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Abstract: Annual wild soybean (G. soja) is the ancestor of the cultivated soybean (G. max). To reveal
the genetic changes from soja to max, an improved wild soybean chromosome segment substitution
line (CSSL) population, SojaCSSLP5, composed of 177 CSSLs with 182 SSR markers (SSR-map), was
developed based on SojaCSSLP1 generated from NN1138-2(max)×N24852(soja). The SojaCSSLP5
was genotyped further through whole-genome resequencing, resulting in a physical map with 1366
SNPLDBs (SNP linkage-disequilibrium blocks), which are composed of more markers/segments,
shorter marker length and more recombination breakpoints than the SSR-map and caused 721 new
wild substituted segments. Using the SNPLDB-map, two loci co-segregating with seed-coat color
(SCC) and six loci for days to flowering (DTF) with 88.02% phenotypic contribution were identified.
Integrated with parental RNA-seq and DNA-resequencing, two SCC and six DTF candidate genes,
including three previously cloned (G, E2 and GmPRR3B) and five newly detected ones, were predicted
and verified at nucleotide mutant level, and then demonstrated with the consistency between
gene-alleles and their phenotypes in SojaCSSLP5. In total, six of the eight genes were identified
with the parental allele-pairs coincided to those in 303 germplasm accessions, then were further
demonstrated by the consistency between gene-alleles and germplasm phenotypes. Accordingly, the
CSSL population integrated with parental DNA and RNA sequencing data was demonstrated to be
an efficient platform in identifying candidate wild vs. cultivated gene-alleles.

Keywords: annual wild soybean (G. soja Sieb. and Zucc.); chromosome segment substitution line
(CSSL); cultivated soybean (G. max (L.) Merr.); days to flowering; seed coat color; SNP linkage
disequilibrium block (SNPLDB); whole-genome re-sequencing

1. Introduction

Annual wild soybeans (G. soja Sieb. and Zucc.) are recognized as the wild progenitor
of the cultivated soybeans (G. max (L.) Merr.) [1]. During the long term of artificial im-
provement, its classic characteristics of small seed, twining stem, pod shattering, and so on,
were dramatically replaced with large seed, erect stem and pod non-shattering, but many
desirable traits such as high protein content and adaptation to environmental stresses were
weakened. Although the overall economic characters of wild soybean are inferior to those
of the cultivated soybean, the potential of utilizing G. soja as a source of genetic diversity to
improve the cultivated soybean, especially in coping with abiotic and biotic stresses, has
been emphasized and demonstrated case by case [2,3]. Thus, it is expected to explore and
transfer useful wild gene-alleles into soybeans through breeding programs.
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In order to map the useful qualitative gene and quantitative trait locus (QTL) along
with their corresponding alleles in wild soybeans, researchers have developed different
kinds of genetic population, such as recombinant inbred line populations, doubled-haploid
populations, natural populations, etc. However, due to the genetic background noise, these
genetic populations are not efficient in identifying genes/QTLs individually, while chromo-
some segment substitution lines (CSSLs), as composed of multiple near-isogenic lines were
potential in identifying individual genes/QTLs/segments after genetic noise removed. A
CSSL population is generally developed through advanced backcrossing integrated with
selfing and marker-assisted selection. To explore the favorable alleles deposited in the wild
soybean, we had developed a CSSL population SojaCSSLP1 by crossing a wild soybean
N24852 as donor with a cultivated soybean NN1138-2 as receiver followed by continu-
ously backcrossing to the latter integrated with SSR(Simple Sequence Repeat)-assisted
selection. From SojaCSSLP1, improvement has been made, which led to the establishment
of SojaCSSLP2, SojaCSSLP3 and SojaCSSLP4. By using these CSSL populations, the wild
alleles/haplotypes of genes/QTLs/segments associated with agronomic and seed quality
traits were detected [4–7]. (To make the concept clear in the present study, three pairs
of terms were used in gene and QTL mapping studies, i.e., segment (marker) and its
haplotypes, qualitative gene and its alleles, QTL and its alleles; while candidate gene and
its alleles were used in candidate gene analysis. Here “allele” was used in different cases
because it was used in these ways already in literature. However, it can be distinguished
from its context. In those cases of necessity, QTL-alleles, gene-alleles, candidate gene-alleles
may be used.)

Genotyping-by-sequencing (GBS) is a high-throughput method that uses abundant
SNP markers to ensure the accuracy of genotyping each CSSL and estimating the length
of substituted segments in each CSSL [8]. However, due to the fact that the GBS often
includes a relatively large proportion of missing segments and a small but hardly corrected
percentage of SNP genotyping sequencing errors, the SNP linkage disequilibrium blocks
(SNPLDBs), grouped from a segment of sequential SNPs separated at recombination sites
across the whole population, is an option to solve the GBS limitations [9]. The previous
research has demonstrated that the SNPLDB is more powerful in detecting QTL than that of
traditional markers in natural populations [10], nested association mapping population [11]
and recombinant inbred lines [12]. In addition, marker density is one of the key factors
for mapping resolution. With high-density linkage map constructed from GBS, the fine
mapping of QTL in rice [13], maize [14], soybean [15] and the other plants have been
carried out.

Genetically, qualitative trait (such as seed coat color, SCC) and quantitative trait (such
as days to flowering, DTF) may involve different kinds of inheritance mechanism. For
SCC, the latest research showed that during the domestication process from the wild to the
cultivated soybeans, the seed coat color changed from black to yellow might be due to an
inversion at the I locus on chromosome (Chr.) 8 [16]. In cultivated soybean, the green seed
coat was controlled by the gene G that has been cloned [17]. For DTF, it is an important
ecological and agronomic trait. Up to now, a total of 13 genes including E1—E10 [18–26],
J [27], Tof12 and Tof11 [28] and 104 QTLs were identified for DTF or its linked trait DTM
(days to maturity) (http://www.soybase.org/). Among them, seven genes, E1 [29], E2 [30],
E3 [31], E4 [32], J [33] and Tof12 and Tof11 [28] have been cloned. E1 has impact on DTF
in soybean, and appears to be a legume-specific transcription factor that has a putative
nuclear localization signal and a B3 distantly related domain [29]. E2 is an ortholog of
the Arabidopsis GIGANTEA (GI) gene to delay flowering and maturity [30]. E3 and E4
are two phytochrome A homoeologs, GmPHYA3 and GmPHYA2, respectively [31,32]. J as
the ortholog of Arabidopsis EARLY FLOWERING 3 (ELF3) depends genetically on E1 [33].
Tof12 and Tof11 are two pseudo-response regulator genes and act via LHY homologs to
promote expression of the E1 gene and delay flowering under long photoperiods [28]. E9
is GmFT2a, an ortholog of Arabidopsis FLOWERING LOCUS T. GmFT4 is identified as the
potential candidate gene for E10 locus [26].

http://www.soybase.org/
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The present study was aimed at identifying the genetic differentiation of the two
representative traits SCC and DTF between G. soja and G. max. At first, the study was
designed to obtain an improved CSSL population SojaCSSLP5 based on SojaCSSLP1 estab-
lished by using SSR markers, then (1) to densify the SojaCSSLP5 with SNPLDB markers, (2)
to identify the segments conferring the two traits, SCC and DTF based on the densified
SojaCSSLP5, (3) to predict and verify the candidate genes conferring the two traits from
the identified segments integrated with parental RNA-seq and DNA resequencing data
and, finally, (4) to demonstrate the identified candidate genes using both SojaCSSLP5 and
germplasm accessions. Based on the obtained results, the evolutionary mechanism of the
traits from the wild to the cultivated was discussed.

2. Results
2.1. Establishment of Densified Physical Map of SojaCSSLP5 with Genomic Marker SNPLDB

The improved CSSL population, SojaCSSLP5, composed of 177 lines with 182 SSR
markers, in comparison to the previous SojaCSSLP1-4 populations, the ratio of heterozygous
segment was significantly reduced, accounting for only 0.02%, which may improve the
accuracy of QTL mapping (Table S1).

