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Abstract

Vascular endothelial growth factor (VEGF) is critical for physiological and pathological angiogenesis. Within the tumor
microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic
agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2), a high affinity
receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also
ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced
activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully
human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2
but does not interfere with VEGF:VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown
through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show
that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high
dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The
ability of r84 to specifically block VEGF:VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor
pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced
VEGFR2 signaling in tumors.
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Introduction

Angiogenesis is a tightly regulated process that is essential during

growth, wound healing and development, as well as cancer growth,

progression and metastasis [1–2]. A key stimulant of angiogenesis is

vascular endothelial growth factor-A (VEGF). VEGF induces

endothelial cell survival, proliferation, and migration its predomi-

nant signaling receptor, VEGF receptor 2 (VEGFR2). Tumor

associated macrophages also express VEGFR2 and selective

blockade of VEGFR2 is able to decrease macrophage infiltration

into tumors [3]. VEGF signaling through VEGF receptor 1

(VEGFR1) remains unclear, although it is thought to have effects

on hematopoiesis, vascular permeability, and monocyte migration.

Importantly, there is elevated expression of VEGF, VEGFR1, and

VEGFR2 within tumors, providing a therapeutic target. In fact

targeting VEGF has lead to the development of anti-angiogenic

therapies such as sunitinib malate (SutentH, SU11248, Pfizer, Inc.),

sorafenib (NexavarH, BAY 43-9006, Bayer Pharmaceuticals Corp.),

bevacizumab (AvastinH, Genentech), IMC-1121b (ramucirumab,

ImClone), VEGF-Trap (aflibercept, Regeneron) and 2C3 [2,4–6].

Sunitinib and sorafenib are small molecule inhibitors of multiple

receptor tyrosine kinases (RTKs) including the VEGF receptors.

These drugs have been FDA-approved for the treatment of renal

cell carcinoma, gastrointestinal stromal tumors (GIST) (sunitinib),

and unresectable hepatocellular carcinoma (sorafenib) [2,7–8].

Bevacizumab is a humanized monoclonal anti-VEGF antibody

that inhibits VEGF from binding to and signaling through

VEGFR1 and VEGFR2. Bevacizumab is approved in combina-

tion with cytotoxic chemotherapy for the treatment of colorectal

cancer, non-small cell lung cancer (NSCLC), and breast cancer, as
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monotherapy for glioblastoma, and in combination with interferon

for renal cell carcinoma [9–11]. Treatment with bevacizumab in

these cancer types results in a delay of tumor progression and

increases in patient survival [2,9]. However, treatment with

bevacizumab, sorafenib, and sunitinib, is also associated with a

number of rare although serious toxicities including gastro-

intestinal perforations, bleeding, proteinurea, and glomeruloscle-

rosis [9,12–13].

IMC-1121b is a high affinity, fully human IgG1 monoclonal

antibody that recognizes VEGFR2. IMC-1121b binding to

VEGFR2 inhibits ligand-induced activation of the receptor. There

are several on-going phase I, II, and III clinical trials evaluating

the efficacy of IMC-1121b in a number of tumor types [6].

VEGF-Trap is comprised of the second and third extracellular

immunoglobulin domains of VEGFR1 and VEGFR2, respective-

ly, joined by an IgG1 Fc region. The resulting fusion protein traps

with high affinity multiple VEGF family members including

VEGF and placental growth factor (PlGF) [14]. Currently, VEGF-

Trap is being tested in phase III clinical trials in a number of

tumor types [6].

2C3 is a murine, monoclonal antibody against VEGF that

specifically blocks human VEGF binding to VEGFR2 [4]. The

selective inhibition of VEGF:VEGFR2 signaling by 2C3 reduces

vascular permeability, decreases endothelial cell growth, and

decreases tumor growth in murine xenograft models. Additionally,

2C3 reduces tumor microvessel density (MVD) and macrophage

infiltration and down-regulates VEGFR2 expression on the tumor

vasculature [3–5,15]. The desirable anti-angiogenic effects of 2C3

lead to the development of a human antibody that retains 2C3

specificity.

Here we describe a fully human monoclonal antibody, r84

(AT001, Affitech AS) that binds to mouse and human VEGF and

specifically inhibits VEGF binding to VEGFR2, while leaving

intact VEGF interaction with VEGFR1. Through blockade of

VEGFR2 signaling, r84 inhibits the migration of VEGFR2

positive endothelial cells, and blocks VEGFR2 phosphorylation

and downstream signaling. In addition, treatment of mice bearing

tumor xenografts with r84 delays tumor take resulting in tumor

vascular changes, including reductions in tumor MVD and in

tumor lymphatic vessel density (LVD). Furthermore, extended

treatment with r84 does not induce significant systemic toxicity in

mice.

Materials and Methods

Construction of human IgG anti-VEGF antibodies
Human anti-VEGF single chain variable fragments (scFvs) were

created by Affitech AS (Olso, Norway) and Peregrine Pharma-

ceuticals, Inc. (Tustin, CA) and screened for specific VEGF

binding characteristics. The most desirable scFvs were cloned into

full length antibody expression vectors containing the glutamine

synthetase gene, transfected into CHO K1SV cells, and selected in

a glutamine free cell culture media. The cells were plated into flat

bottom 96 well culture plates, and wells with antibody production

were diluted and the cells were subcloned. Once subcloned, the

high production cells were grown to 500 mL cultures and the

antibody was purified by Protein-A affinity chromatography and

size-exclusion chromatography for purities of greater than 90%

monomer.

ELISA analysis of r84
To evaluate the binding specificities of r84, a series of ELISAs

were performed.

Determination of r84 specificity. Relative binding affinity

of r84 for mouse and human VEGF was determined by ELISA.

