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SUMMARY

An incoherent feedforward loop (IFFL) is a network motif known for its ability to
accelerate responses and generate pulses. It remains an open question to under-
stand the behavior of IFFLs in contexts with high levels of retroactivity, where an
upstream transcription factor binds to numerous downstream binding sites. Here
we study the behavior of IFFLs by simulating and comparing ODE models with
different levels of retroactivity. We find that increasing retroactivity in an IFFL
can increase, decrease, or keep the network’s response time and pulse amplitude
constant. This suggests that increasing retroactivity, traditionally considered an
impediment to designing robust synthetic systems, could be exploited to
improve the performance of IFFLs. In contrast, we find that increasing retroac-
tivity in a negative autoregulated circuit can only slow the response. The ability
of an IFFL to flexibly handle retroactivity may have contributed to its significant
abundance in both bacterial and eukaryotic regulatory networks.

INTRODUCTION

Living cells sense and respond to the environment via a large variety of mechanisms. How do diverse

biochemical networks, which are at the core of the process by which cells sense and respond to signals,

yield and maintain specific functional behaviors? A widely held hypothesis in systems biology is that recur-

ring network sub-structures, also known as network motifs, play important roles therein. Network motifs

capable of performing biological functions are preserved over the course of evolution, resulting in a rate

of occurrence higher than if nodes and edges were connected at random (Alon, 2007).

One of the most common three-gene network motifs in transcriptional regulatory networks (TRN) is the

incoherent feedforward loop (IFFL), where a transcription factor (TF) activates and inhibits a downstream

gene directly and indirectly (Figure 1A). In a pioneering study guided by ordinary differential equation

(ODE) models, IFFLs were established as a sign-sensitive response accelerator and pulse generator (Man-

gan and Alon, 2003) (Figure 1B). These findings were supported by subsequent efforts in synthetic biology

with compelling experimental evidence (Mangan and Alon, 2003). Using the gal system in Escherichia coli

(E. coli), it was shown that compared with simple regulation, IFFLs can accelerate the response times of a

target gene (Alon, 2007). The feasibility of creating synthetic pulse-generating IFFL circuits under the guid-

ance of ODE models was demonstrated in another study (Basu et al., 2004). In addition, IFFLs can provide

fold-change detection and buffer noise (Goentoro et al., 2009). It was shown that miRNA-mediated IFFLs

confer precision and stability to the target protein level despite fluctuations in upstream regulators (Osella

et al., 2011; Siciliano et al., 2013; Grigolon et al., 2016).

Although a wealth of literature has shed light on this topic, it remains an open area of research to under-

stand the full functional capabilities of IFFLs. In ODE-model-based studies, it was generally assumed that

changes in protein concentrations arise from first-order decay and protein production rates regulated by

upstream TFs (Mangan and Alon, 2003; Basu et al., 2004). This assumption aligns with the traditional view of

TRNs as modular systems, where the temporal dynamics of a protein depend solely upon the TFs that regu-

late its expression. In other words, under this assumption, the dynamics of the protein are not affected by

the components it regulates even if the protein is also a TF. However, growing theoretical and experimental

evidence suggests that TRNs are not modular but quasi-modular. A fraction of the TF molecules are em-

ployed to form complexes with downstream binding sites, hence becoming unavailable for additional
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molecular activities, such as degradation, protein-protein interaction, or regulation of other genes. Exam-

ples of such TFs include p53 (Pariat et al., 1997) andMyoD (Abu Hatoum et al., 1998), both of which become

resistant to degradation when bound to DNA. This phenomenon, where downstream binding sites can

alter the dynamics of the upstream system, is known as retroactivity (Del Vecchio et al., 2008).

In TRNs, retroactivity is large when the amount of TF is comparable to, or smaller than, the copy number of

the downstream bindings sites, or when the affinity of such binding is high (Del Vecchio et al., 2008). In syn-

thetic biology, retroactivity is widely recognized as an essential parameter to consider in model-based cir-

cuit design (Brophy and Voigt, 2014). In the context of endogenous regulatory networks, retroactivity is

seldom discussed, as the level of retroactivity that arises from TF binding in the genome is typically

assumed to be negligible (Jayanthi et al., 2013). However, results from chromatin immunoprecipitation

(ChIP)-on-chip and ChIP sequencing (ChIP-seq) methods suggest that the validity of this assumption is

dependent on the biological context of the network (Kemme et al., 2016). In particular, genome-wide

studies driven by the Encyclopedia of DNA Elements (ENCODE) project have shown that in eukaryotic cells,

TFs bind to not only functional sites in the cis-regulatory elements (e.g., promoters and enhancers) but also

numerous high-affinity sequence-specific binding sites that are seemingly non-functional (Consortium,

2012; Fisher et al., 2012; Li et al., 2008) (Figure 1C). It has been suggested that these high-affinity

sequence-specific binding sites can serve as natural decoys (NDs), which compete with functional target

sites for TF binding (Burger et al., 2010, 2012; Lee and Maheshri, 2012; Liu et al., 2007; Wang et al.,

2016). While the majority of ND sites are inaccessible due to chromatin structure, CpG methylation, or

competing proteins, an average TF in the human genome still has approximately 104�105 accessible ND

sites, which typically have greater or at least comparable binding affinity compared with sequence-specific

Figure 1. IFFLs, Response Time, Pulse Amplitude, and Accessible ND-Binding Sites

(A) Graphical representations of four types of IFFL: I1-FFL, I2-FLL, I3-FFL, and I4-FFL. An IFFL is a three-node network

motif, where the input A, stimulated by an external inducer I, regulates the output C in two opposing directions. Arrows

indicate activation, and edges with bars at the ends, inhibition.

(B) Definitions of response time and pulse amplitude. Response time, abbreviated as RT, is defined as the time needed to

reach the midpoint between the pre-induction and the post-induction steady states (t2-t1), whereas pulse

amplitude, abbreviated as PA, is defined as the difference between the pre-induction steady state and the peak

concentration (Cpeak-C1).

(C) The effect of accessible ND-binding sites on the dynamics of the TF. Non-functional NDs sequester some of the

upstream TF, so only a fraction of the upstream TF molecules are available to bind to functional target sites (e.g.,

promoters and enhancers).
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TF-binding sites (Kemme et al., 2015, 2016; Esadze et al., 2014) (Figure 1C). As such, in studying many eu-

karyotic TRNs retroactivity must be taken into account (Kemme et al., 2016).

The goal of our study is to understand how retroactivity affects response acceleration and pulsing of IFFLs.

In the simplest case where an input is coupled to a downstream promoter-binding region, it was demon-

strated that retroactivity increases response times and dampens pulse amplitude (Del Vecchio et al., 2008).

In the context of more complicated topologies, changing retroactivity can lead to more sophisticated,

often undesired effects on circuit behaviors (Sepulchre and Ventura, 2013; Gyorgy and Del Vecchio,

2014;Wang and Belta, 2019). This raises the question whether retroactivity is simply an impediment to over-

come in designing synthetic IFFL circuits. Another natural question is the potential role of retroactivity in

motif evolution. As the levels of retroactivity differ sharply in prokaryotes and higher eukaryotes due to

the number of accessible ND sites, could the behaviors of a network motif under different levels of retro-

activity have affected its abundance, as one progresses from bacterial TRNs to eukaryotic ones? Note, we

focus on IFFLs in particular because synthesizing functional IFFLs has proved to be experimentally feasible

(Basu et al., 2004; Bleris et al., 2011), making our predictions experimentally testable in controlled synthetic

systems.

A systematic modeling framework was developed to account for retroactivity in TRNs (Gyorgy and Del Vec-

chio, 2014). Using this framework, we study IFFL networks by simulating, comparing, and mathematically

analyzing ODE models with varying levels of retroactivity. Similar to previous computational studies (Shi

et al., 2017; Ma et al., 2009; Castillo-Hair et al., 2015), we performed time course simulations of IFFLs repeat-

edly with kinetic parameters representing different regions of parameter space. We quantified the

response time, as well as the pulse amplitude, for each parameter set (see Figure 1B for the definitions

of response time and pulse amplitude). Building from these simulations, we compared the dynamics of

the corresponding ODE systems to understand how retroactivity affects the behavior of IFFLs. To demon-

strate that our findings are parameter-independent, we carried out mathematical proofs where model pa-

rameters can take arbitrary positive values.

We find that increasing retroactivity can increase, decrease, or keep the response time and the pulse ampli-

tude constant in an IFFL. This suggests that in contrast to the traditional perception of retroactivity as an

impediment to circuit design (Del Vecchio et al., 2008), increasing retroactivity could actually be harnessed

to improve the performance of IFFLs. Our results predict that the introduction of synthetic decoy binding

sites into a synthetic IFFL system would affect its response time and pulse amplitude, and the magnitude of

this effect would depend on kinetic parameters (e.g., Hill coefficients) and circuit topologies (e.g. I1-FFLs).

Hence, retroactivity should be considered in connection with circuit parts to optimize the behavior of IFFL

circuits. Our observations of IFFLs led us to examine a few other motifs capable of sign-sensitive response

acceleration. Comparing the behavior of IFFLs to that of negative autoregulation, we found that increasing

retroactivity in a negative autoregulated circuit can only decelerate the response. Interestingly, we

observed that IFFLs are conserved in bacteria, mouse, and human networks, whereas negative autoregu-

latory loops are only present in significant numbers in bacteria. The functional versatility of IFFLs at

increasing levels of retroactivity, thus, may have provided IFFLs a selective advantage over negative autor-

egulation in cases where decreasing or keeping the response time constant was beneficial.