As marker density is one of the key factors for precise mapping, the SojaCSSLP5 and
its two parents NN1138-2 and N24852 were sequenced with the average resequencing
depths of 3.04, 11.39 and 9.51, respectively (Table S2). By using the Williams82 v2.1 as
the reference genome, a total of 2,567,426 SNPs were identified in SojaCSSLP5, accounting
for 76.8% of the total SNPs (3,344,077) between the two parents (Table S3). Most of the
2,567,426 SNPs were in the intergenic regions (88.3%), whereas the left SNPs (11.7%) were
in the genic regions, including exons, splice sites, and untranslated regions (Table S3),
which indicated that high-density SNPs have been captured.

For a better comparability with the previous mapping results, the consecutive 2,567,426
SNPs were divided into 61,702 SNPLDBs based on 750 germplasm accessions (unpublished).
According to the breakpoint information of each CSSL, a total of 1366 SNPLDB markers (or
segments, including the flanking parts) were identified in SojaCSSLP5.

Based on the physical locations and genotypes of 182 SSRs and 1366 SNPLDBs, the
lengths and locations of wild substitution segments in each CSSL of SojaCSSLP5 were identi-
fied, from which two physical maps (SSR-map and SNPLDB-map) of the SojaCSSLP5 were
constructed as shown in Figure 1A and B. In the SNPLDB-map, the recovery percentage
of NN1138-2 genome in each CSSL was ranging from 77.50 to 99.50%, with an average of
95.33% in SojaCSSLP5 (Figure 1C). The 177 CSSLs carried 1568 wild chromosome substitution
segments, and each CSSL contained 1 to 24 wild substitution segments with an average of
8.8 segments (Figure 1D). Of these, five CSSLs carried only one wild segment, five carried two
and 167 carried three or more wild substitution segments. The 1568 wild segments distributed
on 20 chromosomes with a range of 41 on Chr. 18 to 199 on Chr. 6 (Table 1). The length of
substitution segments in SojaCSSLP5 ranging from 0.01 Mb to 52.50 Mb, with an average
of 5.16 Mb for the homozygous wild segments (Figure 1E). The wild segments covered the
entire wild soybean genome except four genomic regions of Gm03_LDB_25, Gm05_LDB_3,
Gm07_LDB_14 and Gm07_LDB_18, hence the coverage of substitution segments were 99.79,
98.32 and 96.30% on Chr. 3, Chr. 5 and Chr. 7, respectively (Table 1).
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Figure 1. Molecular characteristics of SojaCSSLP5 derived from NN1138-2 and N24852. (A) The 
physical map of SojaCSSLP5 genotyped by 182 SSR markers (SSR-map). (B) The physical map of 
SojaCSSLP5 genotyped by 1366 SNPLDB markers (SNPLDB-map). (C) The frequency distribution 
of NN1138-2-recovery rate in SojaCSSLP5. (D) The frequency distribution of wild segment number 
per line in SojaCSSLP5. (E) The frequency distribution of wild segment length in SojaCSSLP5. (F) 
The SSR-segment broken into new SNPLDB segments. In (A,B,F), the light turquoise and red bars 
denote the NN1138-2 and N24852 segments, respectively. 

Table 1. SSR and SNPLDB linkage maps of SojaCSSLP5. 

Chr. 
No. Markers No. Segments  

New 
Segments 

No. Broken 
Sites 

Average Length (Mb) Coverage (%) 

SSR SNPLDB SSR-Map 
SNPLDB-

Map SSR-Map 
SNPLDB-

Map 
SSR-
Map 

SNPLDB-
Map 

1 6 82 36 72 35 1 19.94 10.08 100 100 
2 13 71 41 65 21 3 14.21 8.09 100 100 
3 7 50 24 55 29 2 10.05 4.37 100 99.79 
4 10 88 55 98 37 6 10.36 4.36 100 100 
5 8 49 40 83 39 4 9.59 5.25 100 98.32 
6 11 125 68 (1) 199 (1) 120 11 6.77 2.72 100 100 
7 6 51 29 54 25 0 12.13 6.22 100 96.30 
8 12 93 62 84 22 0 6.38 5.29 100 100 
9 9 89 44 (1) 155 (1) 88 23 9.05 3.04 100 100 

Figure 1. Molecular characteristics of SojaCSSLP5 derived from NN1138-2 and N24852. (A) The
physical map of SojaCSSLP5 genotyped by 182 SSR markers (SSR-map). (B) The physical map of
SojaCSSLP5 genotyped by 1366 SNPLDB markers (SNPLDB-map). (C) The frequency distribution of
NN1138-2-recovery rate in SojaCSSLP5. (D) The frequency distribution of wild segment number per
line in SojaCSSLP5. (E) The frequency distribution of wild segment length in SojaCSSLP5. (F) The
SSR-segment broken into new SNPLDB segments. In (A,B,F), the light turquoise and red bars denote
the NN1138-2 and N24852 segments, respectively.

In comparison to the SSR-map with 182 SSR markers, the SNPLDB-map with 1366
SNPLDB markers in SojaCSSLP5 has the following advantages: (1) more wild segments
were detected in SojaCSSLP5, including 721 newly identified wild segments and 84 broken-
caused wild segments (Table 1, Figure 1). For example, in Figure 1F, a new wild segment
was detected in CSSL172 on Chr. 10 in SNPLDB-map, but no wild segment in SSR-map;
based on SSR-map, one wild segment was detected in CSSL080, while the wild segment was
broken into three segments in the SNPLDB-map, which might be due to double crossing
happened. (2) The length of wild segments could be estimated more accurately, such as
the average length of wild segments in SNPLDB-map (5.16 Mb) was about half of that
(10.06 Mb) in SSR-map. (3) The SNPLDB-map could detect genomic regions misjudged
as wild segments in SSR-map. For example, the coverages of wild segments were 100%
in SSR-map while 99.74% in SNPLDB-map. That means 0.26% non-wild genome regions
were misjudged as wild genome region in SSR-map (Table 1). The above results indicated
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that the genome composition of SojaCSSLP5 could be accurately assessed by the densified
SNPLDBs, which were obtained through whole genome resequencing.

Table 1. SSR and SNPLDB linkage maps of SojaCSSLP5.

Chr.
No. Markers No. Segments New

Segments
No. Broken

Sites

Average Length
(Mb) Coverage (%)

SSR SNPLDB SSR-Map SNPLDB-
Map

SSR-
Map

SNPLDB-
Map

SSR-
Map

SNPLDB-
Map

1 6 82 36 72 35 1 19.94 10.08 100 100
2 13 71 41 65 21 3 14.21 8.09 100 100
3 7 50 24 55 29 2 10.05 4.37 100 99.79
4 10 88 55 98 37 6 10.36 4.36 100 100
5 8 49 40 83 39 4 9.59 5.25 100 98.32
6 11 125 68 (1) 199 (1) 120 11 6.77 2.72 100 100
7 6 51 29 54 25 0 12.13 6.22 100 96.30
8 12 93 62 84 22 0 6.38 5.29 100 100
9 9 89 44 (1) 155 (1) 88 23 9.05 3.04 100 100

10 9 60 28 51 22 1 12.72 8.09 100 100
11 10 73 44(1) 104 (3) 45 15 5.38 2.69 100 100
12 8 49 23 43 18 2 11.20 6.67 100 100
13 10 63 35 63(1) 21 7 7.06 4.45 100 100
14 11 48 33 60 27 0 12.49 7.81 100 100
15 6 54 18 47 29 0 12.99 6.30 100 100
16 8 72 46 72 20 6 7.32 4.63 100 100
17 11 68 37 62 25 0 7.48 4.26 100 100
18 8 42 21 (1) 41 (1) 21 0 14.24 8.37 100 100
19 10 78 43 100 54 3 10.11 5.45 100 100
20 9 61 36 59 (2) 23 0 13.37 7.47 100 100

Total 182 1366 763 1568 721 84 10.06 5.16 100 99.74

Chr., chromosome; SSR-map, the physical map constructed with SSR markers; SNPLDB-map, the physical map constructed with SNPLDB
markers; New segments, the segment number detected in SNPLDB-map but not found in SSR-map; No. broken sites, number of broken
sites in SSR-map due to SNPLDBs. The number in brackets indicated the number of heterozygous segments in column of NO. segments.