Recombinant human VEGF (R&D SystemsH, Minneapolis, MN)

or mouse VEGF (Sigma-AldrichH, St. Louis, MO) was coated onto

the bottom of 96-well plates at 0.5 mg/mL. Wells were blocked

and then incubated with r84 starting at 2 mg/mL with a serial

dilution factor of four. Antibody bound to the wells was detected

by incubation with anti-human Fc HRP-conjugated antibody

followed by development with HRP substrate.

r84 specificity within VEGF family. Human VEGF-A,

mouse VEGF-A, human VEGF-B, human VEGF-C, human

VEGF-D, and human PlGF (R&D SystemsH) were coated onto

96-well ELISA plates at 0.5 mg/mL. Wells were blocked and then

incubated with human r84 at 1 mg/mL. Antibody bound to the

wells was detected as described above.

r84 receptor blocking ELISAs. Recombinant human

VEGFR1/Fc or VEGFR2/Fc (R&D SystemsH) was coated onto

the bottom of 96-well plates at 1 mg/mL. Wells were blocked and

then incubated with 2.38 nM or 4.76 nM biotinylated VEGF for

VEGFR1 and VEGFR2, respectively, +/2 fold the indicated

molar excess of antibody. Labelled VEGF bound to the wells was

detected by incubation with strepavidin HRP-conjugated

antibody, developed as described above, and displayed as a

percentage of VEGF binding alone in the absence of antibody.

Endothelial cell in vitro assays
The effect of r84 on endothelial cell function and signaling in

vitro was assessed using HDMEC (ScienCellTM Research Labora-

tories, Carlsbad, CA), PAE-KDR [16], PAE-Flt-1 [16] endothelial

cell lines.

Migration assays. A modified Boyden chamber assay was

used. 20,000 endothelial cells (ECs) (HDMEC (ScienCellTM

Research Laboratories, Carlsbad, CA), PAE-KDR [16], PAE-

Flt-1 [16]) were plated in serum free media on 8.0 mm pore size

cell culture inserts (BD FalconTM, San Jose, CA) and allowed to

migrate overnight at 37uC. Recombinant human or mouse VEGF

(Sigma-AldrichH) was used as a chemo-attractant at 100 ng/mL,

with antibodies added at a 500-fold molar excess. Insert

membranes were isolated following migration and stained with

DAPI to allow for quantification of migrated cells (total

magnification, 1006).

Stimulation assays. HDMEC and PAE-KDR, -Flt-1 cell

lines were maintained in 100 mm2 tissue culture dishes in MCDB

131 (GibcoH, Carlsbad, CA) media supplemented with 0.4 mg/mL

ECGF and 20% fetal bovine serum (FBS). Following 24 hour

serum starvation, cells were stimulated for two minutes with

100 ng recombinant human VEGF or mouse (R&D SystemsH) +/

2 500-fold molar excess antibody. Cell lysates of stimulated cells

were prepared and analyzed by Western blot using commercially-

available antibodies specific for targets of interest ( total and

phospho- VEGFR2, p38, PLCc, Erk1/2 (Cell Signaling

TechnologyH, Danvers, MA), and VEGFR1 (AbcamH,

Cambridge, MA)).

Animal studies
4–6-week-old NOD/SCID mice were purchased from the

breeding core at the University of Texas Southwestern Medical

Center. Animals were housed in a pathogen-free facility and all

procedures were performed in accordance with a protocol (APN

0974-07-05-1) approved by the IACUC of the University of Texas

Southwestern Medical Center.

Tumor models and treatment. All tumor cells (H460,

H1299, A549, PANC-1) were grown in culture in RPMI-1640

medium (HyCloneH, Waltham, MA) supplemented with 5% FBS.

r84 Inhibits VEGFR2
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Cell lines were confirmed to be pathogen free and were

authenticated to confirm origin prior to use.

Subcutaneous xenograft therapy study. 2.5 million H460,

H1299, A549 NSCLC cells (provided by Dr. John Minna) were

injected (in PBS) subcutaneously into the right flank of NOD/

SCID mice. Mice were treated with 50 mg/kg/week r84 and

25 mg/kg/week bevacizumab/AvastinH and palivizumab/

SynagisH (anti-respiratory syncytial virus) via intraperitoneal (IP)

injection starting one day post tumor cell injection (TCI) (n = 8–9/

group). Mice were monitored twice a week, recording weights,

taking perpendicular tumor measurements, and observing for signs

of distress such as weight loss and inactivity. Therapy continued

until average control-treated tumor volume reached 1500 mm3 or

until day 60 post TCI, at which point animals were sacrificed.

Toxicity studies. 5 million PANC-1 human pancreatic

cancer cells (ATCC, Manassas, VA) (in PBS) were injected

subcutaneously into the right flank of NOD/SCID mice. An equal

number of NOD/SCID mice were not injected with tumor cells.

Therapy began one day post TCI. Tumor bearing (TB) and non-

tumor bearing (NTB) mice were treated with 50 mg/kg/week r84

and palivizumab via IP injection. Each group consisted of five

mice. Mice were monitored as previously described. All mice were

sacrificed following 12 weeks of continuous therapy and evaluated

for r84-induced toxicity. Blood was collected from animals at

sacrifice; serum was isolated following centrifugation and analyzed

by the mouse metabolic phenotyping core at the University of

Texas Southwestern Medical Center. A second toxicity study was

performed in immunocompetent mice harbouring spontaneous

pancreatic cancer (p48cre/KrasG12D/INK4a) [17]. Mice were treated

with saline (n = 4) or 25 mg/kg/week mouse chimeric r84 (mcr84,

n = 3) via IP injection or with 50 mg/kg/week sunitinib (n = 4) by

daily oral gavage five days per week. Sunitinib was purchased from

LC laboratories (Woburn, MA). Therapy began when mice

reached eight weeks old. Mice were monitored for weight gain as

previously described. At weeks two and seven of therapy, tail vein

cuff blood pressures of all mice were measured using the Visitech

Systems BP-2000 Series II Blood Pressure Analysis SystemTM

through the O’Brien Kidney Research Core Center at the

University of Texas Southwestern Medical Center. To

familiarize mice to the procedure, tail cuff blood pressures were

measured for five consecutive days, with data collection on the fifth

day. Average systolic pressures were calculated from data collected

on the last day of measurement (day five). At week six of therapy

metabolic cages obtained through the O’Brien Kidney Research

Core Center at the University of Texas Southwestern Medical

Center were used to collect urine from all animals over a 24-hour

collection period. Fresh urine samples were then submitted to the

University of Texas Southwestern Medical Center mouse

metabolic phenotyping core for analysis of total levels of urine

protein and creatine. All mice were sacrificed following eight

weeks of continuous therapy and evaluated for mcr84- and

sunitinib-induced toxicity. Blood was collected from animals at

sacrifice; serum was isolated following centrifugation and analyzed

by the mouse metabolic phenotyping core at the University of

Texas Southwestern Medical Center.