RESULTS

Modeling Transcriptional Regulatory Networks

In this section, we describe our approach to modeling the effect of retroactivity on TRNs. A TRN can be

mapped to a graph, where each node represents a gene/protein, each edge transcriptional regulation,

and the direction of an edge the direction of the regulation, activation or inhibition. The time evolution

of each node can be described by an ODE, where the time derivative represents the rate of change of

the protein concentration contributed by protein production and first-order decay. Mathematically, the

rates of changes of proteins in the network can be expressed as:

d x!
dt

= hð x!Þ; (Equation 1)

where
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hð x!Þ =

0
BB@

b1,
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+g2
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.
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�
pn
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+gn

�� dnxn

1
CCA; (Equation 2)

where xi denotes the concentration of the i-th protein, and di, the decay rate. pi
!, the concentration of the

parent(s) of the i-th protein, is a subset of x!. bi represents the maximal production rate of the i-th protein,

and gi, the basal fraction of the promoter that is active. Hi is the Hill function describing the transcriptional

regulation of xi by its parent(s). If the i-th protein species xi has only one parent species pi, then Hill function

Hi(pi) can be expressed as:

Hi

�
pi

�
=

8>>>>>>>>><
>>>>>>>>>:

1

1+

�
pi

Ki

�hi
; if species pi is an inhibitor

�
pi

Ki

�hi

1+

�
pi

Ki

�hi
; if species pi is an activator;

(Equation 3)

where Hi(pi) accounts for the fraction of the promoter that is active, Ki is the dissociation constant, and hi is

the Hill coefficient. Co-regulation by multiple TFs can be modeled by simple logic models. Unless other-

wise specified, throughout this work we consider an AND logic, where the regulated gene is turned on

only when all activators are abundant and all inhibitors are scarce (see Transparent Methods Section 1

for Hill functions describing co-regulation).

To account for retroactivity, we adopt a previously developed framework (Gyorgy and Del Vecchio, 2014).

The major assumptions needed to apply this framework are that (1) there is a separation of time scales be-

tween protein production/degradation and reversible binding reactions between TFs and DNA and (2) the

corresponding quasi-steady state is locally exponentially stable (Gyorgy and Del Vecchio, 2014). The first

assumption is valid as protein turnover and binding reactions typically occur on different time scales

(Milo et al., 2002). The second assumption is implicit in our use of the Hill-function-based models, and

its validity is explained in a previous study (Gyorgy and Del Vecchio, 2014). Under these assumptions,

the rates of changes of protein concentrations with retroactivity considered can be described as:

d x!
dt

= ½I+Rð x!Þ��1hð x!Þ; (Equation 4)

where Rð x!Þ, known as the retroactivity matrix (Gyorgy and Del Vecchio, 2014), can be calculated as:

Rð x!Þ =
(
Sijxi˛FV

T
i Ri

�
pi
!�

Vi if Fs4;

0N3N if F=4:
(Equation 5)

Here Vi is a binary matrix, containing as many rows as the length of pi
! and as many columns as the

number of nodes in the network. The element in the j-th row and k-th column of Vi is 1 if the j-th

parent of node i is node k and 0 otherwise. AND logic is a special case of independent binding,

in which case Riðpi
!Þ is a diagonal matrix (see Transparent Methods Section 2 for calculation of

Riðpi
!Þ). This in turn implies that VT

i Riðpi
!ÞVi is also a diagonal matrix (Transparent Methods Section

3). Hence, Rð x!Þ is also diagonal. More details about retroactivity, including its derivation, can be

found in a previous study (Gyorgy and Del Vecchio, 2014). Models of IFFL networks with and without

retroactivity are given in Transparent Methods Section 4.

Simulation of IFFLs

In this section, we describe the specific IFFL models in which we study the effect of retroactivity and

outline our simulation protocol. IFFLs are known to be sign-sensitive response accelerators and pulse

generators: they accelerate or delay responses to stimulus steps only in one direction (Alon, 2007;

Mangan and Alon, 2003). Considering sign-sensitivity of IFFLs, we separated the four IFFL motifs

into two groups: one group (i.e., I1-FFL and I4-FFL) capable of response acceleration and pulse gen-

eration in response to an ON step (i.e., inducer level xI changes from 0 to N) and the other (i.e., I2-FFL

and I3-FFL) capable of response acceleration and pulse generation in response to an OFF step (i.e.,
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inducer level xI changes from N to 0). Here we focused on I1-FFLs and I4-FFLs, as similar analysis

could be performed for I2-FFLs and I3-FFLs. We constructed non-dimensionalized ODE models for

I1-FFLs and I4-FFLs (details of non-dimensionalization and non-dimensionalized models can be found

in Transparent Methods Sections 5 and 6) and simulated each model using the DifferentialEquations.jl

package version 5.3.1 in Julia version 1.1.0 (Rackauckas and Nie, 2017; Bezanson et al., 2017). We con-

nected genes A, B, and/or C of the IFFL to additional downstream binding sites denoted by DX (X = A,

B, or C). The degree of retroactivity arising from additional downstream binding sites was allowed to

vary, with the retroactivity coefficient ~hADA
(~hBDB

, ~hCDC
) set to 0, 1.0, 10.0, and 100.0 (see Transparent

Methods Section 5 for definition of ~hXDX
(X = A, B, or C)). By contrast, we assumed that genes A, B,

and C themselves are single-copy genes, and hence, retroactivity that arises from binding of A, B,

or C to the functional target site(s) (e.g., promoter that controls the expression of B and C) is negli-

gible. Note, a model without retroactivity is equivalent to a model where ~hXDX
equals zero.

As an example, the non-dimensionalized model of an I1-FFL (Figure 1A) without retroactivity is given here:

d~xA
dt

= f ~A
= ð1� gAÞ

�
xI
KIA

�hIA

1+

�
xI
KIA

�hIA
+gA � ~xA

d~xB
dt

= f ~B = ð1� gBÞ

�
~xA
~KAB

�hAB

1+

�
~xA
~KAB

�hAB
+gB � ~xB

d~xC
dt

= f ~C
= ð1� gCÞ

�
~xA
~KAC

�hAC

�
1+

�
~xA
~KAC

�hAC
��

1+

�
~xB
~KBC

�hBC
�+gC � ~xC :

(Equation 6)

With retroactivity applied on all three nodes, the non-dimensionalized model of an I1-FFL becomes:

2
66666664

d~xA
dt

d~xB
dt

d~xC
dt

3
77777775
=

2
66666664

1

a
0 0

0
1

b
0

0 0
1

c

3
77777775
2
4 f ~A
f ~B
f ~C

3
5=

2
666666664

1

rADA
+ 1

0 0

0
1

rBDB
+ 1

0

0 0
1

rCDC
+ 1

3
777777775

2
4 f ~A
f ~B
f ~C

3
5; (Equation 7)

where

rADA
= ~hADA

h2
ADA

�
~xA
~KADA

�hADA�1�
1+

�
~xA
~KADA

�hADA
��2

rBDB
= ~hBDB

h2
BDB

�
~xB
~KBDB

�hBDB�1�
1+

�
~xB
~KBDB

�hBDB
��2

rCDC
= ~hCDC

h2
CDC

�
~xC
~KCDC

�hCDC�1�
1+

�
~xC
~KCDC

�hCDC
��2

:

(Equation 8)

In Equations (6) and (7), ~xA, ~xB, and ~xC are the nondimensionalized concentrations of proteins A, B, and C,

whereas t is the nondimensionalized time. f ~A, f ~B, and f ~C
are the sums of regulated protein production and

protein decay (Transparent Methods Section 6). a, b, and c, defined as the reduction factors of
d~xA
dt

,
d~xB
dt

,

and
d~xC
dt

due to retroactivity, are equal to 1 if retroactivity is not considered. Note that for I4-FFLs, the

only changes in Equations (6) and (7) are in the definitions of f ~A, f ~B, and f ~C
due to the different regulatory

interactions, i.e., rADA
, rBDB

, and rCDC
are still given by the same Equation (8). Note also that retroactivity

does not affect steady-state values of ~xA, ~xB, and ~xC .
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In terms of model simulation, we selected parameters based on values chosen in an earlier study (Mangan

and Alon, 2003), exploring several orders of magnitude of parameter space. Specifically we considered Hill

coefficients hi less than, equal to, and larger than 1 (Equation 3). If hi is non-integer, then the underlying

reaction between the promoter and the TF is likely the resultant of several mechanisms, such as chain re-

actions (Boekel, 2009). In this scenario, hi, which is also the reaction order, can be considered an approx-

imation of the detailed mechanisms (Boekel, 2009). An hi larger than, equal to, and less than 1 stands for

positive, zero, and negative cooperativity, respectively. Details of the parameters can be found in Trans-

parent Methods Section 5.

In the absence of regulatory interactions, we assumed that only the expression of gene A is modulated by

an external inducer, whereas genes B and C are constitutively expressed. We initialize our models at a

steady state corresponding to a fixed inducer concentration, and subsequently induce changes in concen-

trations of proteins A, B, and C via a sudden increase in the inducer’s concentration. In the case of an ON

(OFF) step, the inducer level xI changes from 0 (N) toN (0). By integrating theODEs until solutions reached

a new steady state, we obtained one trajectory of proteins A, B, and C for each set of kinetic parameters we

sampled.

Retroactivity Changes Behaviors of IFFLs

We begin by studying how varying levels of retroactivity on just one gene of an IFFL can alter its behaviors.

That is, we allowed retroactivity on one and only one gene of the IFFL to vary, keeping retroactivity on the

rest of the genes equal to zero. The response time of gene C was then calculated for each parameter set at

each different level of retroactivity. Our results show that changing retroactivity on each node has different

effects on response times, as each node of the IFFL serves a different function (Tables S1–S8). Increasing

~hCDC
expectedly slows the response time of gene C (Table S1), whereas we observed that the response

time of gene C decreases as ~hBDB
increases, most notably for hBDB

%1 (Figure 2A; see Table S2 for data).