2.2. Identification of the SCC and DTF Wild Segments Using SNPLDB-Map
2.2.1. The Wild Segments Related to Seed Coat Color (SCC)

In SojaCSSLP5, the qualitative trait, SCC, was investigated and classified into three
groups, including 23 black CSSLs (B), 7 green CSSLs (G) and 147 yellow CSSLs (Y), respec-
tively, in a total of 177 CSSLs (Figure 2). The differences between CSSLs and NN1138-2
in SCC must be due to the introgression of wild segments. Based on the comparisons of
the genome composition between different SCC CSSL groups, the polymorphic SNPLDBs,
Gm01_LDB_74 and Gm08_LDB_32, were detected between Y and G groups and between
Y and B groups, respectively (Figure 2). The two segments/markers were found corre-
sponding to the two reported SCC genes, G [17] and I [16,34] in the regions of 52,865,890–
53,515,092 bp on Chr. 1 and 8,015,591–8,819,462 bp on Chr. 8, respectively (Table 2). The
wild segments on Gm01_LDB_74 and Gm08_LDB_32, were associated completely with the
phenotypes of green and black, respectively (Figure 2).
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SNPLDB markers. The seed coat color (SCC) was classified as yellow, green and black in 
SojaCSSLP5, including 147, 7 and 23 in a total of 177 CSSLs, respectively. 0(144) or 0(147) represent 
the number of lines with genotype 0 (homozygous NN1138-2) are 144 or 147, while 2(3) or 2(0) rep-
resent the number of lines with genotype 2 (homozygous N24852) are 3 or 0. 

Table 2. Markers identified for SCC and DTF in SSR-map and SNPLDB-map. 

 Segment Position (bp) Interval (Mb) LOD 
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(%) ADD CP&G 
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Gene/QTL 

SCC         
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Sat_160 
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Figure 2. Identification of wild alleles for seed coat color using bulk segregant analysis. SSR-map,
the physical map constructed with SSR markers; SNPLDB-map, the physical map constructed with
SNPLDB markers. The seed coat color (SCC) was classified as yellow, green and black in SojaCSSLP5,
including 147, 7 and 23 in a total of 177 CSSLs, respectively. 0(144) or 0(147) represent the number of
lines with genotype 0 (homozygous NN1138-2) are 144 or 147, while 2(3) or 2(0) represent the number
of lines with genotype 2 (homozygous N24852) are 3 or 0.

When using the SSR-map, we were failed to detect the marker that was co-segregated
with the phenotype, although the wild segments of Sat_160 and AW132402 were associated
with green seed coat and black seed coat, respectively (Figure 2). As shown in Figure 2, a
total of 10 CSSLs contained the wild segment of Sat_160 in SojaCSSLP5, among which 3 and
3 CSSLs were with black and yellow seed coat, respectively. For AW132402, a total of 14 CSSLs
contained the wild segment on the marker in SojaCSSLP5, among which 3 CSSLs were with
yellow seed coat and the others with black seed coat. Meanwhile, 12 black seed coat CSSLs
carried cultivated segment of AW132402. Therefore, the marker types and phenotypes may
be associated but not necessarily co-segregated in SSR-map. In addition, the physical lengths
in SNPLDB-map were much shorter than that in SSR-map (Table 2). The segment lengths
of Sat_160 and AW132402 in SSR-map were about 2.28 Mb and 4.76 Mb, respectively, while
the lengths of Gm01_LDB_74 and Gm08_LDB_32 in SNPLDB-map were only 0.65 Mb and
0.80 Mb, respectively (Table 2). Moreover, the markers Gm01_LDB_74 and Gm08_LDB_32
were identically co-segregated with the phenotypes of green seed coat and black seed coat in
SNPLDB-map, but the markers Sat_160 and AW132402 were only accounted for 33 and 77%
of CSSLs’ phenotypic variations in SSR-map, respectively (Table 2).
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Table 2. Markers identified for SCC and DTF in SSR-map and SNPLDB-map.

Segment Position (bp) Interval
(Mb) LOD PVE

(%) ADD CP&G
Predicated
Gene/QTL

SCC

SSR
Sat_160 Chr. 1: 51,845,985–54,121,682 2.28 33% G

AW132402 Chr. 8: 8,795,838–13,551,423 4.76 77% I

SNPLDB
Gm01_LDB_74 Chr. 1: 52,865,890–53,515,092 0.65 100% G
Gm08_LDB_32 Chr. 8: 8,015,591–8,819,462 0.80 100% I

DTF

SSR
Satt243 Chr. 10: 45,344,616–47,643,217 2.30 22.14 39.76 3.58 100% E2
Satt488 Chr. 17: 20,123,420–32,039,054 11.92 2.81 3.89 1.56 60% New

Sat_163 Chr. 18: 2,420,063–3,620,588 1.20 3.99 5.61 1.71 67% First flower
21-4

Total 3 49.25

SNPLDB
Gm04_LDB_41 Chr. 4: 41,449,035–42,363,602 0.91 2.88 0.77 −0.58 43% New
Gm10_LDB_46 Chr. 10: 45,288,662–45,566,206 0.28 79.28 67.05 3.68 100% E2
Gm12_LDB_16 Chr. 12: 5,497,551–5,546,301 0.05 29.46 11.42 2.63 100% GmPRR3B
Gm15_LDB_44 Chr. 15: 20,056,071–39,957,410 19.9 7.87 2.26 −1.00 100% qR1-a-15-2
Gm16_LDB_1 Chr. 16: 1–480,323 0.47 7.78 2.23 −0.72 50% New
Gm17_LDB_62 Chr. 17: 40,650,273–40,782,337 0.13 13.75 4.28 2.07 100% New

Total 6 88.02

DTF, days to flowering; SCC, seed coat color; SSR, Simple Sequence Repeat; SNPLDB, SNP linkage disequilibrium blocks. Chr., chromosome;
LOD, logarithm of odds; PVE, percentage of phenotypic variation explained by individual QTL; ADD, additive effect of the allele from
N24852 (G. soja). CP&G, consistency between phenotype and genotype which is the number of lines with genotype co-segregating with
phenotype divided by the number of lines containing the detected wild allele. G, the gene related to green seed coat color; I, the gene
related to black seed coat color.

2.2.2. The Wild Segments Associated with Days to Flowering (DTF)

In SojaCSSLP5, the quantitative trait, DTF, was evaluated under three environments.
As shown in Table S4, a broad phenotypic variation was observed between the cultivated
and wild parents and among their SojaCSSLP5 lines. The difference in DTF between
NN1138-2 and N24852 was 13.0 d, while in SojaCSSLP5, the DTF varied in 50.0–64.0 d
with an average of 53.7 d. The heritability of DTF was 95.6%, suggesting genetic variation
accounting for a major part of the phenotypic variance in the population. The ANOVA
showed that significant differences existed among the CSSLs (Table S5).

The average values of DTF over environments were used for QTL mapping by using
the ‘csl’ program in IciMapping software. Totally, three and six segments/markers/QTLs
were identified on SSR-map and SNPLDB-map, respectively (Table 2, Figure 3). The 6 seg-
ments in SNPLDB-map, i.e., Gm04_LDB_41, Gm10_LDB_46, Gm12_LDB_16, Gm15_LDB_44,
Gm16_LDB_1 and Gm17_LDB_62, explained 0.77, 67.05, 11.42, 2.26, 2.23 and 4.28% of
phenotypic variation, respectively (Table 2). Among them, Gm10_LDB_46 had highest
value of LOD (79.28) and percentage of phenotypic variation explained by individual QTL
(PVE, 67.05%), and three loci, Gm10_LDB_46, Gm 12_LDB_16 and Gm15_LDB_44, had
been reported by Watanabe et al. [30], Li et al. [35] and Pan et al. [12], respectively, while
Gm04_LDB_41, Gm16_LDB_1 and Gm17_LDB_62 were newly detected QTLs in SojaC-
SSLP5. The wild alleles on Gm04_LDB_41, Gm15_LDB_44 and Gm16_LDB_1, showed neg-
ative additive effects ranging from −0.58 d to −1.00 d; the wild alleles on Gm10_LDB_46,
Gm12_LDB_16 and Gm17_LDB_62 showed positive additive effects from 2.07 d to 3.68 d.
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Figure 3. Joint comparisons of CSSLs significantly different from NN1138-2 in DTF. DTF, days to
flowering. SSR-map, the physical map constructed with SSR markers; SNPLDB-map, the physical map
constructed with SNPLDB markers. The wild segments on the markers in gray cells are of negative
additive effects; the others are of positive additive effects. In 0(143), 0 represents NN1138-2 genotype
while (143) represents 143 CSSLs with genotype 0 in intermediate flowering group. Similarly, 2(3)
represents 3 CSSLs with genotype 2 (N24852) in intermediate flowering group.