Therapy dose titration. 2.5 million A549 NSCLC cells (in

PBS) were injected subcutaneously into the right flank of NOD/

SCID mice. Mice were treated with 5, 15, or 50 mg/kg/week r84

and bevacizumab and 15 mg/kg/week control IgG (Peregrine

Pharmaceuticals, Inc.) via IP injection starting one day post tumor

cell injection (TCI). Each group consisted of eight mice and were

monitored as above. Therapy continued until average control-

treated tumor volume reached 1200 mm3, at which point animals

were sacrificed.

Histology and Immunohistochemical Studies
Formalin-fixed, paraffin-embedded tissues were sectioned and

stained with hematoxylin and eosin by the molecular pathology core

laboratory at the University of Texas Southwestern Medical Center.

Snap frozen tumors were sectioned, blocked with 20% Aquablock

(East Coast Biologics, North Berwick, ME) and stained for markers

of interest. Primary antibodies used include MECA-32 (DSHB;

University of Iowa), endomucin (Santa Cruz BiotechnologyH, Inc.,

Santa Cruz, CA), NG2 (MilliporeH, Billerica, MA), smooth muscle

actin (NeoMarkers, Fremont, CA), Lyve1, VEGFR2 (55B11) (Cell

Signaling TechnologyH, Danvers, MA), rabbit anti-VEGFR2 T014

(purified in our laboratory) [4,18], rat anti-VEGFR2 RAFL-2 [19],

and insulin (Dako, Glostrup, Denmark).

Statistics
Data were analyzed using GraphPad software (GraphPad Prism

version 5.00 for Windows, GraphPad Software). Results are

expressed as mean 6 SE. Differences are analyzed by t test or

ANOVA, and results are considered significant at a p value of

,0.05.

Results

Generation of a fully human monoclonal antibody
against VEGF

The success of 2C3 in preclinical models led to the development

of a fully human monoclonal antibody that recognizes VEGF and

retains many of the characteristics of 2C3. A number of anti-

VEGF human single chain variable fragments (scFv) were

screened for several characteristics such as a competition with

2C3 for binding to VEGF, the ability to block VEGF:VEGFR2

binding, and the ability of the scFv to bind to different VEGF

isoforms such as VEGF165 and VEGF121.

r84 binds human and mouse VEGF-A and specifically
blocks VEGF from binding to VEGFR2

To determine the binding specificity of r84, a series of ELISAs

were performed. A titration of r84 against recombinant human or

mouse VEGF demonstrated that r84 binds with equal affinity to

both species (Figure 1A). This established r84 as an important tool

in evaluating the contribution of both tumor cell- and host-derived

VEGF in tumor progression using xenograft models. The binding

specificity of r84 differs from other anti-VEGF antibodies, such as

bevacizumab and 2C3 that recognize only human VEGF. Next,

the specificity of r84 within the VEGF family was determined. r84

only bound wells coated with recombinant human and mouse

VEGF-A (Figure 1B).

The effect of r84 on VEGF binding to VEGFR1 and VEGFR2

was determined using ligand-receptor ELISAs. 2C3 and r84 at

increasing fold molar excess significantly reduced biotinylated-

VEGF binding to VEGFR2, compared to binding of biotinylated-

VEGF alone or in the presence of a non-specific control IgG

(Figure 1C). In contrast, neither 2C3 nor r84 inhibited binding of

biotinylated-VEGF to VEGFR1 (Figure 1D, left panel). However,

at a 500 fold molar excess of antibody to biotinylated-VEGF,

bevacizumab decreased VEGF binding to VEGFR1 by approx-

imately 80% (Figure 1D, right panel). These blocking ELISAs

demonstrate the precise binding of r84 to VEGF to selectively

inhibit the VEGF:VEGFR2 interaction.

r84 effects VEGFR2-mediated endothelial cell function
The effect of r84 on endothelial cells was determined using

several in vitro assays. First, a transwell assay was used to test the

r84 Inhibits VEGFR2
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effects of anti-VEGF antibodies on VEGF-induced endothelial cell

migration. Three different endothelial cell lines, selected for their

VEGF receptor expression, were used for the migration assays.

Human dermal microvascular endothelial cells (HDMEC) express

VEGFR1 and VEGFR2, porcine aortic endothelial cells (PAE)-

KDR and PAE-Flt-1 express high levels of VEGFR2 or VEGFR1,

respectively [16]. Human VEGF significantly induced migration

of all three cell types compared to serum free media (SFM) alone

(p,0.05 for HDMEC, p,0.001 for PAE-KDR, -Flt-1), and a non-

specific control IgG did not affect VEGF-induced migration

(Figure 2A). Both r84 and bevacizumab significantly inhibited

VEGF-induced migration of VEGFR2-expressing endothelial cells

(p,0.001, Figure 2A, HDMEC, PAE-KDR). However, only

bevacizumab was able to decrease the migration of PAE-Flt-1 cells

Figure 1. r84 binds human and mouse VEGF-A and specifically blocks VEGF-A binding to VEGFR2, not VEGFR1. A, Recombinant
human VEGF coated at 0.5 mg/mL was detected with a titration of fully human monoclonal antibody r84. r84 bound to VEGF was detected with an
anti-human Fc HRP-conjugated antibody, demonstrating r84 binds both human and mouse VEGF-A (open squares and circles, respectively). B,
Recombinant human and mouse VEGF-A, and human VEGF-B, -C, -D, and PlGF coated at 0.5 mg/mL was detected with r84 at 1 mg/mL. Binding of r84
to VEGF family member was detected as in A, demonstrating r84 binds only human and mouse VEGF-A and not other VEGF family members. VEGFR2
(C) and VEGFR1 (D, left panel) coated at 1 mg/mL were incubated with 4.76 nM or 2.38 nM biotinylated VEGF, respectively, +/2 the indicated fold
excesses of antibody (Control IgG, 2C3, r84). r84, 2C3 specifically block biotinylated-VEGF binding to VEGFR2 (C), but not VEGFR1 (D, left panel). In
contrast, a 500-fold molar excess bevacizumab (bev) reduces biotinylated-VEGF binding to VEGFR1, compared to biotinylated-VEGF alone or plus r84
(D, right panel).
doi:10.1371/journal.pone.0012031.g001
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towards VEGF (Figure 2A, PAE-Flt-1). To further evaluate the

specificity of r84 to mouse VEGF, migration assays were

performed with PAE-KDR cells using mouse VEGF as the

chemotactic agent. As seen with human VEGF, mouse VEGF

significantly induced the migration of PAE-KDR cells as

compared to SFM alone (Figure S1A). Only r84 was able to

significantly inhibit this migration, while bevacizumab and a

control IgG had no effect on cell migration (p,0.001, Figure S1A).