To generalize our observation, we proved that increasing ~hBDB
shortens the response time of gene C

regardless of the values of any other parameters for I1-FFLs (see Transparent Methods Section 7 for the

mathematical proof). Serving as the regulatory node in the network, gene B controls the time gap between

the opposing forces of regulation exerted on gene C. In response to an ON step, the expression level of

protein B monotonically increases. Increasing the level of retroactivity ~hBDB
in turn slows the approach of B

to steady state. Consequently, it takes protein B a longer time to effectively repress gene C, allowing pro-

tein C to reach the half point over a shorter period of time (Figure 2A). Thus, we find that increasing ~hBDB

shortens the response time of gene C. As Table S2 indicates, the magnitude by which the response time

shortens depends on hBDB
as well as the IFFL topology. A detailed discussion of the underlying association

will be provided later.

When the repressor (activator) B has a strong inhibitory (activating) effect on the production of the target

protein, the dynamics of C exhibit a pulse-like shape (Alon, 2007). In addition to response times, we exam-

ined how retroactivity affects pulse amplitude, when for a given set of parameters the IFFL generates a

pulse. Increasing ~hCDC
expectedly slows down the response of gene C, resulting in a lower pulse amplitude

for all parameters (Table S3). In contrast, we observed and subsequently proved that increasing ~hBDB
always

increases the pulse amplitude (Figure S1; see Table S4 for data and Transparent Methods Section 7 for the

proof). The underlyingmechanism can again be traced back to the delayed response of ~xB due to increased

~hBDB
. While a decreased initial rate of growth of B shortens the response time of gene C, it also causes pro-

tein B to take a longer time to effectively repress gene C, allowing protein C to develop a larger response

over time (Figure S1). In Transparent Methods Section 8, we extend our analysis by exploring the behavior

of an IFFL when it is embedded in a larger network and node B serves as an input to other circuits (Fig-

ure S2), investigating the effect of intermodular retroactivity on IFFL behaviors. Similar to before, we find

that increasing intermodular retroactivity on node B decreases the response time and increases the pulse

amplitude of node C.

As the input node of the IFFL, gene A regulates gene C in opposing directions. Our simulations show that

changing ~hADA
affects the response time and pulse amplitude of gene C in a more complicated manner

than changing ~hBDB
and ~hCDC

. While increasing ~hADA
slows down the direct activation of gene C, it counter-

acts this delay by decelerating the activation of gene B, thus attenuating the inhibition of C by B and allow-

ing C a longer time to develop a response. To demonstrate the counteracting effects, we compared the

response time of an IFFL with that of a two-input circuit under different levels of ~hADA
. In a two-input circuit,
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gene C is simultaneously activated by gene A, which is induced by inducer I, and inhibited by gene A2,

which is induced by a separate inducer I2 (Figure 2B). To facilitate a meaningful comparison between an

IFFL and a two-input circuit, we assumed that genes A and A2 have the same production rates upon induc-

tion, but only allowed retroactivity of gene A (not A2) to vary (see Transparent Methods Section 9 for the

model). We find that because of the counteracting effects, increasing ~hADA
leads to a smaller increase in

response time and a smaller decrease in pulse amplitude in an IFFL than in a two-input circuit where

gene A regulates C with no feedforward mechanism (see Tables S5–S8 for data).

Figure 2. ~hBDB
and ~hADA

Affect the Response Time of I1-FFLs

(A) Shortened response time due to increasing ~hBDB
in an I1-FFL. ~hBDB

increases in the order of top left, top right, bottom left, and bottom right. Values of the

other parameters are: ~KAB = ~KAC = ~KBC = ~KBDB
= 0.1, hAB = hAC = 1.0, hBC = hBDB

= 0.5. For comparison, the green dashed curve represents the trajectory of ~xC

when ~hBDB
equals 0. The bar plot shows the response time for different ~hBDB

compared with the response time without retroactivity.

(B) Shorter response time in an I1-FFL than in a type-1 two-input circuit at different levels of ~hADA
. Values of the parameters are: ~KAB = ~KA2B = ~KAC = ~KADA

=
~KBC = 0.1, hAB = hA2B = hAC = hADA

= hBC = 1.0. The bar plot shows the ratio of the response time in an I1-FFL to the response time in a type-1 two-input circuit.
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Joint Increases of Retroactivity Can Keep Response Time Constant

Next, we investigated how joint increases of retroactivity on multiple nodes affect response times by

letting ~hBDB
and ~hCDC

(~hADA
) vary simultaneously. The I1-FFL model was simulated for different values

of ~hBDB
and ~hCDC

(~hADA
) within the interval of 1.0 and 100.0. The ratio of the response time under each

combination of ~hBDB
and ~hCDC

(~hADA
) to the response time without retroactivity was then calculated

(Figures 3A and 3B). We find that in an I1-FFL, if ~hBDB
and ~hCDC

(~hADA
) increase simultaneously,

response time can be increased, decreased, or kept constant depending on the values of ~hBDB
and

~hCDC
(~hADA

). This is because increasing ~hBDB
and ~hCDC

(~hADA
) affects response time in opposing direc-

tions, and the resulting counteracting effects can be canceled when the values of ~hBDB
and ~hCDC

(~hADA
)

satisfy a certain relationship (the solid black curves in Figures 3A and 3B, which we call the ‘‘iso-

response-time’’ curves).

Moreover, we compared the behavior of an IFFL under increasing levels of retroactivity to that of negative

autoregulation (Figure 3C), another motif known for sign-sensitive response acceleration (Rosenfeld et al.,

2002). We found that in contrast to IFFLs, increasing ~hADA
and/or ~hCDC

in a negative autoregulatory circuit

can only slow down the response regardless of the values of any other parameters, as the response time of

the model with retroactivity is always larger than that of the model without retroactivity (Figure 3C; see

Transparent Methods Section 10 for the proof).

Besides IFFLs and negative autoregulation, our simulations suggest that two-node negative feedback

loops (NFBLs) can also act as sign-sensitive response accelerators (Figure S3; see Transparent Methods

Section 11 for the model). Moreover, we find that if ~hBDB
and ~hADA

increase simultaneously, then response

times of gene A can be increased, decreased, or kept constant depending on the values of ~hBDB
and ~hADA

(Figure S3).

Figure 3. Joint Changes of ~hADA
, ~hBDB

, and/or ~hCDC
in I1-FFLs and Negative Autoregulated Circuits

(A) Response times of the I1-FFL model at different levels of ~hBDB
and ~hCDC

compared with that of the model with no retroactivity.

(B) Response times of the I1-FFL model at different levels of ~hADA
and ~hBDB

compared with that of the model with no retroactivity.

(C) Response times of the negative autoregulated circuit model at different levels of ~hADA
and ~hCDC

compared with that of the model with no

retroactivity. Values of parameters used for making the plots are: in (A), ~KAB = ~KAC = ~KCDC
= 0.01, ~KBC = ~KBDB

= 0.1, hAB = hAC = hBC = hBDB
=

hCDC
= 0.5; in (B), ~KAB = ~KAC = ~KADA

= 0.01, ~KBC = ~KBDB
= 0.1, hAB = hAC = hADA

= hBC = hBDB
= 0.5; in (C), ~KADA

= ~KAC = ~KCC = ~KCDC
= 0.01, hADA

=

hAC = hCC = hCDC
= 0.5. We chose ~hXDX

(X = A,B,C) to be the midpoints of the 50 subintervals that we split the interval [log10(1.0),log10(100.0)] evenly

into. The magnitude of the ratio is shown by the color. For values of ~hXDX
(X = A,B,C) that were not chosen for simulation, the ratio was interpolated.

The black curve, which we refer to as the ‘‘iso-response-time’’ curve, represents values of ~hXDX
(X = A,B,C) at which the response time is the same as

the response time of the model with no retroactivity. Note that in (C) there is no ‘‘iso-response-time’’ curve because log10(RT~hADA
,~hCDC

=RT~h0;0) is

always larger than 1.
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Effects of Retroactivity Depend on the Motif

We now examine how varying regulatory logic, e.g., I1- versus I4-FFLs and ‘‘OR’’ logic, can lead to different

responses in the presence of retroactivity. As is demonstrated earlier, increasing retroactivity ~hBDB
acceler-

ates the response and increases the pulse amplitude of gene C. Our simulations also suggest that how

much retroactivity affects response time and pulse amplitude depends on the actual type of the IFFL. In

response to an ON step, increasing ~hBDB
accelerates the response times in an I1-FFL but not in an I4-FFL

for hBDB
%1, and increases the pulse amplitude more strongly in an I1-FFL than in an I4-FFL (Figures 4A

and 4B; see Tables S2 and S4).

The different effects of retroactivity on response time and pulse amplitude in different IFFLs is likely an

outcome of how much d~xB/dt decreases in different phases of the response. To explain this argument,

we take the derivative of the reduction factor b (Equation 7) with respect to ~xB:

dbð~xBÞ
d~xB

=
~hBDB

h2
BDB

~K
hBDB�1

BDB

, ~x
hBDB�2

B

�
1+

�
~xB
~KBDB

�hBDB
��2

,

2
4�hBDB

� 1
�� 2hBDB

,
~x
hBDB
B

~K
hBDB
BDB

+ ~x
hBDB
B

3
5: (Equation 9)

If hBDB
is a value between 0 and 1, then db(~xB)/d~xB is always negative, indicating that b(~xB) is monotonically

decreasing in the interval of (0,1]. In an I1-FFL, ~xB transitions from a low pre-stimulus steady state to a high

post-stimulus steady state in response to an ON step. Based on monotonicity of b(~xB), we know that the

reduction factor is the largest when ~xB is close to 0, which significantly lowers the initial value of |d~xB/dt|

relative to the no retroactivity case (Figure 4C). Consequently, ~xB increases more slowly, and hence

d~xC/dt is significantly increased during the initial response phase. This results in a shortened response

time and increased pulse amplitude. On the other hand, in an I4-FFL, ~xB transitions from a high pre-stimulus

steady state to a low post-stimulus steady state in response to an ON step (Figure 4C). Due tomonotonicity

of b(~xB), the reduction factor is smallest when ~xB is close to 1. This means that initially d~xC/dt is minimally

affected in an I4-FFL, so the effects of ~hBDB
on response time and pulse amplitude are not as strong in an I4-

FFL as in an I1-FFL.