Comparing the QTL mapping results between SSR-map and SNPLDB-map, more
QTLs (6 vs. 3) with higher PVE (88.02% vs. 49.25%) and shorter physical lengths (0.28 Mb
of Gm10_LDB_46 vs. 2.30 Mb of satt243) were found in the latter (Table 2). In addition,
there were 34 CSSLs significantly different from the recurrent parent NN1138-2 in DTF,
including 24 later flowering and 10 earlier flowering CSSLs (Figure 3). According to the
mapping results of SNPLDB-map, the wild segments of Gm10_LDB_46, Gm12_LDB_16
and Gm17_LDB_62 could explain the phenotypic variations of all the later flowering
CSSLs, including 16, 6 and 4 CSSLs, respectively; the wild segments of Gm04_LDB_41,
Gm15_LDB_44 and Gm16_LDB_1 could explain the phenotypic variations of all the early
flowering CSSLs except CSSL123. However, the segments detected in SSR-map, Satt243,
Satt488 and Sat_163 located on Chr. 10, Chr. 17 and Chr. 18, could only explain 12, 2
and 4 (17 in 34) CSSLs’ phenotypic variation, respectively. In a word, the wild segments
of DTF detected by SNPLDB-map could explain all the 34 CSSLs’ phenotypic variation
except CSSL123, but the wild segments detected by SSR-map could explain only 17 CSSLs’
phenotypic variation in DTF. Furthermore, SNPLDB-map could not only detect the positive
wild alleles but also negative wild alleles; while the wild alleles of DTF detected in SSR-map
were all positive. The above results indicated that by using the densified SNPLDB-map,
the DTF QTLs could be fully explored in a smaller genomic interval at a higher accuracy in
comparison to using the SSR-map, therefore, the former is more potential in identifying the
QTLs/segments.

Taken together, the above results indicated that the mapping accuracy and resolution
of the densified SNPLDB-map is much higher than that of the primary SSR-map; thus, the
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SojaCSSLP5 with new developed SNPLDB-map can be used to analyze the genetic base of
qualitative and quantitative traits, such as SCC and DTF.

2.3. Prediction and Primary Verification of SCC and DTF Candidate Genes from the
Identified Segments

The basic idea in prediction and primary verification of candidate genes of SCC
and DTF were (1) to find all the genes in the identified segment according to SoyBase (
http://www.soyase.org), (2) to choose the possible candidate genes according to the two
parent’s RNA-seq data in a set of different tissues, (3) to find the most possible candidate
genes according to the sequence differences by using high depth genome resequencing of
the two parents, and (4) to annotate the predicted candidate genes based on Gene Ontology
(GO) analysis.

2.3.1. The Candidate Genes Related to Seed Coat Color (SCC)

In searching the candidate gene of G, the linked segment of Gm01_LDB_74 was between
52,865,890 bp to 53,515,092 bp on Chr. 1, in which 81 genes contained according to SoyBase (
http://www.soybase.org). Among them, Glyma.01G198500 performed significantly different
expressions with more than two-fold difference between N24852 and NN1138-2 among four
tissues, including flower, 14 seed, 35 seed and 21 Pod (Table 3, Table S6). Meanwhile, the
genome sequences of Glyma.01G198500 was different between the two parents with the
nucleotide G in black seed coat N24852 mutated to A in the yellow seed coat NN1138-2 in
intron region, which led to an alternative splicing site and generated a premature stop codon
(Table 4, Figure 4A, Table S7). The above results were consistent with Wang et al. [17], who
have cloned and verified G gene (Glyma.01G198500), encoding the CAAX amino terminal
protease protein.

As for the I locus, the linked segment of Gm08_LDB_32 was between 8,015,591-
8,819,462 bp on Chr. 8, in which 108 genes contained according to SoyBase (http://www.
soybase.org). Among them, nine key chalcone synthase genes may be responsible for SCC.
The gene expression data showed that three of them, Glyma.08G109200, Glyma.08G109300
and Glyma.08G109400 performed high expression levels in different stages of seed devel-
opment (flower, 14seed, 21seed, 28seed and 35seed). However, only Glyma.08G109400
showed the highest expression values in all the five tissues, especially performed signifi-
cantly differential expressions between N24852 and NN1138-2, even more than two-fold in
the eight tissues except in 7pod (Table 3, Table S6). In addition, only Glyma.08G109400 had
a nonsynonymous mutation on 8,392,915 bp, in which the nucleotide G of the black seed
coat N24852 mutated to A of the yellow seed coat NN1138-2 (Table 4, Figure 4B, Table S7).
Hence, the mutation on 8,392,915 bp of Glyma.08G109400 might be the main cause of the
change in seed coat color between the two parents.

http://www.soyase.org
http://www.soyase.org
http://www.soybase.org
http://www.soybase.org
http://www.soybase.org
http://www.soybase.org
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Table 3. Expression patterns of candidate genes related to SCC and DTF.

Locus Gene Parents
Tissue (FPKM, Fragments per Kilobase per Million)

Leaf Flower 14 seed 21 seed 28 seed 35 seed 7 pod 21 pod

Gm01_LDB_74 Glyma.01G198500 N24852 113.96 8.69 14.96 8.76 7.05 2.57 16.18 11.98
NN1138-2 109.98 20.01 3.55 9.02 4.25 9.49 24.26 32.42

Gm08_LDB_32 Glyma.08G109400 N24852 1.52 1.68 1.80 19.09 1.60 0.11 0.26 0.03
NN1138-2 6.78 5.09 9.45 39.32 6.51 4.81 0.35 0.73

Gm04_LDB_41 Glyma.04G167900 N24852 330.30 37.96 67.54 16.98 1.87 0.28 166.90 90.83
NN1138-2 677.28 68.83 22.22 33.65 19.00 4.47 109.97 118.47

Gm10_LDB_46 Glyma.10G221500 N24852 76.29 26.39 27.96 16.87 27.73 6.97 22.28 143.75
NN1138-2 19.85 11.59 19.59 11.02 4.60 10.25 16.57 41.63

Gm12_LDB_16 Glyma.12G073900 N24852 180.77 16.36 23.23 33.09 48.69 19.68 39.38 129.56
NN1138-2 84.81 28.13 47.24 15.03 33.83 26.62 13.69 29.43

Gm15_LDB_44 Glyma.15G221300 N24852 21.13 148.53 40.66 9.88 20.63 0.13 165.97 6.03
NN1138-2 133.21 121.38 15.14 28.25 9.58 7.87 160.57 33.45

Gm16_LDB_1 Glyma.16G005100 N24852 10.93 1.12 1.27 0.00 0.00 0.03 2.17 0.49
NN1138-2 0.59 0.07 0.02 0.01 0.00 0.00 0.05 0.01

Gm17_LDB_62 Glyma.17G253700 N24852 1.56 3.79 9.96 3.73 2.38 0.00 13.10 2.65
NN1138-2 19.21 4.87 13.11 13.04 3.74 3.98 16.70 5.24

In Tissue column, Leaf, collected before flowering; Flower, collected at flowering; 14 seed, 21 seed, 28 seed and 35 seed, the seeds of 14, 21,
28, 35 days after flowering, respectively; 7 pod and 21 pod, the pod of 7 and 21 days after flowering, respectively. The numbers are the
FPKM values of gene expression in different tissues. The cells in boldface indicate that the gene expression differs by more than two-fold
between NN1138-2 and N24852.

Table 4. Annotation of candidate genes for SCC and DTF based on the sequence differences between NN1138-2 and N24852.