The ability of r84 to specifically block both human and mouse

VEGF-induced migration of VEGFR2-expressing endothelial cells

(HDMEC, PAE-KDR) but not VEGFR1-expressing endothelial

cells (PAE-Flt-1) demonstrates the selectivity of r84 to inhibit

VEGF-induced VEGFR2 activity.

VEGF binding to VEGFR2 initiates receptor phosphorylation

and subsequent phosphorylation of downstream pathway compo-

nents such as phospholipase C gamma (PLCc), p38, and the MAP

kinase extracellular signal-regulated kinase (ERK1/2). PAE-KDR

cells stimulated in vitro with human VEGF (100 ng, two minutes)

induced phosphorylation of VEGFR2, PLCy, p38, and ERK

(Figure 2B). Human VEGF stimulation of HDMECs induced

phosphorylation of PLCc and ERK (Figure 2C). Stimulation of

PAE-KDR and HDMEC cells with human VEGF plus 500-fold

molar excesses r84 or bevacizumab inhibited phosphorylation of

VEGFR2 and downstream targets (Figure 2B, 2C). However, only

bevacizumab blocked human VEGF-induced phosphorylation of

VEGFR1 in PAE-Flt-1 (Figure 2D). Further, stimulation of PAE-

KDR cells with mouse VEGF induced phosphorylation of

VEGF2, PLCy, and ERK that was only inhibited by r84 and

not by bevacizumab or a control IgG (Figure S1B). This data

shows that r84 selectively inhibits human and mouse VEGF

Figure 2. r84 reduces endothelial cell migration and signaling in vitro. A, A modified Boyden chamber migration assay was used to assess
the effect of r84, bevacizumab (bev) on VEGF-induced endothelial cell (EC) migration. 20,000 HDMEC, PAE-KDR, PAE-Flt-1 cells were plated on 8.0 mm
cell culture inserts and allowed to migrate overnight towards SFM or human VEGF (100 ng/mL) +/2 500-fold molar excess antibody (bev, r84, control
IgG). r84, bev block the VEGF-induced migration of VEGFR2-expressing ECs (A, HDMEC, PAE-KDR). Bev blocks VEGF-induced migration of endothelial
cells expressing VEGR1, but r84 does not (A, PAE-Flt-1). Western blots of VEGF-induced signaling in PAE-KDR (B), HDMEC (C), and PAE-Flt-1 (D) lysates
following stimulation of cells with 50 ng/mL human VEGF +/2 500-fold molar excess antibody (bev, r84, control IgG). r84 and bev block p-VEGFR2
and downstream phosphorylation (p38, PLCc, ERK1/2) (B, C), but only bev blocks VEGF-induced VEGFR1 phosphorylation in PAE-Flt-1 stimulated cells
(D). *p,0.05, **p,0.01, ***p,0.001, statistical differences in A compared to VEGF alone, unless otherwise indicated.
doi:10.1371/journal.pone.0012031.g002
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binding and signaling through VEGFR2 without interrupting

VEGFR1 signaling. The ability of r84 to bind human and mouse

VEGF (Figure 1A, B) and block VEGF from binding and signaling

through VEGFR2 (Figure 1C, Figure 2A–D, Figure S1A, B)

makes r84 a unique tool for studying VEGF inhibition in tumor

xenograft models, assessing possible toxicity induction and

analyzing the importance of VEGFR1 signaling in these processes.

r84 delays take of human xenograft tumors
Previous studies in our lab have demonstrated the ability of r84

to control tumor growth and decrease tumor angiogenesis in

established models of breast cancer [20–21]. The efficacy of r84 as

a cancer therapeutic was further assessed in tumor xenograft

models in NOD/SCID mice. Briefly, four- to six-week old female

NOD/SCID mice were implanted subcutaneously (s.c.) with 2.5

million human non-small cell lung cancer (NSCLC) cell lines

H460, H1299, or A549. Treatment began one day post tumor cell

injection (TCI) and continued until the average tumor volume in

control IgG treated tumors reached 1500 mm3, at which time all

animals were sacrificed. Tumor-bearing animals were treated with

50 mg/kg/week r84 and 25 mg/kg/week bevacizumab and

control IgG (palivizumab/SynagisH). r84 and bevacizumab

similarly delayed tumor take, thereby controlling H460 and

H1299 tumor growth compared to control IgG therapy by both

tumor volume and final tumor weights at sacrifice (Figure 3A, B).

In A549 xenografts, r84 delayed tumor take better than

bevacizumab, and the mean final tumor weight at sacrifice of

animals treated with r84 was significantly smaller than animals

treated with bevacizumab (Figure 3C, p,0.05).

Bevacizumab has a half life in mice of approximately two weeks

[22]. Pharmacokinetic studies (data not shown) determined the

half life of r84 in mice to be approximately five days. This

difference, along with the fact that r84 binds both human and

mouse VEGF and thus has more target to bind in tumor xenograft

models than bevacizumab, led to the differences in antibody doses

used in tumor studies. Consequently, this increase in dose could

lead to better control of tumor growth as was seen in the A459

model (Figure 3C). To evaluate the effect of antibody dose, A549

tumor cells were implanted into mice as previously described. One

day post TCI, animals began therapy, receiving 5, 15, or 50 mg/

kg/week of r84 or bevacizumab, or 15 mg/kg/week of a non-

specific control human IgG. The different doses of bevacizumab

had the same effect on tumor growth and final tumor weight

(Figure 3D). In contrast, there was an observable titration of tumor

growth and final tumor weight with r84 therapy, with tighter

control seen at higher doses of antibody. In addition, treatment of

A549 tumor-bearing animals with 15 and 50 mg/kg/week r84

resulted in smaller tumors as compared to the same dose of

bevacizumab (Figure 3D, p,0.001 and p,0.01, respectively).