If hBDB
is larger than 1, then b(~xB) reaches its maximum for some value of ~xB between 0 and 1. Moreover,

b(~xB) monotonically increases (decreases) to the left (right) of arg max~xb b(~xB). Setting db(~xB)/d~xB equal

to zero, we can obtain the following expression for arg max
~xb

b(~xB):

arg max b
�
~xB
�

~xB

=

�
hBDB

� 1

hBDB
+ 1

� 1
hBDB

, ~KBDB
: (Equation 10)

The qualitative behavior of the IFFL for hBDB
>1 is similar to the hBDB

= 2 case. When hBDB
equals 2, ~hBDB

mini-

mally affects response times in either I1-FFLs or I4-FFLs (Figure 4A). This is likely because for hBDB
equal to 2,

b(~xB) reaches its maximum when ~xB reaches approximately 50% of ~KBDB
, which happens much later than

when ~xC reaches its half response point even in I1-FFLs (Table S9). As a result, retroactivity ~hBDB
barely af-

fects the response time when hBDB
equals 2.

On the other hand, an I1-FFL generally experiences a more significant change in pulse amplitude than an

I4-FFL as ~hBDB
increases (Figure 4B). To generate a pulse, ~xB often needs to get larger (smaller) than ~KBC so

that it can effectively inhibit C in an I1-FFL (I4-FFL) (Table S10), which happens after b(~xB) reaches its

maximum. In response to an ON step, ~xB transitions from a low state to a high state in an I1-FFL, so accord-

ing to Equation (9), the reduction factor is the largest in the initial response phase before ~xB becomes large

relative to ~KBC , greatly lowering the initial value of |d~xB/dt| (Figure S4). In contrast, in an I4-FFL, because ~xB
transitions from a high state to a low state, the reduction factor is the largest when ~xB becomes small rela-

tive to ~KBC somewhere in the return phase (Equation 9) (Figure S4). As a result, ~hBDB
affects pulse amplitude

more strongly in an I1-FFL than in an I4-FFL for hBDB
larger than 1, similar to the hBDB

%1 case.

Under the assumption of OR logic, I1-FFLs and I4-FFLs become sign-sensitive response accelerators in

response to an OFF step (inducer level xI changes from N to 0). OR logic is another special case of inde-

pendent binding, where either the presence of an activator or the absence of an inhibitor is sufficient to turn

on the expression of the regulated gene (see Transparent Methods Section 12 for model details). Although

response time is more sensitive to changes in ~hBDB
in an I1-FFL than in an I4-FFL under the assumption of

AND logic, the reverse becomes true under the assumption of OR logic: in response to an OFF step,
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Figure 4. Effects of ~hBDB
, ~KBDB

, and hBDB
on the Response Times of I1-FFLs and I4-FFLs

(A) Relative response time of I1-FFL and I4-FFL models with different values of ~KBDB
. Here, relative response time is defined as the ratio of the response time

of the model to the response time of the model without retroactivity. Values of the parameters are: ~KAB = ~KAC = 0.1, hAB = hAC = 1.0.

(B) Pulse amplitude of I1-FFL and I4-FFL models with different values of ~KBDB
. Values of the parameters are the same as in (A). Note that pulse amplitudes of

I1-FFLs and I4-FFLs should not be compared column-wise, as I1-FFLs generate larger pulses with larger ~KBDB
, whereas I4-FFLs generate larger pulses with

smaller ~KBDB
.

(C) The effect of retroactivity ~hBDB
on response times is more pronounced in an I1-FFL (top row) than in an I4-FFL (bottom row) for hBDB

%1. For comparison,

the green dashed curves represent the trajectories of ~xC when ~hBDB
equals 0. Values of the parameters are: ~KAB = ~KAC = ~KBC = ~KBDB

= 0.1, hAB = hAC = 1.0,

hBC = hBDB
= 0.5.
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increasing ~hBDB
decreases the response time more strongly in an I4-FFL than in an I1-FFL (Figure S5). This is

because in response to an OFF step, ~xB transitions from a high pre-stimulus steady state to a low post-stim-

ulus steady state in an I1-FFL whereas ~xB transitions from a low pre-stimulus steady state to a high post-

stimulus steady state in an I4-FFL (Figure S5; see Transparent Methods Section 12 for the model and Table

S11 for the data).

Effects of Retroactivity Are Independent of Parameter Isometry

To demonstrate the robustness of our findings, we performed extensive simulations on an I1-FFL model,

where Hill coefficients, binding affinity, and decay rates were all allowed to vary. Similar to our earlier

simulations, we set ~hBDB
equal to 0, 1.0, 10.0, and 100.0, and hBC equal to 0.5, 1.0, and 2.0, to represent

different levels of retroactivity and cooperativity. The rest of the parameters were sampled from their cor-

responding ranges via Latin Hypercube Sampling (details of parameter sampling can be found in Trans-

parent Methods Section 13). The assumption of isometry, where TFs bind to the functional target site

and non-functional decoy sites with equal affinity and cooperativity (i.e., hBC = hBDB
and ~KBC = ~KBDB

) was

also relaxed. Instead, we assume that hBC (hBDB
) and ~KBC ( ~KBDB

) may be unequal but correlated, as the target

sites and decoy sites we considered here have the same binding motifs. To preserve correlation,

we sampled hBDB
and ~KBDB

from the intervals (1�c)hBC % hBDB
%(1 + c)hBC and (1�c) ~KBC % ~KBDB

%(1 +

c) ~KBC , where flexibility coefficient c equals 0, 0.2, or 0.5. The process of ODE simulation was repeated

for 10,000 sets of parameters.

After the simulation was completed, we separated the trajectories by hAB and hAC evenly into 10 3 10 vox-

els. Within each voxel, we calculated the median relative response time (Figure 5) as well as the percent of

Figure 5. Response Acceleration Can Occur Over a Wide Set of Parameters When Node B Regulates Node C

through Negative or Neutral Cooperativity

Median relative response time of I1-FFLs as model parameters are systematically varied, with random sampling of hBDB

and ~KBDB
within the intervals 0.8hBC% hBDB

%1.2hBC and 0.8 ~KBC % ~KBDB
%1.2 ~KBC . The trajectories are separated evenly by

hAB and hAC into 100 voxels, the color of which represents the median relative response time of the 100 simulated

trajectories within that bin, where for each trajectory the remaining parameters were chosen via random Latin Hypercube

Sampling. Here, relative response time is defined as the ratio of the response time of the model to the response time of

the model without retroactivity.

See Transparent Methods Section 13 for details of parameter sampling.
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trajectories achieving relative response time less than 90% of the model in the absence of retroactivity (i.e.,

10% response acceleration) (Figure S6). The results suggest that parameter isometry, which we had

assumed earlier (e.g., hAB = hAC, ~KAB = ~KAC , hBC = hBDB
, ~KBC = ~KBDB

, dA = dB = dC), is not essential to our

conclusions. Moreover, the model exhibits significant response acceleration in a large region of parameter

space (Figure 5 and Figure S6), including regions where hAB > 1 and/or hAC > 1. Simulation results assuming

flexibility coefficient c equal to 0 and 0.5 exhibit similar patterns (Figures S7–S10) and further corroborate

the mathematical proof in Transparent Methods Section 7.

DISCUSSION

In this work, we studied how retroactivity affects the behavior of IFFLs via simulation andmathematical anal-

ysis. Our findings can be summarized as follows. First, in IFFLs, increasing retroactivity of the input node A,

~hADA
, induces counteracting effects on response time and pulse amplitude, slowing both the direct activa-

tion and the indirect inhibition of node C. Second, increasing retroactivity of the regulatory node B, ~hBDB
,

can shorten response times and increase pulse amplitudes, particularly in an I1-FFL with AND logic and an

I4-FFL with OR logic. As a result, compared with negative autoregulation, IFFLs exhibit a larger variety of

functional capabilities at high levels of retroactivity. While mathematical proofs in Transparent Methods

Sections 7 and 8 demonstrate that our second finding is parameter-independent, the simulations system-

atically exploring parameter space in the Results section show that the magnitude by which retroactivity

affects response times in IFFLs is significant in large regions of parameter space.

Tuning Retroactivity in Synthetic IFFLs

In synthetic biology, our work lends insights into designing gene circuits. Most prior studies have focused

on the disruptive effects of retroactivity on the intended behavior of circuits, e.g., shrinking the bistable re-

gion of a toggle switch (Gyorgy and Del Vecchio, 2014; Gardner et al., 2000). In contrast, here we showed

that increasing retroactivity may be used as a strategy to improve the behavior of IFFLs, i.e., creating syn-

thetic IFFLs with shorter response times and larger pulse amplitudes while maintaining the same steady-

state behaviors. One approach to changing retroactivity in synthetic systems is to mimic NDs by adding

synthetic decoy sites, i.e., recombined bacterial plasmids that contain high-affinity sequence-specific bind-

ing sites. Biologically, the number of synthetic decoys can be adjusted by changing the transformation/

transfection protocol, including the plasmid dose, the transformation/transfection reagent, and/or the

method of transformation/transfection. By a mechanism similar to NDs, synthetic decoys can affect the

behavior of synthetic circuits by sequestering TFs.

Our work also suggests that topology alone does not constitute the entire solution to circuit design. As

shown by Figures 4 and 5, retroactivity affects the behaviors of I1-FFLs much more strongly for hBDB
%1

(negative cooperativity) than for hBDB
>1 (positive cooperativity). Importantly, negative cooperativity and

non-cooperativity are typical of the synthetic transcriptional repressors/activators used in constructing

mammalian gene circuits. A synthetic biology group constructed four ABA/GA-inducible VPR-Sp/Sa

dCas9 gene activators (Gao et al., 2016), with Hill coefficients ranging from 0.70 to 0.97 (coefficients fit

from source data to Figure 2, Gao et al., 2016). Another group constructed and characterized a library of

26 transcription activator-like effector repressors (TALERs) that bind designed hybrid promoters (Li

et al., 2015). The Hill coefficients of the characterized TALER-binding promoters range from 0.67 to 1.15,

whereas the Hill coefficients of TALERs range from 0.51 to 1.56 (Li et al., 2015).