Segment Candidate Gene Description Position
(bp)

Allelic Variation Variant Type

N24852 NN1138-2

Gm01_LDB_74 Glyma.01G198500 (G) CAAX amino terminal
protease protein 53,229,579 G A

Stop gain and
splice acceptor

variant and
intron variant

Gm08_LDB_32 Glyma.08G109400 Chalcone and stilbene
synthase family protein 8,392,915 G A Missense variant

Gm04_LDB_41 Glyma.04G167900
Light-harvesting

chlorophyll-protein complex I
subunit A4

11 SNPs in promoter region

Gm10_LDB_46 Glyma.10G221500 (E2) Gigantea protein (GI) 45,310,798 A T Stop gain
Gm12_LDB_16 Glyma.12G073900 Gseudo-response regulator 3 5,519,728 C A Missense variant

(GmPRR3B) 5,520,945 C T Stop gain
Gm15_LDB_44 Glyma.15G221300 UDP-glucosyl transferase 73B3 39,953,287 T G Missense variant
Gm16_LDB_1 Glyma.16G005100 Unknown protein 349,809 T G Missense variant

349,961 G T Stop loss
Gm17_LDB_62 Glyma.17G253700 UDP-Glycosyltransferase

superfamily protein
40,762,395 A T Missense variant
40,766,099 T C Missense variant

In description column: CAAX (C = cysteine, A = an aliphatic amino acid, and X = one of several amino acids); UDP, uridine 5’-diphosphate.In
allelic variation column: A, T, C and G represent different nucleotide. In variant type column: stop gain and stop loss represent that
nucleotide mutation from N24852 to NN1138-2 generates a premature stop codon in NN1138-2 or loss stop codon in N24852, respectively.
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2.3.2. The Candidate Genes Related to Days to Flowering (DTF)

For DTF, the three early flowering wild segments, on Gm04_LDB_41, Gm15_LDB_44
and Gm16_LDB_1, contained 31, 321 and 61 (419 in total) candidate genes, respectively,
according to SoyBase (http://www.soybase.org). After the low expression genes with
FPKM (Fragments Per Kilobase per Million) value <2.0 removed, the remained 156 can-
didate genes were annotated and the sequence differences between the two parents were
compared (Tables S6 and S7). For Gm04_LDB_41, the candidate gene Glyma.04G167900,
which was responded to light stimulus, performed significantly different expressions with
more than two-fold difference between N24852 and NN1138-2 in four tissues, including
leaf, 14seed, 28seed and 35seed (Table 3, Table S6). The sequence analysis showed that
11 polymorphic SNPs were detected in promoter region of Glyma.04G167900 between
two parents, with no SNP difference on exons (Table 4, Figure 4C). For Gm15_LDB_44,
Glyma.15G221300 may be a most likely candidate gene, because it not only had a nonsyn-
onymous mutation on 39,953,287 bp with T in N24852 mutated to G in NN1138-2, but also
it showed significantly different expressions of more than two-fold between N24852 and
NN1138-2 in six tissues, including leaf, 14seed, 21seed, 28seed, 35seed and 21pod (Tables 3
and 4, Figure 4D, Tables S6 and S7). A candidate gene of Gm16_LDB_1, Glyma.16G005100
showed significantly different expressions of more than two-fold between N24852 and
NN1138-2 in five tissues, including leaf, flower, 14seed, 7pod and 21pod (Table 3 and Table
S6). Meanwhile, one missense and one stop lost variants happened on 349,809 bp and
349,961 bp, respectively, resulted in T and G in N24852 mutated to G and T in NN1138-2
(Table 4, Figure 4E).

For the later flowering wild segments, Gm10_LDB_46 was mapped into the 277.5 kb
genomic interval from 45,288,662 bp to 45,566,206 bp on Chr.10, in which the E2 gene
was reported by Watanabe et al. [30]. The function gene of E2 was Glyma.10G221500,
which was an important photoperiod regulating gene. According to the parents’ sequences
of Glyma.10G221500, there were eight SNPs in introns, but they did not change coding
sequence. While the nucleotide A on 45,310,798 bp from the late flowering wild soybean
N24852 was mutated to T in early flowering NN1138-2, which resulted in a premature stop
codon (Table 4, Figure 4F, Table S7). Meanwhile, Glyma.10G221500 performed significantly

http://www.soybase.org
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different expressions of more than two-fold difference between N24852 and NN1138-2 in
four tissues of leaf, flower, 28seed, and 21pod (Table 3 and Table S6). These results were
consistent with those reported by Watanabe et al. [30].

Gm12_LDB_16 was mapped into the 48.7 kb genomic interval from 5,497,551 bp to
5,546,301 bp on Chr.12, which contained five candidate genes according to SoyBase (http:
//www.soybase.org). Through gene annotation and expression analysis, Glyma.12G073900
may be a candidate gene, because it showed significantly different expressions between
N24852 and NN1138-2 in five tissues, i.e., leaf, 14seed, 21seed, 7pod and 21pod (Table 3 and
Table S6). The protein sequence of this gene was similar to the PRR3 gene in Arabidopsis. The
encoding protein of PRR3 could bind to CO (CONSTANS) protein to delay crop flowering.
Li et al. [35] reported some functions of this gene. As Glyma.12G073900 may be the most
likely candidate gene of DTF, we also cloned this gene from the two parents, which indicated
that the C and C nucleotide in the wild soybean N24852 was mutated to A and T in the
cultivated soybean NN1138-2, respectively, which generated a nonsynonymous mutation and
a premature stop codon (Table 4, Figure 4G, Table S7).

The new DTF QTL/SNPLDB, Gm17_LDB_62, was mapped into the 132 kb genomic
segment from 40,650,273 to 40,782,338 bp on Chr. 17, in which 19 candidate genes contained.
Among them, Glyma.17G253700 showed significantly different expressions between N24852
and NN1138-2 in three tissues of leaf, 21seed, and 35seed (Table 3 and Table S6). Mean-
while, the sequences of Glyma.17G253700 were different between N24852 and NN1138-2 with
the nucleotides A and T in N24852 mutated to T and C in NN1138-2 on 40,762,395 bp and
40,766,099 bp, respectively, which both resulted in missense variants (Table 4, Figure 4H, Table
S7). The annotations indicated that Glyma.17G253700 encoded UDP-Glycosyltransferase super-
family protein which is related to flowering in Arabidopsis thaliana [36]. Thus, Glyma.17G253700
might be the candidate gene of Gm17_LDB_62.

In summary, combined the segment identification using a SNPLDB-map with parental
RNA-seq and high depth whole genome resequencing data, eight candidate genes (Glyma.
01G198500, Glyma.08G109400, Glyma.04G167900, Glyma.10G221500, Glyma.12G1073900,
Glyma.15G221300, Glyma.16G005100 and Glyma.17G253700) were predicted from two SCC
segments (Gm01_LDB_74 and Gm08_LDB_32) and six DTF segments (Gm04_LDB_41,
Gm10_LDB_46, Gm12_LDB_16, Gm15_LDB_44, Gm16_LDB_1 and Gm17_LDB_62), respec-
tively (Table 4).

2.4. Demonstration of SCC and DTF Candidate Genes from Allele-Phenotype Coincidence
in SojaCSSLP5

To verify that these gene mutations were correct and universal, the allelic variations
of these candidate genes in SojaCSSLP5 were scanned, in which 7 and 23 lines carrying
wild haplotypes D1 and E1 in Glyma.01G198500 and Glyma.08G109400 were all with green
and black seed coat, respectively (Table 5), while 147 lines with cultivated haplotype D2E2
were yellow seed coat. This indicated that the consistencies between haplotype/allele
and phenotype were both 100% and SCC in SojaCSSLP5 was controlled by two genes,
Glyma.01G198500 and Glyma.08G109400.