Therefore, these results indicate that r84 may be more effective at

controlling tumor take and growth than bevacizumab independent

of dose in certain models. We propose that the appropriate

therapeutic antibody dose should be determined independently for

different tumor types to maximize therapeutic benefit with

minimal induction of toxicity [23–25].

r84 effects the tumor microenvironment
The phenotypic effects of r84 therapy within NSCLC tumors

were assessed by immunohistochemistry (IHC). As was expected

for anti-angiogenic therapies, treatment with r84 and bevacizu-

mab resulted in a significant decrease in tumor MVD as

demonstrated using two endothelial cell markers, MECA-32 (data

not shown) and endomucin (Figure 4A). There was a trend

towards an increase in the number of pericyte-(PC) associated

blood vessels in r84- and bevacizumab-treated tumors as

compared to control IgG, although this increase only reached

significance in the H460 model (Figure 4A). Treatment of H460

and H1299 xenograft tumors with r84 or bevacizumab also

reduced the number of VEGFR2 positive cells, as analyzed by

IHC (Figure 4B). Interestingly, VEGFR2 expression in A549

tumors was only decreased following r84 and not bevacizumab

(Figure 4B, p,0.05) therapy, perhaps reflecting the difference in

the efficacy of these two drugs in controlling tumor growth in this

model. Additionally, inhibition of VEGF with r84 or bevacizumab

decreased tumor LVD as compared to control IgG therapy in both

H460 and H1299 models (Figure 4C). However, bevacizumab

therapy failed to reduce LVD in the A549 model. These results

suggest that in a model-dependent manner, r84 and bevacizumab

may be able to disrupt lymphatic vessel-mediated tumor

metastasis.

Extended r84 therapy does not induce toxicity
The use of bevacizumab and other anti-angiogenic therapies in

the clinic is associated with a number of rare although serious

toxicities. Toxicity associated with r84 can be evaluated in

preclinical mouse xenograft models because of its ability of r84

to bind both human and mouse VEGF. To assess the potential of

r84 to induce toxicities, NOD/SCID mice were injected with five

million PANC-1 tumor cells (a slow-growing human pancreatic

cancer line) s.c. Treatment began one day post TCI, with 50 mg/

kg/week r84 or a non-specific control IgG (palivizumab/

SynagisH). An equal number of non-tumor-bearing (NTB) animals

received antibody treatment as well. Therapy continued for 12

weeks, at which point animals were sacrificed and tumor, organs

and blood were collected for toxicity assessment. As was seen in

the NSCLC models, r84 therapy significantly reduced PANC-1

tumor growth and final tumor weight, as compared to control

(Figure S2A, p,0.05). In addition, r84 treatment resulted in

decreased tumor MVD (Figure S2B, p,0.001). r84 did not induce

histological changes (as assessed by a pathologist) within the kidney

or liver of tumor-bearing (TB) or NTB mice as compared to age-

matched naı̈ve animals (Figure 5A, naı̈ve and TB r84 displayed).

Blood was collected from all animals at the time of sacrifice, and a

serum analysis of 20 metabolic markers was performed at UT

Southwestern Medical Center’s mouse metabolic phenotyping

core (Table S1). There were no significant changes in any of these

analytes between treated animals and age-matched naı̈ve animals.

This analysis included no observable change in alanine amino-

transferase, aspartate aminotransferase, and blood urea nitrogen

levels (Figure 5B), markers of liver and kidney function,

respectively. These three markers are elevated in correlation with

toxicity in animals treated for 12 weeks with bevacizumab and

high-affinity anti-VEGF antibodies [12].

It has been reported that anti-VEGF treatment can reduce

pancreatic islet vascular density in adult mice, leaving the

supporting pericytes behind [9]. In this study, the pancreatic islets

of TB and NTB animals treated for 12 weeks with r84 showed a

reduction in MVD as compared to control IgG-treated TB and

NTB animals (p,0.01), but there was no significant change when

compared to naı̈ve animals (Figure S3A). Additionally, there was

no observable change in the percentage of pericytes without

endothelial cell association (Figure S3A). Furthermore, there was

no change in serum glucose levels, nor was there a change in

insulin staining in pancreatic islets of experimental animals (Figure

S3B, C). Taken together, long-term therapy with r84 produced no

observable toxicity in TB or NTB animals.

Since hypertension and proteinuria are among the most

common toxicity-related side effects associated with anti-VEGF
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therapy and given recent data suggesting a role for VEGFR2 in

controlling blood pressure [13,26], we investigated the effects of

r84 therapy on hypertension and proteinuria in a spontaneous,

immunocompetent model of pancreatic cancer. Mice (p48-

Cre:LSL-KrasG12D:p16ink4a/arf+/lox) expressing a pancreas-specific

Cre recombinanse activating a constitutively active Kras allele

(KrasG12D) and inactivating a single copy of Ink4a/Arf that

spontaneously develop pancreatic ductal adenocarcinoma (PDAC)

[17] were separated into three groups receiving either saline,

mouse chimeric r84 (mcr84 [21]), or sunitinib. Therapy began

when mice when mice were eight weeks old, with weekly IP

injections of saline 25 mg/kg/week or mcr84, or daily oral gavage

of 50 mg/kg/week sunitinib. Therapy continued for a total of

eight weeks, at which time all animals were sacrificed. Tumor

burden, as assessed by final pancreas weight at sacrifice, was

reduced in mcr84-treated animals as compared to control- and

sunitinib-treated animals, although this trend failed to reach

significance (Figure S2C). However, treatment with mcr84 or

sunitinib resulted in decreased tumor MVD (Figure S2D, p,0.01

or p,0.05, respectively). The effects of r84 in PDAC and its

possible therapeutic benefit in animal models of PDAC are active

areas of research in our lab. Tail cuff blood pressure measure-

ments were gathered during weeks two and seven of therapy. At

week two, animals in the mcr84 and sunitinib groups displayed

elevated systolic blood pressure as compared to control-treated

animals (Figure 5C, left panel, p,0.001). However, at week seven

neither mcr84- nor sunitinib-treated animals displayed elevated

systolic blood pressures as compared to control-treated animals

although blood pressures were significantly higher in sunitinib-

treated animals than in those receiving mcr84 (Figure 5C, right

panel, p,0.05). Thus in this model, inhibiting VEGFR2 with

mcr84 or multiple receptor tyrosine kinases including both

VEGFR1 and VEGFR2 with sunitinib increased systolic blood

pressure after acute but not chronic therapy. During week six of

therapy, metabolic cages were used to collect urine samples from

all mice, which were subsequently analyzed for urine protein

(Upro) and creatine levels by UT Southwestern Medical Center’s

mouse metabolic phenotyping core. The Upro:creatine ratio did

not differ between the three treatment groups, suggesting that long

term treatment with mcr84 and sunitinib does not induce kidney

damage (Figure 5D). Similar to the initial toxicity study in NOD/

SCID mice, blood was collected from all animals at sacrifice for

analysis by the mouse metabolic phenotyping core, which again

yielded no significant changes in any of the 18 tested analytes

between mcr84-, sunitinib-, or control-treated animals (Table S2).