As a practical example, we consider a mammalian-cell-based IFFL circuit composed of biological parts

built and tested in a previous study (Davidsohn et al., 2015) (Figure 6). Induced by Dox, the pTRE promoter

turns on the expression of LmrA, which inhibits EYFP directly and activates EYFP indirectly through TAL21.

As an I2-FFL, this construct mediates response acceleration in response to an OFF step. Using parameter

estimates from the literature (Wang et al., 2018, 2019), we simulate its behaviors in the absence and pres-

ence of retroactivity (see Transparent Methods Section 14 for details). As Figure 6 suggests, the response

time of EYFP decreases by more than 18% from 2.2 to 1.8 h when the concentration of the decoy sites in-

creases from 0 to 8.7 3 106 MEFL (30 times the binding affinity of TAL21 to pUAS-Rep2). Compared with

manipulation of kinetic parameters, the strategy we propose may allow more precise control of the circuit

as introduction of plasmids containing TAL21-binding sites does not interfere with the circuit’s steady

state.
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A Potential Role of Retroactivity in Motif Evolution

From an evolutionary perspective, we hypothesize that the behaviors of IFFLs and negative autoregulated

circuits under increasing levels of retroactivity may have shaped the relative abundance of sign-sensitive

response-accelerating motifs in different organisms. Using published databases of E. coli, mouse, and hu-

man TRNs (E. coli: RegulonDB v10, Santos-Zavaleta et al., 2018; mouse and human: TTRUST v2, Han et al.,

2018), we compared the number of times an IFFL is observed in the TRN of each organism to the number of

times an IFFL is expected in the corresponding randomized Erdos-Renyi (ER) networks. We observed a total

of 1,258, 470, and 1,171 IFFLs in E. coli, mouse, and human TRNs, whereas only 11, 5, and 7 would be ex-

pected, respectively, if TF-gene interactions were completely randomized (Table S12; see Transparent

Methods Section 15 for details). The number of times an IFFL is observed versus expected suggests that

IFFLs are conserved in both prokaryotic and eukaryotic organisms. In contrast, the occurrence of negative

autoregulation differs drastically between prokaryotes and higher eukaryotes. In agreement with a previ-

ous study (Stewart et al., 2013), we found that whereas almost half of all repressors in E. coli are negatively

self-regulated, approximately only 1% of repressors in the mouse and the human genomes are negatively

autoregulated (Table S13; see Transparent Methods Section 15 for details).

From a general standpoint, higher eukaryotes have much larger genomes and non-coding genomes than

prokaryotes. A direct consequence is that whereas an average E. coli TF has 3–25 binding sites in the

genome (Gao et al., 2018), an average human TF, as is mentioned in the Introduction section, has approx-

imately 104�105 accessible ND sites. The degree of retroactivity that arises from accessible ND sites is,

thus, expected to be substantially higher in higher eukaryotes such as mouse and human TRNs than in bac-

terial TRNs.

Due to technical challenges, studies quantifying the cooperativity of TF-DNA binding are much less com-

mon in natural systems than in synthetic systems. Nevertheless, a previous ChIP-seq-based study (Ghosh

et al., 2019) examining the DNA binding of eight common TFs (i.e., OCT4, NANOG, CTCF, IRF2,

FOXA1, NFAT, IRF1, and RELA) suggested that negative cooperativity and non-cooperativity may be a

prevalent phenomenon of TF-DNA binding in mammalian cells (Figure S5B, Ghosh et al., 2019). It was

observed that the ChIP-seq signal strength of most of these TFs stays relatively constant or decreases as

the number of binding sites increases (Ghosh et al., 2019), which indicates non- and negative cooperativity.

Querying these TFs against the TTRUST v2 database (Han et al., 2018), we found that three TFs, namely,

RELA, IRF1, and CTCF, act as intermediate regulators (node B) in 101 IFFLs in human TRNs. RELA and

IRF1, of which the latter exhibits clear negative cooperativity (Figure S5B, Ghosh et al., 2019), serve as

the input node (node A) and regulatory node (node B) of IFFLs regulating BCL2, CCNB1, CDK4, CDKN1A,

and FOXP3, as a part of the interferon pathway (Han et al., 2018; Kochupurakkal et al., 2015). As such, they

are physical examples of IFFLs where protein B binds to DNA with negative cooperativity.

As is shown in the Results section and Transparent Methods Section 10, higher retroactivity in a negative

autoregulatory loop results in a longer response time. This indicates that a negative autoregulatory loop

achieves its minimum response time under the condition of zero retroactivity. In contrast, as is shown in

the Results section and Transparent Methods Section 7, an IFFL with retroactivity on the regulatory

node B can achieve response times shorter than that of an IFFL with zero retroactivity, especially if protein

Figure 6. Tuning Retroactivity in a Synthetic IFFL

Tuning retroactivity is predicted by models to increase the response time of a synthetic IFFL construct (Davidsohn et al.,

2015; Wang et al., 2018, 2019). The level of retroactivity may be adjusted via the delivery of plasmids containing synthetic

decoy binding sites.

See Transparent Methods Section 14 for details.
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B binds to DNA with negative cooperativity or non-cooperativity. One can speculate that network motifs

that exhibit a larger diversity of functional capabilities under a high level of retroactivity are more likely

to be conserved in higher eukaryotes. This is because the desired outcome of increasing retroactivity,

i.e., whether the response time should increase, decrease, or stay constant, depends on the actual biolog-

ical context, and a networkmotif that exhibits a larger diversity of functions is more likely tomeet the expec-

tation of the context. This suggests that IFFLs could enable organisms to better adapt to a large number of

accessible ND sites during evolution than negative autoregulation in cases where a response time shorter

than that of the circuit under zero retroactivity is desired. Therefore, IFFLs might confer upon the organism

a selective advantage compared with negative autoregulation at high levels of retroactivity.

It is interesting to note that, in contrast to the decreased abundance of autoregulatory loops, we have

observed an increased abundance of two-node NFBLs in higher eukaryotic TRNs compared with bacterial

TRNs (Table S14; see Transparent Methods Section 15 for details). This may be because, similar to IFFLs,

two-node NFBLs also exhibit a larger diversity of functional capabilities than negative autoregulatory loops

under high levels of retroactivity.

Future Directions

Our work can be generalized and extended in several directions. First, it would be interesting to explore

how the connection of IFFLs to additional network motifs, such as NFBLs, affects the ability of IFFLs to

accelerate responses. In a modeling study (Joanito et al., 2018), it was proposed that in Arabidopsis thali-

ana, the CCA1/LHY-PRR9/7(PRR5/TOC1)-CCA1/LHY IFFL circuit serves to break the bistability generated

by the double NBFLs between CCA1/LHY and PRR5/TOC1. Compared with a plain NFBL, the IFFL-NFBL

combination allows cells to switch between the two states more rapidly (Joanito et al., 2018). In addition,

it was demonstrated that conjoining an NFBL to an IFFL can also increase the robustness of IFFL-mediated

adaptation (Reeves, 2019; Ma et al., 2009). That is, perfect or near-perfect adaptation can be achieved over

a wider region of parameter space in an IFFL-NFBL combination than in either motif alone. Studying the

effect of retroactivity that arises from the interconnection of an IFFL to an NFBL will serve to inform the

design of a robust IFFL-NFBL synthetic system.

More generally, the modeling framework we apply here is based on ODEs. Other approaches to studying

retroactivity include stochastic gene expression models, which take transcriptional bursting into consider-

ation. Via stochastic simulation, it was found that retroactivity can dampen fluctuations and lengthen cor-

relations in the output signal noise when the output of a network is connected to a downstream module

(Kim and Sauro, 2011). It will be interesting to study whether retroactivity can further enhance the ability

of IFFLs to attenuate the stochastic variation in gene expression.

Limitations of the Study

This study presents a minimal model of IFFL circuits with and without retroactivity. In cases where two tran-

scription factors bind to the same promoter, the model excludes binding types other than AND and OR

logics, such as the competitive logic.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Junmin Wang (dawang@bu.edu).

Materials Availability

This study did not generate any new unique reagent.

Data and Code Availability

A Julia script for implementing and solving the ODEs that model IFFLs, type-1 two-input circuits, and nega-

tive autoregulated circuits can be found online at https://github.com/wang-junmin/IFFL.
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H., Velázquez-Ramı́rez, D.A., Gama-Castro, S.,
Tierrafrı́a, V.H., Busby, S.J.W., Aquino, P., Fang,
X., Palsson, B.O., et al. (2018). A unified resource
for transcriptional regulation in escherichia coli k-
12 incorporating high-throughput-generated

binding data into regulondb version 10.0. BMC
Biol. 16, 91.

Sepulchre, J.-A., and Ventura, A.C. (2013).
Intrinsic feedbacks in MAPK signaling cascades
lead to bistability and oscillations. Acta Biotheor.
61, 59–78.

Shi,W.,Ma,W., Xiong, L., Zhang,M., and Tang, C.
(2017). Adaptation with transcriptional regulation.
Sci. Rep. 7, 42648.

Siciliano, V., Garzilli, I., Fracassi, C., Criscuolo, S.,
Ventre, S., and di Bernardo, D. (2013). Mirnas
confer phenotypic robustness to gene networks
by suppressing biological noise. Nat. Commun.
4, 2364.

Stewart, A.J., Seymour, R.M., Pomiankowski, A.,
and Reuter, M. (2013). Under-dominance
constrains the evolution of negative
autoregulation in diploids. PLoS Comput. Biol. 9,
e1002992.

Wang, J., and Belta, C. (2019). Retroactivity
affects the adaptive robustness of transcriptional
regulatory networks. In 2019 American Control
Conference (ACC)), pp. 5396–5401.