For DTF, as shown in Table 5, F1 and F2, H1 and H2, I1 and I2, J1 and J2, K1 and K2, L1
and L2, represent the wild N24852 and cultivated NN1138-2 haplotypes of Glyma.04G167900,
Glyma.10G221500, Glyma.12G073900, Glyma.15G221300, Glyma.16G005100 and Glyma.17G253700,
respectively. In comparison with the 143 CSSLs with the cultivated genotype of F2H2I2J2K2L2,
the wild haplotypes F1 in Glyma.04G167900, J1 in Glyma.15G221300 and K1 in Glyma.16G005100
on the genetic background of H2I2J2K2L2, F2H2I2K2L2 and F2H2I2J2L2 could significantly
shorten DTF 1.8, 2.2 and 1.8 days, respectively (Table 5). Meanwhile, 13, 5, and 2 CSSLs carrying
the wild haplotypes H1 in Glyma.10G221500, I1 in Glyma.12G1073900, and L1 inGlyma.17G253700
on the genetic background of F2I2J2K2L2, F2H2J2K2L2 and F2H2I2J2K2, respectively, showed
7.8, 6.3 and 5.0 days longer in DTF (Table 5). These results indicated that in SojaCSSLP5, the
wild and cultivated haplotypes of the eight genes indeed have different effects on DTF.

http://www.soybase.org
http://www.soybase.org
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Table 5. The effects of wild versus cultivated gene-alleles/haplotypes in SojaCSSLP5 and germplasm accessions.

Gene Haplotype No. Lines Range Mean
(Day)

CP&G/
Significance

SojaCSSLP5 (177 CSSLs)

Glyma.01G198500 D1E2 7 Green seed coat
100%D2E2 147 Yellow seed coat

Glyma.08G109400 D2E1 23 Black seed coat
100%D2E2 147 Yellow seed coat

Glyma.04G167900 F1H2I2J2K2L2 3 51.0~51.0 (day) 51.0
***F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Glyma.10G221500 F2H1I2J2K2L2 13 58.9~61.8 (day) 60.6
***F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Glyma.12G073900 F2H2I1J2K2L2 5 58.4~59.7 (day) 59.1
***F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Glyma.15G221300 F2H2I2J1K2L2 4 50.3~50.8 (day) 50.6
***F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Glyma.16G005100 F2H2I2J2K1L2 2 51.0~51.0 (day) 51.0
**F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Glyma.17G253700 F2H2I2J2K2L1 2 56.7~59.0 (day) 57.8
***F2H2I2J2K2L2 143 51.2~55.4 (day) 52.8

Germplasm population (303 cultivars)

Glyma.01G198500 D1 44 Green seed
coat 100%

D2 259 Yellow seed
coat

Glyma.10G221500 H1I2J2K2L2 11 37.0~68.0
(day) 52.3

***

H2I2J2K2L2 38 30.3~49.0
(day) 41.5

Glyma.12G073900 H2I1J2K2L2 7 45.3~59.7
(day) 49.7

***

H2I2J2K2L2 38 30.3~49.0
(day) 41.5

Glyma.15G221300 H2I2J1K2L2 6 33.0~41.3
(day) 36.9

*

H2I2J2K2L2 38 30.3~49.0
(day) 41.5

Glyma.16G005100 H2I2J2K1L2 47 30.3~63.3
(day) 37.9

**

H2I2J2K2L2 38 30.3~49.0
(day) 41.5

Glyma.17G253700 H2I2J2K2L1 14 38.7~65.5
(day) 52.1

*

H2I2J2K2L2 38 30.3~49.0
(day) 41.5

D1, E1, F1, H1, I1, J1, K1 and L1 represent haplotypes of Glyma.01G198500, Glyma.08G109400, Glyma.04G167900, Glyma.10G221500,
Glyma.12G073900, Glyma.15G221300, Glyma.16G005100 and Glyma.17G253700 consistent to wild soybean N24852, respectively. D2, E2, F2,
H2, I2, J2, K2 and L2 represent haplotypes of Glyma.01G198500, Glyma.08G109400, Glyma.04G167900, Glyma.10G221500, Glyma.12G073900,
Glyma.15G221300, Glyma.16G005100 and Glyma.17G253700 consistent to cultivated soybean NN1138-2, respectively. D1E2 represents the
wild haplotype D1 in E2 genetic background; F1H2I2J2K2L2 represents the wild haplotype F1 in H2I2J2K2L2 genetic background. The
same is for the others. *, ** and *** indicate significant at p < 0.05, p < 0.01 and p < 0.001, respectively, in t-tests.
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2.5. Further Demonstration of the Candidate Gene-Allele Effects in Germplasm Accessions

In germplasm accessions, six of the eight detected candidate genes, Glyma.01G198500, Glyma.
10G221500, Glyma.12G073900, Glyma.15G221300, Glyma.16G005100 and Glyma.17G253700 were
detected with their haplotypes consistent to N24852 and NN1138-2, which were presented by D1
vs. D2, H1 vs. H2, I1 vs. I2, J1 vs. J2, K1 vs. K2, and L1 vs. L2, respectively (Table 5). A total of
303 cultivated accessions (44 green and 259 yellow SCC accessions) carrying the SNPs consistent
to N24852 and NN1138-2 in all six genes were screened out to demonstrate the realness of the
six genes.

For SCC, as shown in Table 5, the N24852 haplotype D1 in Glyma.01G198500 was
associated with green SCC in all 44 green SCC soybeans, and the NN1138-2 haplotype D2
in Glyma.01G198500 was associated with yellow SCC in all the 259 yellow SCC cultivated
soybeans, implying that Glyma.01G198500 was the functional gene responding to SCC in
the germplasm population.

For DTF, since the multiple genes of a same trait DTF may result in diverse genetic
background which cause phenotypic interference, the accessions with a same genetic back-
ground as NN1138-2 except for the accessing loci were picked up from the 303 accessions
for further demonstrating the effects of N24852 and NN1138-2 haplotypes (Table 5). For
Glyma.10G221500, Glyma.12G073900 and Glyma.17G253700, the wild haplotypes H1, I1 and
L1 on I2J2K2L2, H2J2K2L2 and H2I2J2K2 genetic background carried by 11, 7 and 14 acces-
sions showed significantly delayed DTF 10.8, 8.2 and 10.6 days, respectively, comparing to
the 38 accessions with NN1138-2 haplotype H2I2J2K2L2 (Table 5). For Glyma.15G221300
and Glyma.16G005100, 6 and 47 accessions carrying N24852 haplotypes J1 and K1 on
H2I2K2L2 and H2I2J2L2 genetic background caused significantly DTF 4.6 and 3.6 days
shorter comparing to the 38 accessions with NN1138-2 haplotype H2I2J2K2L2, respectively
(Table 5).

These results further demonstrated that the gene-alleles/haplotypes of SCC and
DTF detected in SojaCSSLP5, as well as in their parents N24852 and NN1138-2, have
the same functions in the Chinese soybean germplasm population, therefore, these gene-
alleles/haplotypes are correct and universal.

3. Discussion
3.1. Comparisons of the Present SCC and DTF Mapping Results with Those in the Literature

For SCC, at least six loci (G, I, T, W1, R, and O) and nine putative genes were re-
ported [37]. However, only two loci, Gm01_LDB_74 and Gm08_LDB_32, corresponding to
G and I, respectively, were detected to have allelic differentiation between the wild and cul-
tivated parents in the present study. For the G locus related to green SCC, Glyma.01G198500
in Gm01_LDB_74 was predicted to be the candidate gene, which had been cloned by Wang
et al. [17]. For the I locus related to black SCC, in comparison to the previous results,
Gm08_LDB_32 was mapped into a much smaller region than that of SCC2-1 [34], SCC3-
1 [38] and SCC4-1 [39], in which Glyma.08G109400 was found as its candidate gene. As
the previous results indicated, there should be five seed coat colors in hybrid progenies of
max×soja, but in SojaCSSLP5 only yellow, green and black SCC, no brown and bi-color SCC
turned out. This might be due to the fact that the wild alleles related to the latter two colors
lost randomly during the continuously backcrossing process in developing the SojaCSSLP5.
Therefore the results on the gene system of SCC in max × soja has not been completed yet
and should be studied further.

Regarding DTF, totally 104 putative QTLs were identified and recorded in SoyBase
(http://www.soybase.org). Among these, seven genes, i.e., E1 [29], E2 [30], E3 [31],
E4 [32], J [33] and Tof12 and Tof11 [28] have been cloned, but not by wild soybean. In
the present study, a total of 6 DTF wild/cultivated segments/QTLs were identified. In
comparison to the previous results, the segments of Gm10_LDB_46 and Gm15_LDB_44
were detected in both max × soja and max × max crosses [12,30,40], which might be the
ones with allelic differentiation not only between max and soja but also among max and
might be the key loci to explain the domestication and improvement of soybean. The

http://www.soybase.org
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segment of Gm12_LDB_16 was also detected in max × soja cross before [40], while the
other three DTF QTL/segments were newly identified in SojaCSSLP5. Even though,
in the CSSL, population may lost randomly some segments due to the continuous
backcrossing, there are still three more wild segments newly identified for DTF. That
means the genetic structure of soja is quite different from max, especially for DTF,
and the wild soybean CSSL population is potential in exploring the genetic difference
between the two species.