Therefore, in a spontaneous tumor model in immunocompetent

animals, chronic treatment with mcr84 failed to produce

observable, lasting toxicity.

Discussion

Angiogenesis is a crucial process during embryonic development

and normal physiology, and during tumor development, growth,

and progression [2]. Anti-angiogenic therapy therefore presents an

exciting and rational approach for tumor therapy. However, the

clinical efficacy of anti-angiogenic therapies have been mostly

Figure 3. r84 controls tumor growth in vivo. 2.5 million human
NSCLC cells were injected subcutaneously into the right flank of NOD/
SCID mice. Therapy began one day post tumor cell injection (TCI), and
continued for 4–8 weeks. Tumor volumes were measured twice/week
and final tumor weights were recorded at sacrifice. r84 and
bevacizumab (bev) similarly control tumor growth and final weight
compared to control IgG treatment in H460, H1299 models (A, B). C, In
A549 NSCLC tumor bearing animals, r84’s control of tumor growth was
significantly different from bev (p,0.05). D, Titration of antibody dosing

in A549 tumor xenografts showed no change in tumor growth and final
tumor weight with increasing doses of bev, however there was
increasing control of tumor growth with increasing doses of r84, with
doses of r84 controlling growth better than bev (D). A–C, n = 8 mice per
group; D, n = 6 mice per group. *p,0.05, **p,0.01, ***p,0.001,
statistical differences compared to Ctrl treatment, unless otherwise
indicated.
doi:10.1371/journal.pone.0012031.g003
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disappointing, with modest increases in patient overall survival

[27]. Therefore, there is still much to learn about angiogenic

signaling and angiogenesis dependence within tumors, which can

be aided through the development and use of new investigative

tools.

Here we describe r84, a fully human monoclonal antibody

specific for VEGF, a key mediator of angiogenesis. r84 binds to

human and mouse VEGF-A, but not other VEGF family members

(VEGF-B, -C, -D, PlGF), and specifically blocks subsequent

binding of VEGF to VEGFR2, leaving intact VEGF:VEGFR1

interaction. Through its unique VEGF binding properties, r84

blocked VEGFR2-mediated endothelial cell migration and

signaling. In vivo, r84 controlled tumor growth in NOD/SCID

mice similarly to bevacizumab. r84-treated tumors had reduced

MVD, VEGFR2 expression, and LVD as compared to control-

treated tumors, and showed a trend towards increased pericyte-

associated blood vessels. Importantly, chronic exposure to r84 in

tumor bearing and non-tumor bearing NOD/SCID mice and in a

spontaneous, immunocompetent model of pancreatic cancer did

not induce toxicity.

The discriminating specificity of r84 in that it recognizes one

ligand (VEGF) and inhibits binding only to VEGFR2 establishes

r84 as a beneficial tool for elucidating VEGFR1 signaling

pathways and functional contributions of VEGFR1 and VEGFR2

in vitro and in vivo. r84 binds both human and mouse VEGF

(Figure 1A, B), and a mouse chimeric version of r84 (mcr84) has

been developed, thereby obviating the need for complex mouse

model systems genetically engineered to express human VEGF

[12] to study contributions of host- and tumor-derived VEGF in

human xenograft or syngeneic tumor models. Previous work has

directly compared the efficacy of r84 with other anti-angiogenic

agents in established human tumor xenografts and syngeneic

tumor models [20–21]. In these studies, r84 has been shown to be

more effective than bevacizumab, sunitinib, an anti-VEGFR2

antibody (RAFL-2), and a peptoid against VEGFR1 and

VEGFR2 (GU81) in controlling tumor growth and infiltration of

immune suppressor cell populations [19,21]. Functionally, r84

inhibits VEGFR2 activity by specifically blocking only VEGF.

This distinguishes this r84 from anti-VEGFR2 antibodies such as

DC101 that block the activity of all VEGFR2 ligands [28]. The

importance of r84’s specificity is best observed through direct

comparisons where r84 has been shown to outperform less specific

anti-VEGFR2 strategies [21]. The present study supports the

previous investigations, highlighting that selective inhibition of

VEGFR2 with r84 can delay tumor take and control tumor

growth similar to blockade of both VEGFR1 and VEGFR2

(Figure 3), bringing to question the function of VEGFR1 in tumor

angiogenesis and in physiological homeostasis. A caveat to the

specificity of r84 is that we have been unable to determine

conclusively the effect of r84 on VEGF binding to neuropilin-1 or -

2, which might impact the biological effect of r84.

Although the function and signaling pathways of VEGFR1

remain elusive, there is data supporting the concept that VEGFR1

is a negative regulator of VEGFR2 signaling. VEGFR1 deficient

mice die in utero due to an over abundance of endothelial cells

[29–30], whereas mice expressing only the extracellular domain of

VEGFR1 are viable [31]. These studies established that VEGFR1

does not need to signal through its cytoplasmic domain and

functions during development as a decoy receptor for VEGF,

sequestering the ligand and regulating VEGFR2-mediated

angiogenesis. Roberts et al., [32] demonstrated that the VEGFR1

mutant phenotype in embryonic stem cell-derived blood vessels

could be rescued by incubation with small molecule inhibitors of

VEGFR2. These data further supports that VEGFR1 controls

blood vessel development by negatively regulating VEGFR2

signaling. In addition, work by Nozaki et al., [33] demonstrated

that VEGF binding to VEGFR1 induced the activity of SHP-1

phosphatase that in turn reduced levels of VEGFR2 phosphory-

lation. Therefore, active VEGF binding and signaling through

VEGFR1 could potentially negatively regulate tumor angiogene-

sis, an interesting concept that warrants further investigation.

Hypertension is likely caused by decreased levels of nitric oxide

(NO) resulting from blockade of VEGF signaling through

VEGFR2 and VEGFR1 by current anti-angiogenic strategies.

VEGF activation of VEGFR1 has been demonstrated to induce

NO production [34–35]. Therefore, it is possible that hypertension

may be reduced or eliminated following r84 therapy.