Wang, J., Isaacson, S.A., Belta, C., 2018.
Predictions of genetic circuit behaviors based on
modular composition in transiently transfected
mammalian cells. 2018 IEEE Life Sciences
Conference (LSC), 85–88.

Wang, J., Isaacson, S.A., and Belta, C. (2019).
Modeling genetic circuit behavior in transiently
transfected mammalian cells. ACS Synth. Biol. 8,
697–707.

Wang, Z., Potoyan, D.A., and Wolynes, P.G.
(2016). Molecular stripping, targets and decoys as
modulators of oscillations in the nf-Îob/iÎobÎG/
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Supplemental Figures

Figure S1: Increasing pulse amplitude due to increasing η̃BDB in an I1-FFL. Related to Figure 2A. η̃BDB increases
in the order of top left, top right, bottom left, and bottom right. Values of the other parameters are: K̃ AB = K̃ AC = K̃BC =
K̃BDB = 0.1, hAB = hAC = 1.0, hBC = hBDB = 2.0. For comparison, the green dashed curve represents the trajectory of x̃C
when η̃BDB equals 0.



Figure S2: An I1-FFL connected to n additional circuits, i.e., its context. Related to Figure 2A and Transparent
Methods Section 8.



Figure S3: Two-node negative feedback loops (NFBLs). Related to Figure 3. Left: diagram. Middle: sign-sensitive
response acceleration of a two-node NFBL in the absence of retroactivity, i.e., η̃AD A = η̃BDB = 0. The response of x̃A
is accelerated in response to an ON step, not in response to an OFF step. “Simple reg.” represents a simple circuit
where A is activated by an external inducer I without additional regulation. The “simple reg.” model achieves the same
steady state as the NFBL model. Right: response times of the two-node NFBL model at different levels of η̃AD A and
η̃BDB compared to that of the model with no retroactivity in response to an ON step. The black curve, which we refer to
as the “iso-response-time” curve, represents values of η̃X DX (X = A,B) at which the response time is the same as the
response time of the model with no retroactivity. Values of parameters used for making the middle and the right panels
are: K̃ AB = K̃ AD A = 0.001, K̃B A = K̃BDB = 1.0, hAB = hAD A = hB A = hBDB = 1.0.



Figure S4: The effect of retroactivity η̃BDB on pulse amplitude is more pronounced in an I1-FFL (top row) than
in an I4-FFL (bottom row). Related to Figure 4C. Values of the parameters are: K̃ AB = K̃ AC = K̃BC = K̃BDB = 0.1,
hAB = hAC = 1.0, hBC = hBDB = 2.0. For comparison, the green dashed curves represent the trajectories of x̃C when
η̃BDB equals 0.

Figure S5: In response to an OFF step, the effect of retroactivity η̃BDB on response times is more pronounced
in an I4-FFL (bottom row) than in an I1-FFL (top row) under the assumption of OR logic. Related to Figure 4C.
Values of the parameters are: K̃ AB = K̃ AC = 0.1, K̃BC = K̃BDB = 1.0, hAB = hAC = hBC = hBDB = 1.0. For comparison, the
green dashed curves represent the trajectories of x̃C when η̃BDB equals 0.
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Figure S6: Percent of I1-FFL trajectories whose relative response time is less than 90% of the model in the ab-
sence of retroactivity calculated based on systematically exploring parameter space described in Transparent
Methods Section 13. Related to Figure 5. The model assumes 0.8hBC ≤ hBDB ≤ 1.2hBC and 0.8K̃BC ≤ K̃BDB ≤ 1.2K̃BC .
The trajectories are separated evenly by hAB and hAC into 100 voxels, the color of which represents the percent of
trajectories whose relative response time is less than 90% of the model in the absence of retroactivity out of the 100
simulated trajectories falling into that bin. Here, relative response time is defined as the ratio of the response time of
the model to the response time of the model without retroactivity.
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Figure S7: Median relative response time of I1-FFL trajectories calculated based on systematically exploring
parameter space as described in Transparent Methods Section 13. Related to Figure 5. The model assumes
hBC = hBDB and K̃BC = K̃BDB . The trajectories are separated evenly by hAB and hAC into 100 voxels, the color of
which represents the median relative response time of the 100 simulated trajectories falling into that bin. Here, relative
response time is defined as the ratio of the response time of the model to the response time of the model without
retroactivity.
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Figure S8: Percent of I1-FFL trajectories whose relative response time is less than 90% of the model in the
absence of retroactivity calculated based on systematically exploring parameter space as described in Trans-
parent Methods Section 13. Related to Figure 5. The model assumes hBC = hBDB and K̃BC = K̃BDB . The trajectories
are separated evenly by hAB and hAC into 100 voxels, the color of which represents the percent of trajectories whose
relative response time is less than 90% of the model in the absence of retroactivity out of the 100 simulated trajectories
falling into that bin. Here, relative response time is defined as the ratio of the response time of the model to the response
time of the model without retroactivity.
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Figure S9: Median relative response time of I1-FFL trajectories calculated based on systematically exploring
parameter space as described in Transparent Methods Section 13. Related to Figure 5. The model assumes
0.5hBC ≤ hBDB ≤ 1.5hBC and 0.5K̃BC ≤ K̃BDB ≤ 1.5K̃BC . The trajectories are separated evenly by hAB and hAC into 100
voxels, the color of which represents the median relative response time of the 100 simulated trajectories falling into that
bin. Here, relative response time is defined as the ratio of the response time of the model to the response time of the
model without retroactivity.
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Figure S10: Percent of I1-FFL trajectories whose relative response time is less than 90% of the model in
the absence of retroactivity calculated based on systematically exploring parameter space as described
in Transparent Methods Section 13. Related to Figure 5. The model assumes 0.5hBC ≤ hBDB ≤ 1.5hBC and
0.5K̃BC ≤ K̃BDB ≤ 1.5K̃BC . The trajectories are separated evenly by hAB and hAC into 100 voxels, the color of which
represents the percent of trajectories whose relative response time is less than 90% of the model in the absence of
retroactivity out of the 100 simulated trajectories falling into that bin. Here, relative response time is defined as the ratio
of the response time of the model to the response time of the model without retroactivity.



Supplemental Tables

I1-FFL I4-FFL
hC DC

= 0.5

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.16 0.16 0.24 2.14 0.48 0.49 0.53 1.00
0.03 0.16 0.18 0.40 8.06 0.48 0.49 0.63 2.01
0.1 0.16 0.21 1.09 24.73 0.48 0.52 0.90 6.61
0.3 0.16 0.28 3.59 54.33 0.48 0.58 1.48 17.46
1.0 0.16 0.44 9.73 116.91 0.48 0.71 3.13 42.74

hC DC
= 1.0

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.16 0.18 0.43 8.90 0.48 0.49 0.61 1.87
0.03 0.16 0.21 1.07 23.40 0.48 0.52 0.86 5.62
0.1 0.16 0.25 2.67 44.21 0.48 0.59 1.54 18.14
0.3 0.16 0.28 3.98 57.73 0.48 0.68 2.66 36.69
1.0 0.16 0.29 4.66 64.44 0.48 0.77 4.04 54.55

hC DC
= 2.0

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.16 0.21 1.12 23.22 0.48 0.51 0.76 3.76
0.03 0.16 0.29 4.36 61.84 0.48 0.57 1.34 13.94
0.1 0.16 0.26 3.42 55.26 0.48 0.74 3.58 48.38
0.3 0.16 0.20 0.77 20.81 0.48 0.83 5.24 69.08
1.0 0.16 0.17 0.29 4.68 0.48 0.64 2.11 30.36

Table S1: Response time of gene C in IFFL models with different values of K̃C DC , hC DC , and η̃C DC (values
rounded to two decimal places). Related to Figure 2A. Values of the other parameters are: K̃ AB = K̃ AC = K̃BC = 0.1,
hAB = hAC = hBC = 1.0.

I1-FFL I4-FFL
hBDB

= 0.5

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.31 0.30 0.23 0.13 0.75 0.75 0.75 0.75
0.03 0.37 0.36 0.25 0.19 0.68 0.68 0.68 0.68
0.1 0.46 0.43 0.30 0.26 0.59 0.59 0.59 0.58
0.3 0.54 0.50 0.37 0.35 0.51 0.51 0.51 0.50
1.0 0.64 0.58 0.48 0.47 0.44 0.44 0.43 0.43

hBDB
= 1.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.04 0.04 0.04 0.04 0.83 0.83 0.83 0.83
0.03 0.08 0.07 0.07 0.07 0.70 0.70 0.70 0.70
0.1 0.16 0.15 0.13 0.13 0.48 0.48 0.48 0.48
0.3 0.30 0.28 0.26 0.26 0.30 0.30 0.30 0.30
1.0 0.54 0.51 0.48 0.47 0.19 0.19 0.19 0.19

hBDB
= 2.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.001 0.001 0.001 0.001 0.91 0.91 0.91 0.91
0.03 0.01 0.01 0.01 0.01 0.82 0.82 0.82 0.82
0.1 0.04 0.04 0.04 0.04 0.42 0.42 0.42 0.42
0.3 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
1.0 0.50 0.50 0.50 0.49 0.04 0.04 0.04 0.04

Table S2: Response time of gene C in IFFL models with different values of K̃BDB , hBDB , and η̃BDB (values
rounded to two decimal places). Related to Figure 2A. Values of the other parameters are: K̃ AB = K̃ AC = 0.1,
hAB = hAC = 1.0.