3.2. The Superiorities of SojaCSSLP5 with SNPLDB-Map and Its Potentials in Studying
G. Soja Genome

In the present study, two maps, SNPLDB-map and SSR-map, were established for
the same CSSL population SojaCSSLP5 with the major difference lies in densified genomic
marker SNPLDB in the former while limited number of PCR-based SSR marker in the latter.
The results showed that the former was much superior over the latter in the following
aspects: (i) More genome-wide SNPLDB markers were obtained, resulting in shorter
segment length (5.16 Mb in average) and more detected wild segments (1568 in SNPLDB-
map vs. 763 in SSR-map), especially making the double crossing segments (84) detectable.
(ii) The genomic marker made a direct annotation of candidate genes for the detected
segments, which led to a direct detection of the mutant nucleotide(s) when integrated with
parental RNA-seq and DNA resequencing data.

The present results indicated that the wild CSSL population is efficient and effective
in identifying segment/QTL/gene with genetic background noise removed by continuous
backcrossing and the marker density densified by whole genome resequencing. Our final
target CSSL population was a single wild chromosome segment substitution line population
in which each line should be a near-isogenic line to the recurrent parent. However, the
present SojaCSSLP5 is in fact a multiple wild chromosome segment substitution line
population, in which each line contains multiple wild segments. From the present study,
we found that this kind of multiple wild chromosome segment substitution line population
is also useful and potential. In which, multiple or group of lines could be compared and
analyzed rather than only single line to be used to identify the target wild segment. The
other advantage of this kind CSSL population also lies in that the involved lines can be
backcrossed to the recurrent parent to obtain a secondary segregating population on the
target segment from which fine mapping of the target gene can be done. In addition, in
CSSL population, there might be some problem in random loses of some small segments
during the continuously backcrossing process, especially due to the inadequacy of marker
numbers in developing the CSSLs, and the multiple segments CSSL may be a compensation
to it.

3.3. The CSSL Population Integrated with Parental RNA-Seq and DNA Resequencing and
Germplasm Scanning as a Platform in Studying Evolutionary Mechanism

The evolution from wild soybeans to cultivars has gone through a long history, but
little is known about the evolutionary mechanism of a gene in domestication process. We
used the wild soybean CSSL population to identify two and six segments, then integrated
with 5× parental RNA-seq of eight different tissues and 10× parental genome resequencing,
2 SCC and 6 DTF candidate genes were identified and primary-verified. These genes were
associated with one qualitative trait SCC, and one quantitative trait DTF, respectively, from
which their allelic variations of wild vs. cultivated soybean explored. Then, the candidate
genes were demonstrated with the allele-phenotype coincidence in SojaCSSLP5 and further
demonstrated with the 303 germplasm accessions. It indicated that the quantitative trait
had more candidate genes and allelic variations than the qualitative trait. A single site
nucleotide mutation may cause the allele change from the wild to the cultivated, especially
for a qualitative trait; while multiple sites of nucleotide mutations also happened, especially
for quantitative trait (Figure 4). Thus, nucleotide mutation, especially nonsynonymous
mutation, could cause the evolution from the wild to the cultivated soybean at a single
gene level. The SojaCSSLP5 has provided the material bases for gene evolution research
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at a single gene level. However, after we looked at the genetic structure of a single gene
in the germplasm population, we found that multiple allelic variations may happen on a
locus, some cultivated nucleotides in SojaCSSLP5 are a real evolved new nucleotides of
cultivated soybean, but some may exist in wild soybean already. Thus, the alleles thought
to be evolved in cultivated soybean should be checked in the germplasm population for
exploring the real evolutionary mechanism of a gene. In any event, to find the linked
segment in a SojaCSSLP5 is the first step, segment identification integrated with parental
RNA-seq and DNA resequencing along with germplasm demonstration composed a
potential platform in identifying an evolutionary gene and evolutionary mechanism from
G. soja to G. max.

4. Materials and Methods
4.1. Plant Materials and Phenotype Evaluation

An improved CSSL population SojaCSSLP5 was established based on SojaCSSLP1
through SSR-assisted selection. Its original parents were NN1138-2 (G. max) and N24852
(G. soja); the former was an elite cultivar in maturity group V, characterized with early
flowering, yellow seed coat, used as recurrent parent; the latter was an annual wild
soybean in maturity group III, characterized with late flowering, black seed coat, used as
donor parent. We initially used 850 SSR markers from a high density integrated soybean
genetic linkage map to survey the polymorphism between NN1138-2 and N24852, and
151 polymorphic markers were selected for marker-assisted selection of target substituted
segments [4]. Through continuous backcross followed with alternation of backcross, selfing
and two generations of marker assisted selection, the first CSSL population SojaCSSLP1
composed of 151 lines was developed by Wang et al. [4] in 2013. In the present study,
to reduce the heterozygous segments and off-type lines, the SojaCSSLP1 was selfed and
SSR-assist-selected again to establish SojaCSSLP5 with more homozygous lines. Finally,
SojaCSSLP5 was composed of 177 CSSLs with the wild genome separated into 177 diagonal
segments by 182 SSR markers. Among the 177 CSSLs, there were 23, 12, 3, 62, 3, 25, 14,
21 and 14 CSSLs at the generations of BC3F8, BC3F7, BC3F6, (BC2F3)BC1F6, (BC2F2)BC2F6,
BC4F7, BC5F6, BC4F7 and BC5F6, respectively. Among the 177 CSSLs, there were 138 lines
derived directly from the SojaCSSLP1.

The SojaCSSLP5, along with its two parents, was planted in a complete randomized
block design experiment with 3 replications, one row per plot, 1 m length, 10 plants per row
and 0.5 m row space at Jiangpu Experiment Station, Nanjing, China (N31◦02′, E118◦04′) in
2016, and Dangtu Experiment Station, Maanshan, China (31◦32′ N, 118◦37′ E) in 2017 and
2018. The three environments were coded as 2016JP, 2017DT and 2018DT, respectively, and
were all belonged to short-day growth conditions. A total of two traits, SCC and DTF were
investigated on a plot basis. DTF was scored as the days from sowing to first flowering,
which corresponded to the R1 developmental stage [41].

4.2. DNA Extraction and SSR-Map Construction

DNA was extracted from fresh leaves of each CSSL using the CTAB method [42] with
minor modifications. A total of 182 SSRs that showed polymorphism between NN1138-2
and N24852 were used to genotype the SojaCSSLP5. The polymerase chain reaction (PCR)
was conducted according to Panaud et al. [43] with minor modifications. The gels were
run in PAGE running buffer (1 × TBE) at 200 V for 1.2 h and then silver-stained.

According to the position of each SSR marker, the SSR-map of SojaCSSLP5 was con-
structed, covering 872.40 Mb of the soybean genome with an average distance of 4.64 Mb
between neighboring markers according to the integrated physical map by Song et al. [44]
and the reference genome of Willimas82.a2.v1 [45].

4.3. SNP Identification and SNPLDB-Map Construction

To accurately assess the genome composition for improving the QTL mapping resolu-
tion, whole genome re-sequencing was carried out for SojaCSSLP5. A paired-end sequenc-
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ing library with an insert size of 350 bp was constructed for each CSSL and parent. First,
350 bp DNA fragments were randomly generated for each material using a hydrodynamic
shearing platform (Covaris, https://covaris.com/ and ApplicationSupport@covaris.com).
Next, the DNA fragments were treated according to the following manufacturer’s specifi-
cations (Illumina): fragments were end repaired, polyA-tails were added and they were
ligated to paired-end adaptors and amplified by PCR. Re-sequencing was performed using
the Illumina HiseqTMPE150 platform in Novogene Bioinformatics Institute (Beijing, China).