Additionally, studies have demonstrated the importance of

VEGFR1 function in tumor cell survival. Neutralizing antibodies

against VEGFR1 [36–37] and PlGF [38], a VEGFR1 specific

ligand, have successfully controlled tumor growth in preclinical

models. Adding to the complexity of this pathway, PlGF over

expression has also been shown to inhibit tumor growth and

angiogenesis through increased levels of functionally inactive

VEGF:PlGF heterodimers [39–40]. Further, Bais et al. recently

demonstrated that although anti-PlGF antibodies were able to

inhibit wound healing and cancer cell extravasation, these

antibodies only inhibited tumor growth in tumors that over

expressed VEGFR1 [41]. These papers question the importance of

directly blocking PlGF or VEGFR1 therapeutically and highlight

the potential benefit of anti-angiogenic agents such as r84 that

allow for PlGF and VEGFR1 interactions. VEGFR1 has also been

linked to tumor metastasis [42–43]. However, selective blockade of

VEGFR2 in our models was sufficient to control tumor growth as

compared to simultaneous inhibition of VEGFR1 and VEGFR2

(Figure 3A–D). Increased metastasis was not observed from tumor

xenografts treated with r84 or the phenotypic precursor of r84,

2C3, in subcutaneous or orthotopic models [3,20]. Nevertheless,

the effects of anti-angiogenic therapy on tumor progression and

metastasis are still being elucidated [44–45] and could benefit from

selective tools, such as r84, to delineate important pathways and

mechanisms of action in these processes.

In the present study, delayed tumor take through selective

inhibition of VEGFR2 with r84 was associated with several

histological changes. r84 reduced tumor MVD similar to

bevacizumab treatment (Figure 4A). Consistent with the concept

of anti-angiogenic therapies functioning by pruning nascent tumor

vasculature, we observed a trend of increased pericyte association

with endothelial cells in r84 and bevacizumab treated animals,

though this only reached statistical significance in the H460 model

Figure 4. r84 therapy induces vascular changes within tumors. Frozen sections of A549, H460, H1299 tumors treated with control IgG (Ctrl),
r84, or bevacizumab (bev) were analyzed by immunofluorescence for endothelial, pericyte (PC), and lymphatic markers, as well as for VEGFR2
expression. Number of positive-staining entities per high powered field was evaluated using Nikon Elements software. A, r84, bev treatment
significantly decreases tumor MVD, shown by a reduction in tumor endomucin positive endothelial cells (red). r84, bev treatment induced a trend
towards increased NG2 positive (green) PC coverage of vessels as compared to Ctrl. B, r84, bev treatment significantly reduces the number of VEGFR2
positive cells in H460, H1299 tumors as shown by RAFL-2 staining (red). Only r84 treatment significantly reduced VEGFR2 staining in A549 tumors. C,
r84, bev treatment significantly decreased H460, H1299 tumor LVD, as indicated by a reduction in lyve1 positive cells (red). Only r84 treatment
significantly reduced A549 tumor LVD. *p,0.05, **p,0.01, ***p,0.001, statistical differences compared to Ctrl, unless otherwise indicated.
doi:10.1371/journal.pone.0012031.g004
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Figure 5. Extended r84 therapy controls tumor growth without induction of toxicity. 5 million PANC-1 tumor cells were injected
subcutaneously into NOD/SCID mice. Tumor bearing (TB) and non tumor bearing (NTB) mice received long-term 12-week therapy with 50 mg/kg/
week r84 or a control IgG. Following 12-weeks of therapy, animals were sacrificed and organs and blood were collected for toxicity analysis. n = 5
animals per group. A, Hematoxylin and eosin staining of formalin-fixed, paraffin-embedded kidney and liver sections demonstrated that control of
tumor growth is achieved without induction of kidney or liver histopathologic changes. B, Blood chemistry analysis of serum samples collected from
mice at sacrifice indicated that r84 treatment does not induce changes in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase
(AST), or blood urea nitrogen (BUN) as compared to control IgG therapy and to age-matched Naı̈ve animals that did not have tumor and never
received antibody therapy. Immunocompetent Kras/INK4a mice that spontaneously develop pancreatic cancer were treated for eight weeks with
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(Figure 4A). NSCLC tumors treated with r84 and bevacizumab

showed a reduction in VEGFR2 staining (Figure 4B), with the

exception of A549 tumors where bevacizumab had no effect,

suggesting specific inhibition of VEGF:VEGFR2 binding by r84

can down regulate receptor expression. As VEGFR2 is considered

the predominant angiogenic signaling receptor, decreasing its

expression within tumors could promote the anti-angiogenic

effects of r84. Tumor LVD was also decreased in mice treated

with r84 and bevacizumab, with the exception of A549 tumors

where bevacizumab had no effect. In several tumor types,

including lung cancer, lymphatic vasculature participates in tumor

metastasis [46]. Although predominately mediated by VEGF-C

and -D interaction with VEGFR3, recent data demonstrated

elevated expression of tumor-derived VEGF-A contributes to

pathological lymphangiogenesis [47–48]. In a corneal injury

model, Cursiefen et al., [47] demonstrated that elevated levels of

VEGF-A recruits macrophages and inflammatory cells secreting

VEGF-C and -D to the site of injury, thereby inducing

lymphangiogenesis. This mechanism may explain the decrease in

LVD seen in treated tumors in our studies. Therefore, reduced

LVD observed with r84 and bevacizumab therapy is perhaps

mechanistically similar to the reduction in LVD observed in 2C3-

treated breast cancer xenografts, which correlated with a

VEGFR2-mediated down regulation of VEGFR3 in lymphatic

endothelial cells and a decrease in Ang-2 expression in endothelial

cells and tumor cells [49].