I1-FFL I4-FFL
h = 0.5

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.14 0.14 0.13 0.09 0.60 0.60 0.59 0.55
0.03 0.14 0.14 0.11 0.09 0.60 0.60 0.58 0.47
0.1 0.14 0.13 0.09 NA 0.60 0.60 0.56 0.43
0.3 0.14 0.12 0.09 NA 0.60 0.59 0.49 0.43
1.0 0.14 0.10 0.09 NA 0.60 0.57 0.43 NA

h = 1.0

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.14 0.14 0.11 0.09 0.60 0.60 0.59 0.49
0.03 0.14 0.13 0.09 NA 0.60 0.60 0.57 0.43
0.1 0.14 0.12 0.09 NA 0.60 0.59 0.49 0.43
0.3 0.14 0.11 0.09 NA 0.60 0.57 0.43 NA
1.0 0.14 0.10 NA NA 0.60 0.54 0.43 NA

h = 2.0

K̃C DC

η̃C DC 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.14 0.13 0.09 0.09 0.60 0.60 0.58 0.44
0.03 0.14 0.12 0.09 NA 0.60 0.59 0.53 0.43
0.1 0.14 0.10 NA NA 0.60 0.58 0.43 NA
0.3 0.14 0.11 NA NA 0.60 0.52 NA NA
1.0 0.14 0.13 NA NA 0.60 0.51 NA NA

Table S3: Pulse amplitude of gene C in models with different values of K̃C DC , hC DC , and η̃C DC (values rounded
to two decimal places). Related to Figure 2A. Values of the other parameters are: K̃ AB = K̃ AC = K̃BC = 0.1, hAB =
hAC = hBC = 1.0. Here, a trajectory is considered to contain a pulse if the the trajectory maximum is larger than the
pre-induction and post-induction steady states. A trajectory not satisfying this criteria is labeled as "NA".

I1-FFL I4-FFL
h = 0.5

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.09 0.09 0.10 0.19 0.71 0.71 0.71 0.71
0.03 0.15 0.15 0.16 0.34 0.62 0.62 0.62 0.64
0.1 0.23 0.23 0.26 0.59 0.51 0.51 0.52 0.57
0.3 0.33 0.34 0.41 0.74 0.40 0.41 0.43 0.50
1.0 0.47 0.47 0.60 0.84 0.29 0.30 0.34 0.41

h = 1.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.03 0.03 0.06 0.28 0.83 0.83 0.83 9.84
0.03 0.06 0.07 0.15 0.49 0.75 0.75 0.75 0.78
0.1 0.14 0.16 0.32 0.70 0.60 0.60 0.63 0.72
0.3 0.27 0.31 0.53 0.81 0.42 0.44 0.51 0.62
1.0 0.49 0.53 0.72 0.87 0.22 0.25 0.33 0.42

h = 2.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.01 0.02 0.09 0.41 0.90 0.90 0.90 0.90
0.03 0.04 0.06 0.22 0.62 0.85 0.85 0.85 0.87
0.1 0.10 0.16 0.44 0.78 0.71 0.72 0.77 0.84
0.3 0.25 0.36 0.65 0.85 0.48 0.52 0.66 0.78
1.0 0.56 0.65 0.81 0.89 0.15 0.22 0.36 0.43

Table S4: Pulse amplitude of gene C in models with different values of K̃BDB , hBDB , and η̃BDB (values rounded
to two decimal places). Related to Figure 2A. Values of the other parameters are: K̃ AB = K̃ AC = 0.1, hAB = hAC = 1.0.



I1-FFL Type-1 Two-Input Circuit
hAD A

= 0.5

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.09 0.09 0.11 0.24 0.09 0.09 0.11 0.33
0.03 0.11 0.11 0.16 0.44 0.11 0.12 0.18 0.81
0.1 0.14 0.15 0.26 0.87 0.14 0.16 0.33 2.58
0.3 0.18 0.21 0.45 1.71 0.18 0.23 0.65 6.20
1.0 0.25 0.33 0.85 4.06 0.25 0.36 1.61 14.06

hAD A
= 1.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.08 0.09 0.13 0.37 0.08 0.09 0.15 0.69
0.03 0.11 0.12 0.21 0.67 0.11 0.12 0.27 1.92
0.1 0.16 0.19 0.39 1.37 0.16 0.20 0.60 5.72
0.3 0.24 0.31 0.70 2.92 0.24 0.33 1.43 13.79
1.0 0.41 0.55 1.40 7.86 0.41 0.61 3.86 31.25

hAD A
= 2.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.07 0.08 0.17 0.53 0.07 0.09 0.22 1.37
0.03 0.10 0.13 0.30 1.01 0.10 0.14 0.47 3.89
0.1 0.17 0.24 0.58 2.24 0.17 0.27 1.36 11.61
0.3 0.32 0.45 1.13 5.63 0.32 0.53 4.34 34.34
1.0 0.72 1.00 2.64 18.21 0.72 1.16 10.10 84.06

Table S5: Response time of gene C in I1-FFLs and type-1 two-input circuits with different values of K̃ AD A , hAD A ,
and η̃AD A (values rounded to two decimal places). Related to Figure 2B. K̃BC = 0.1, hBC = 1.0.

I4-FFL Type-4 Two-Input Circuit
hAD A

= 0.5

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.36 0.36 0.38 0.57 0.36 0.36 0.38 0.58
0.03 0.51 0.52 0.57 1.12 0.51 0.52 0.58 1.15
0.1 0.68 0.70 0.87 2.45 0.68 0.70 0.88 2.68
0.3 0.83 0.88 1.33 5.39 0.83 0.88 1.36 5.97
1.0 0.97 1.11 2.29 13.21 0.97 1.11 2.35 14.05

hAD A
= 1.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.07 0.08 0.11 0.33 0.07 0.08 0.11 0.33
0.03 0.19 0.21 0.32 1.00 0.19 0.21 0.32 1.05
0.1 0.48 0.52 0.90 3.48 0.48 0.53 0.92 5.34
0.3 0.87 1.00 2.04 10.9 0.87 1.00 2.15 13.79
1.0 1.27 1.60 4.17 29.04 1.27 1.61 4.39 31.25

hAD A
= 2.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.01 0.01 0.02 0.05 0.01 0.01 0.02 0.05
0.03 0.03 0.04 0.09 0.26 0.03 0.04 0.09 0.26
0.1 0.15 0.22 0.52 1.87 0.15 0.22 0.53 2.25
0.3 0.68 0.96 2.69 16.90 0.68 0.97 3.33 34.35
1.0 1.72 2.58 9.37 77.33 1.72 2.62 10.11 84.06

Table S6: Response time of gene C in I4-FFLs and type-4 two-input circuits with different values of K̃ AD A , hAD A ,
and η̃AD A (values rounded to two decimal places). Related to Figure 2B. K̃BC = 0.1, hBC = 1.0.



I1-FFL Type-1 Two-Input Circuit
hAD A

= 0.5

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.09
0.03 0.12 0.12 0.12 0.11 0.12 0.12 0.11 0.08
0.1 0.12 0.12 0.12 0.10 0.12 0.12 0.10 0.08
0.3 0.12 0.12 0.11 0.09 0.12 0.11 0.08 0.08
1.0 0.11 0.10 0.09 0.08 0.11 0.10 0.08 0.08

hAD A
= 1.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.15 0.15 0.15 0.14 0.15 0.15 0.13 0.10
0.03 0.15 0.15 0.14 0.12 0.15 0.14 0.12 0.09
0.1 0.14 0.14 0.13 0.10 0.14 0.13 0.10 0.09
0.3 0.13 0.13 0.11 0.09 0.13 0.11 0.09 0.09
1.0 0.11 0.10 0.09 NA 0.11 0.09 0.08 NA

hAD A
= 2.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.15 0.15 0.15 0.14 0.15 0.15 0.12 0.09
0.03 0.15 0.15 0.15 0.11 0.15 0.14 0.11 0.09
0.1 0.15 0.15 0.13 0.09 0.15 0.13 0.09 0.09
0.3 0.14 0.13 0.10 0.09 0.14 0.10 0.09 NA
1.0 0.10 0.10 0.08 NA 0.10 0.08 NA NA

Table S7: Pulse amplitude of gene C in I1-FFLs and type-1 two-input circuits with different values of K̃ AD A , hAD A ,
and η̃AD A (values rounded to two decimal places). Related to Figure 2B. K̃BC = 0.1, hBC = 1.0. Here, a trajectory is
considered to contain a pulse if the the trajectory maximum is larger than the pre-induction and post-induction steady
states. A trajectory not satisfying this criteria is labeled as "NA".

I4-FFL Type-4 Two-Input Circuit
hAD A

= 0.5

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.55
0.03 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.52
0.1 0.55 0.55 0.55 0.54 0.55 0.55 0.54 0.53
0.3 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1.0 0.41 0.41 0.41 0.42 0.41 0.41 0.41 0.42

hAD A
= 1.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.54
0.03 0.62 0.62 0.62 0.60 0.62 0.61 0.60 0.37
0.1 0.60 0.60 0.60 0.57 0.60 0.59 0.54 0.43
0.3 0.56 0.56 0.55 0.54 0.56 0.55 0.54 0.54
1.0 0.42 0.42 0.42 NA 0.42 0.42 0.42 NA

hAD A
= 2.0

K̃ AD A

η̃AD A 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.01 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.43
0.03 0.62 0.62 0.62 0.60 0.62 0.62 0.57 0.16
0.1 0.62 0.62 0.62 0.56 0.62 0.60 0.42 0.09
0.3 0.60 0.60 0.57 0.54 0.60 0.56 0.42 NA
1.0 0.42 0.42 NA NA 0.42 0.42 NA NA

Table S8: Pulse amplitude of gene C in I4-FFLs and type-4 two-input circuits with different values of K̃ AD A , hAD A ,
and η̃AD A (values rounded to two decimal places). Related to Figure 2B. K̃BC = 0.1, hBC = 1.0. Here, a trajectory is
considered to contain a pulse if the the trajectory maximum is larger than the pre-induction and post-induction steady
states. A trajectory not satisfying this criteria is labeled as "NA".



Response Time argmaxt b(x̃B )

K̃BDB

η̃BDB 1.0 10.0 100.0 1.0 10.0 100.0

0.01 0.001 0.001 0.001 0.0543 0.1483 0.7416
0.03 0.0098 0.0098 0.0098 0.1058 0.3187 1.9157
0.1 0.037 0.037 0.037 0.2394 0.8322 6.0376
0.3 0.1326 0.1322 0.1321 0.579 2.3339 19.2472
1.0 0.5004 0.4952 0.4934 2.2718 11.0335 98.8473

Table S9: Response time and time at which b(x̃B ) attains its maximum for the I1-FFL model with hBC = 2. Related
to Figure 4A.

