-DC in organ
October 2020 | Volume 11 | Article 552988
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transplantation is still under recruitment. It will provide
valuable insights into the value of these regulatory immune
cells for improved prognosis in organ transplantation.
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