Extended therapy with r84 in tumor bearing and non-tumor

bearing mice did not induce toxicity, as measured by weight

maintenance, blood pressure levels, proteinuria analysis, and

preservation of renal, hepatic, and pancreatic structure and

function. Previous studies assessing the safety of anti-VEGF

antibodies, including bevacizumab, demonstrated increased he-

patic and renal damage with antibodies of increasing affinity to

VEGF. Hepatic and renal toxicity produced elevated serum levels

of ALT, AST, and BUN as well as glomerulosclerosis and loss of

structural integrity seen by H&E staining [12]. These toxicity-

inducing antibodies were first characterized in 2006 as cross-

reactive antibodies that recognized human and mouse VEGF and

highlighted the importance of blocking stromal-derived VEGF in

some tumor models [50]. Our current work with r84 in the A549

xenograft model (Figure 3C–D) highlights the importance of host

VEGF in the progression of some tumors. However, in our studies,

long-term therapy with r84 does not induce the renal or hepatic

toxicities (Figure 5, Table S1). This separates r84 from previously

developed cross-reactive antibodies as a unique therapeutic tool

with the potential to answer key questions on the function of

stromal VEGF in tumor progression and the importance of

VEGFR1 activity in avoiding anti-VEGF induced toxicity. The

endocrine pancreas is especially sensitive to VEGF inhibition

[9,51]. However, extended therapy with r84 did not result in

changes in pancreatic islet structure or function (Figure S3A-C). In

an immunocompetent model of spontaneous pancreatic cancer,

extended therapy with mcr84 did not induce renal or hepatic

toxicities as indicated by urine analysis and serum metabolic

markers (Figure 5D, Table S2) and acute increases in systolic

blood pressure were resolved over time without cessation of

therapy (Figure 5C). Thus, we conclude that r84 and mcr84 do not

induce significant toxicities in mice perhaps due to the lower

affinity of r84 for VEGF as compared to other anti-VEGF

antibodies or from a protective function of VEGFR1. Overall, the

in vitro and in vivo characteristics of r84 establish this antibody as an

important tool to further elucidate the importance of VEGF

signaling through VEGFR1 and VEGFR2 within tumors and

during normal physiology and as a potential adjuvant therapy. At

the present time the production of clinical grade r84 is being

evaluated and we anticipate that initial safety trials in humans will

begin in the near future.

Supporting Information

Table S1 Extended r84 therapy does not induce significant

changes in blood serum chemistry. NOD/SCID mice bearing

subcutaneous PANC-1 tumors received long-term 12-week

therapy with 50 mg/kg/week r84 or a control IgG. Blood

chemistry analysis of serum samples collected from mice at

sacrifice indicated that extended r84 treatment does not induce

changes in serum levels of 20 different markers, as compared to

control-treated (Ctrl) or Naı̈ve animals.

Found at: doi:10.1371/journal.pone.0012031.s001 (0.03 MB

DOC)

Table S2 Extended mcr84 therapy does not induce significant

changes in blood serum chemistry. Immunocompetent mice

heterozygous for a spontaneous model of pancreatic cancer

received extended 8-week therapy with saline, 25 mg/kg/week

mouse chimeric r84 (mcr84), or 50 mg/kg/week sunitinib. Blood

chemistry analysis of serum samples collected from mice at

sacrifice indicated that extended mcr84 and sunitinib treatment

does not induce changes in serum levels of 18 different markers, as

compared to saline-treated animals in this model.

Found at: doi:10.1371/journal.pone.0012031.s002 (0.03 MB

DOC)

Figure S1 r84 reduces mouse VEGF-induced endothelial cell

migration and signaling in vitro. A, A modified Boyden chamber

migration assay was used to assess the effect of r84, bevacizumab

(bev) on mouse VEGF-induced endothelial cell (EC) migration.

20,000 PAE-KDR cells were plated on 8.0 mm cell culture inserts

and allowed to migrate overnight towards SFM or mouse VEGF

(100 ng/mL)+/2500-fold molar excess antibody (bev, r84, control

IgG). Only r84 blocks mouse VEGF-induced migration of

VEGFR2-expressing PAE-KDR ECs. B, Western blots of mouse

VEGF-induced signaling in PAE-KDR lysates following stimula-

tion of cells with 50 ng/mL mouse VEGF+/2500-fold molar

excess antibody (bev, r84, control IgG). Only r84 blocks p-

VEGFR2 and downstream phosphorylation (PLC-c, ERK1/2) in

mouse VEGF-stimulated cells. ***p,0.001, statistical differences

in A compared to mouse VEGF alone, unless otherwise indicated.

Found at: doi:10.1371/journal.pone.0012031.s003 (0.68 MB TIF)

Figure S2 Efficacy of long-term anti-VEGF therapy. r84 and

mcr84 were able to control tumor growth in two extended therapy

models. A–B, NOD/SCID mice bearing subcutaneous PANC-1

tumors received long-term 12-week therapy with 50 mg/kg/week

r84 or a control IgG. r84 therapy significantly controls tumor

growth and final tumor weight compared to control IgG (A,

*p,0.05). B, r84 significantly decreases PANC-1 tumor micro-

vessel density as compared to control IgG (Ctrl) treatment as

saline, 25 mg/kg/week mcr84, or 50 mg/kg/week sunitinib. After 2 weeks of therapy, mcr84 and sunitinib significantly increased mean systolic blood
pressure (C, left panel, ***p,0.001), but this effect was lost by week 7 of continuous therapy (C, right panel). D, Urine samples collected during week
6 of therapy and assayed for total levels of urine protein and creatine (Upro/Creatine ratio displayed) showed no significant difference between
treated animals as compared to control, indicating that extended therapy with mcr84 and sunitinib did not induce kidney damage in this model.
doi:10.1371/journal.pone.0012031.g005
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shown by endomucin staining (***p,0.001). C, Immunocompe-

tent mice heterozygous for a spontaneous model of pancreatic

cancer received extended 8-week therapy with saline, 25 mg/kg/

week mouse chimeric r84 (mcr84), or 50 mg/kg/week sunitinib.

There was a trend towards a decrease in final pancreas weight at

time of sacrifice in mcr84-treated animals as compared to control,

although this decrease failed to reach statistical significance.

Found at: doi:10.1371/journal.pone.0012031.s004 (3.99 MB TIF)

Figure S3 Immunohistochemical analysis of r84 efficacy and

toxicity profile following long-term therapy. NOD/SCID mice

bearing subcutaneous PANC-1 tumors received long-term 12-

week therapy with 50 mg/kg/week r84 or a control IgG. A, Long-

term r84 therapy in TB or NTB animals did not change

pancreatic islet vessel density (endomucin, green) or pericyte

distribution (NG2, red) as compared to age-matched Naı̈ve

animals (**p,0.01). Blood chemistry analysis of serum samples

collected from mice at sacrifice revealed no change in glucose

levels between groups (B). TB or NTB animals receiving long-term

antibody therapy with r84 or a control IgG and Naı̈ve animals

showed no difference in insulin staining intensities (green) within

pancreatic islets (C).

Found at: doi:10.1371/journal.pone.0012031.s005 (7.39 MB TIF)
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