The clean paired-end reads were mapped to the reference genome of Willimas82.a2.v1 [45]
with Burrows-Wheeler Aligner (BWA) [46] and Sequence Alignment/Map tools (SAM-
tools) [47] to call SNPs. Then the SNPs in progenies were filtered according to the following
threshold: minQ ≥ 30, max-missing ≤ 0.2 and min-mean DP ≥ 1.5 by VCFtools.

To make the mapping results comparable among different populations, the consecutive
SNPs in SojaCSSLP5 were grouped into SNP linkage disequilibrium blocks (SNPLDB) based
on 750 germplasm accessions (unpublished) using the software PLINK [48]. According
to the breakpoint information of each CSSL, the co-segregation blocks were combined
into a single unit as one SNPLDB. Accordingly, the SNPLDBs were used as genomic
markers to construct a physical map, SNPLDB-map, for SojaCSSLP5 using the GGT32
software [49]. In this case, the SSR-map and SNP-map were established for a same CSSL
population SojaCSSLP5.

4.4. Identification of Segment for SCC and DTF

For SCC, the segments were identified using bulk segregant analysis. The 177 CSSLs
were grouped according to their SCC phenotypes (green, black and yellow), and the
allele frequency differences between the bulks were tested. The markers/segments poly-
morphic between bulks might be related to SCC. For DTF, the segment/QTL analysis
was performed using IciMapping V4.1 software [50] with the model of RSTEP-LRT-ADD
(Stepwise regression based likelihood ratio tests of additive QTL). The LOD threshold
was set to 2.5. To examine the association between phenotype and genotype, the seg-
ments/QTLs were verified by using the consistency value between the phenotype and
genotype, CP&G = npg/ng × 100%, where npg is the number of lines that their pheno-
types are co-segregating with genotypes and ng is number of lines containing the detected
wild segment.

4.5. Candidate Gene Annotation and Verification through RNA-Seq for SCC and DTF

According to SoyBase (http://www.soybase.org), the possible genes in the identified
segments were annotated. To verify the annotated genes related to SCC and DTF, tran-
scription analysis was conducted. A total of eight tissues, including young leaf, blooming
flower, 14seed (seed at 14 days after flowering), 21seed, 28seed, 35seed, 7pod (pod at 7 days
after flowering), 21pod, were harvested for NN1138-2 and N24852, respectively. The whole
genome gene expressions of these tissues were investigated through RNA-seq by Shanghai
Biotechnology Corporation (Shanghai, China). Total RNA was extracted using TRIzol
reagent by following the manufacturer’s protocols (Invitrogen, Carlsbad, CA, USA). RNA
quality was inspected by an Agilent 2100 Bioanalyzer (Agilent technologies, Santa Clara,
CA, US) to meet the criteria of OD260/280 ≥ 1.8, 28S/18S ≥ 1, and RNA Integrity Number
(RIN) ≥ 7. One µg of RNA was used for paired-end library construction using Illumina
TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). The RNA-seq was
generated by the Illumina HiSeq 2000. To obtain clean reads, the raw reads were filtered via
Seqtk (http://github.com/lh3/seqtk). The RNA-Seq reads from each sample were aligned
to the Glycine max genome of the Williams82 v2.1 via the TopHat (version 2.0.9) [51]
with the default options. The transcripts of each sample were reconstructed using String
Tie (version 1.3.0) [52]. Then, the gene expression level was measured by the value of
fragments per kilobase million (FPKM). Meanwhile, the sequence differences of candidate
genes between the two parents were compared according to the resequencing data for
NN1138-2 and N24852, respectively. To clone and compare the CDS of Glyma.12G073900,
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the gene-specific primers were designed based on the cDNA sequence of Williams82 v2.1,
and used for PCR amplification of each homologous gene from NN1138-2 and N24852. The
primers were: 5′TCAAGTGCTTGGGATGTGGA3′, 5′GCCGTACTTCATCTGTCCCG3′.

4.6. Demonstration of SCC and DTF Candidate Genes through Allele-Phenotype Coincidence
in SojaCSSLP5

To demonstrate the predicted SCC and DTF candidate genes, the resequencing data
of SojaCSSLP5 were used to identify the haplotypes of the 8 candidate genes. Based on
the nucleotide changes of the candidate genes between N24852 and NN1138-2, the haplo-
types/alleles were scanned in SojaCSSLP5. D1 and D2, E1 and E2, F1 and F2, H1 and H2, I1
and I2, J1 and J2, K1 and K2, L1 and L2 represent the haplotypes of the eight verified candidate
genes, including Glyma.01G198500, Glyma.08G109400, Glyma.04G167900, Glyma.10G221500,
Glyma.12G073900, Glyma.15G221300, Glyma.16G005100 and Glyma. 17G253700, for wild
soybean N24852 and cultivated soybean NN1138-2, respectively. The gene-alleles were
demonstrated through testing the coincidence between alleles and their phenotypic values.

4.7. Further Demonstration through Allele-Phenotype Coincidence in Chinese Soybean
Germplasm Population

The Chinese soybean germplasm population is composed of 750 wild and cultivated
accessions with its resequencing 5× depth data available. Out of the 8 candidate genes,
only 6 genes (Glyma.01G198500, Glyma.10G221500, Glyma.12G073900, Glyma.15G221300,
Glyma.16G005100 and Glyma.17G253700) were detected the same allele/haplotype pairs of
the two parents N24852 and NN1138-2. In fact, not only two (N24852 and NN1138-2) alleles
but multiple alleles existed on the 6 loci in the germplasm population. In order to eliminate
the interference caused by other alleles (or SNPs at other sites), the accessions carrying
the alleles/haplotypes consistent with N24852 and NN1138-2 on the 6 candidate genes
were selected for the demonstration analysis. The accessions with black seed coat were
excluded because the corresponding candidate gene Glyma.08G109400 was not included.
Accordingly, 303 cultivated accessions were used to compare their phenotypes for further
demonstration of the coincidence between alleles and their phenotypes, the compared two
sets of materials having the respective parental alleles on each locus, with the other loci for
a same trait all consistent, especially for DTF. The phenotypic data of SCC and DTF of the
compared germplasm accessions were observed in a complete randomized block design
experiment with 3 replications at Dangtu Experiment Station in 2018. The Student’s t-test
was used to detect their significant differences.

5. Conclusions

Wild soybean (G. soja), characterized with small and black seed, twining stem, pod
shattering, etc. is acknowledged to be the wild progenitor of the cultivated soybean (G.
max). To reveal the genetic changes from G. soja to G. max, an improved wild soybean CSSL
population SojaCSSLP5 with segment heterozygosity reduced and both SSR and SNPLDB
markers genotyped was established based on the previous versions obtained through
advanced backcrossing. Compared to the low density of SSR-map, the highly densified
SNPLDB-map could identify more wild segments with shorter length in SojaCSSLP5
(1366 vs. 182 markers and 5.06 vs. 10.06 Mb/marker). By using SojaCSSLP5 SNPLDB-
map, two markers co-segregating with SCC and six markers associated with DTF with
88.02% PVE were mapped, among which three DTF QTLs were newly detected in the
wild soybean. Integrated with parental RNA-seq and DNA resequencing data, two and
six candidate genes were predicted based on allele-phenotype coincidence in SojaCSSLP5
for SCC and DTF, respectively. Among these, one SCC candidate gene and four DTF
candidate genes were newly reported here that might be used to broaden the genetic base
of cultivated soybeans. The present results indicated that the mapping resolution of QTLs
and qualitative genes was highly improved by using high density SNPLDB-map, and this
kind of CSSL-map, if integrated with multiple allele information in germplasm population,
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is an potential platform in identifying candidate wild vs. cultivated gene-alleles and
exploring evolutionary mechanism from wild to cultivated soybeans.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/1559/s1, Table S1. Comparisons of genome composition among the five CSSL populations.
Table S2. Summary of the sequencing data of SojaCSSLP5 along with its two parents. Table S3.
Summary of SNPs identified in parents and SojaCSSLP5. Table S4. Descriptive statistics of the DTF
in the three environments Table S5. Joint analysis of variance of days to flowering in SojaCSSLP5.
Table S6. The expression of genes associated with seed coat color and days to flowering. Table S7.
The allelic variations of candidate genes between N24852 and NN1138-2.
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