I1-FFL I4-FFL

K̃BDB

η̃BDB 1.0 10.0 100.0 1.0 10.0 100.0

0.01 Y Y Y N N N
0.03 Y Y Y N N N
0.1 Y Y Y Y Y Y
0.3 Y Y Y Y Y Y
1.0 N N N N N N

Table S10: Whether x̃B transitions from a value lower (higher) than K̃BC to a value higher (lower) than K̃BC for
an I1-FFL (I4-FFL) model with hBC = 2. Related to Figure 4B. Y stands for yes; N stands for no.

I1-FFL I4-FFL
hBDB

= 0.5

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.03 1.22 1.22 1.22 1.23 3.56 3.56 3.55 3.45
0.1 1.55 1.55 1.55 1.54 3.56 3.55 3.5 3.07
0.3 1.93 1.93 1.93 1.9 3.51 3.49 3.3 2.84
1.0 2.37 2.36 2.34 2.29 3.44 3.38 3.05 2.83
3.0 2.71 2.7 2.65 2.61 3.4 3.3 3.02 2.93

hBDB
= 1.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.03 NA NA NA NA 3.71 3.7 3.68 3.43
0.1 0.34 0.34 0.34 0.34 3.96 3.93 3.51 2.5
0.3 1.44 1.44 1.42 1.39 3.7 3.45 2.37 2.14
1.0 2.48 2.44 2.34 2.29 3.16 2.91 2.53 2.45
3.0 3.1 3.04 2.93 2.89 3.23 3.12 2.96 2.92

hBDB
= 2.0

K̃BDB

η̃BDB 0.0 1.0 10.0 100.0 0.0 1.0 10.0 100.0

0.03 NA NA NA NA 3.61 3.6 3.6 3.5
0.1 NA NA NA NA 4.71 4.65 2.71 2.15
0.3 0.3 0.3 0.3 0.3 5.68 1.14 0.99 0.97
1.0 2.88 2.59 2.39 2.35 2.45 2.36 2.27 2.24
3.0 3.42 3.36 3.26 3.24 3.26 3.24 3.22 3.2

Table S11: Response time of gene C in IFFL models under the assumption of OR logic with different values
of K̃BDB , hBDB , and η̃BDB (values rounded to two decimal places). Related to Figure 4C. Values of the other
parameters are: K̃ AB = K̃ AC = 0.1, hAB = hAC = 1.0. In response to an OFF step, x̃C transitions from a high pre-stimulus
state to a low post-stimulus state in I1-FFLs, I4-FLLs, and their simple regulation counterparts. NA represents cases
where the post-induction steady state and the mid-point are larger than the pre-induction steady state.



E. coli mouse human
N 2870 1858 2072
E 8149 4197 5071

k+ 0.71 0.68 0.62
k− 0.29 0.32 0.38
N̂G 1258 470 1171

< NG > 10.60 5.49 7.23
N̂G

<NG> 118.68 85.61 161.96

Table S12: Number of IFFLs in real and randomized E. coli, mouse, and human TRNs. Related to Figure 3 and
Transparent Methods Section 15.

E. coli mouse human
N 2870 1858 2072
E 8149 4197 5071

k− 0.29 0.32 0.38
N̂G 86 5 4

< NG > 0.82 0.72 0.93
N̂G

<NG> 104.88 6.94 4.30

Table S13: Number of negative autoregulatory loops in real and randomized E. coli, mouse, and human TRNs.
Related to Figure 3 and Transparent Methods Section 15.

E. coli mouse human
N 2870 1858 2072
E 8149 4197 5071

k+ 0.71 0.68 0.62
k− 0.29 0.32 0.38
N̂G 8 20 26

< NG > 1.66 1.11 1.41
N̂G

<NG> 4.82 18.02 18.44

Table S14: Number of two-node NFBLs in real and randomized E. coli, mouse, and human TRNs. Related to
Figure 3 and Transparent Methods Section 15.



Transparent Methods

1 Hill Function

Hill functions are commonly used to model transcriptional regulation in ODE models. Here, we consider the
case where species xi is regulated by multiple TFs. Let mi be the number of parents of node i and Mi be
the collection of all nonempty subsets of ~pi , i.e., {1,2, ...,mi }. Then under the assumption of independent
binding, Hi (~pi ) can be expressed as:

Hi (~pi ) =
∑

X∈Mi
πi ,X

∏
j∈X

(
pi j

Ki j

)hi j

1+∑
X∈Mi

∏
j∈X

(
pi j

Ki j

)hi j
, (1)

where pi j , hi j , and Ki j are counterparts of pi , hi , Ki for the j -th parent of node i . Similar to a previous
study (Gyorgy and Del Vecchio, 2014), here we assume that no parents of the same node are identical. X
corresponds to each complex formed by a different combination of TFs, and πi ,X denotes the normalized
production rate of species xi due to the corresponding complex.

Under the assumption of AND logic, the regulated gene is turned on only when all the corresponding
activators aggregate and bind to the promoter. Let Mi ,A = { j | j ∈ {1,2, ...,mi } and pi j is an activator} denote
the complex formed by all the activators. Then

πi ,X =
{

1, if X=Mi ,A,
0, otherwise.

(2)

2 Retroactivity Matrix

Under the assumption of AND logic, Ri (~pi ) is a diagonal matrix, and the k-th entry on the diagonal ri k is
(Gyorgy and Del Vecchio, 2014):

ri k = ηi
h2

i k phi k−1
i k

K hi k
i k

(
1+

(
pi k

Ki k

)hi k
)−2

, (3)

where ηi stands for the number of downstream binding sites (DNA copy number) of node i . pi k , hi k , and
Ki k are the protein concentration, the Hill coefficient, and the dissociation coefficient of the k-th parent of
node i .

3 Proof of Diagonality

Here, we prove that V T
i Ri (~pi )Vi is a diagonal matrix. Let V T

i be an n ×m matrix and ak j denote the (k, j )-th
entry of V T

i . Recall that each row of Vi has only one non-zero entry by definition. Similarly, let Ri (~pi ) be an
m ×m diagonal matrix and xk ′ j ′ denote the (k ′, j ′)-th entry of Ri (~pi ). This implies that the product V T

i Ri (~pi )

is an n ×m matrix. The (k∗, j∗)-th entry of the product V T
i Ri (~pi ) can be expressed as:

m∑
u=1

ak∗u xu j∗ = ak∗ j∗x j∗ j∗ ,

as Ri (~pi ) is diagonal. The (k̂, ĵ )-th entry of the product V T
i Ri (~pi )Vi can be expressed as:

n∑
v=1

(
ak̂v xv v

)
a ĵ v =

n∑
v=1

(
ak̂v a ĵ v

)
xv v .

Here ak̂v a ĵ v = 0 for k̂ 6= ĵ as otherwise there would be two non-zero entries in the same row of Vi , which
contradicts the definition of Vi . Hence, the (k̂, ĵ )-th entry of the product V T

i Ri (~pi )Vi is always zero if k̂ 6= ĵ . In
other words, V T

i Ri (~pi )Vi is a diagonal matrix.



4 ODE Models for IFFL

Without retroactivity, the ODE model for the I1-FFL is given as:

d xA

d t
= f A =βA

(
1−γA

) (
xI

KI A

)hI A

1+
(

xI
KI A

)hI A
+γA

−δA xA

d xB

d t
= fB =βB

(
1−γB

) (
xA

K AB

)hAB

1+
(

xA
K AB

)hAB
+γB

−δB xB

d xC

d t
= fC =βC

(
1−γC

) (
xA

K AC

)hAC(
1+

(
xA

K AC

)hAC
)(

1+
(

xB
KBC

)hBC
) +γC

−δC xC .

I2-FFL:

d xA

d t
= f A =βA

(
1−γA

) (
xI

KI A

)hI A

1+
(

xI
KI A

)hI A
+γA

−δA xA

d xB

d t
= fB =βB

 1−γB

1+
(

xA
K AB

)hAB
+γB

−δB xB

d xC

d t
= fC =βC

 1−γC(
1+

(
xA

K AC

)hAC
)(

1+
(

xB
KBC

)hBC
) +γC

−δC xC .

I3-FFL:

d xA

d t
= f A =βA

(
1−γA

) (
xI

KI A

)hI A

1+
(

xI
KI A

)hI A
+γA

−δA xA

d xB

d t
= fB =βB

(
1−γB

) (
xA

K AB

)hAB

1+
(

xA
K AB

)hAB
+γB

−δB xB

d xC

d t
= fC =βC

(
1−γC

) (
xB

KBC

)hBC(
1+

(
xA

K AC

)hAC
)(

1+
(

xB
KBC

)hBC
) +γC

−δC xC .

I4-FFL:

d xA

d t
= f A =βA

(
1−γA

) (
xI

KI A

)hI A

1+
(

xI
KI A

)hI A
+γA

−δA xA

d xB

d t
= fB =βB

 1−γB

1+
(

xA
K AB

)hAB
+γB

−δB xB

d xC

d t
= fC =βC

(
1−γC

) (
xA

K AC

)hAC
(

xB
KBC

)hBC(
1+

(
xA

K AC

)hAC
)(

1+
(

xB
KBC

)hBC
) +γC

−δC xC .



When only retroactivity on A is considered, the retroactivity matrix R(~x), which is the same for all four
IFFLs, is calculated as (Gyorgy and Del Vecchio, 2014):

R(~x) =


ηD A

h2
AD A

xA
hAD A

−1

K
hAD A
AD A

(
1+

(
xA

K AD A

)hAD A

)−2

0 0

0 0 0

0 0 0

 .

When only retroactivity on B is considered, the retroactivity matrix R(~x), which is the same for all four
IFFLs, is calculated as (Gyorgy and Del Vecchio, 2014):

R(~x) =


0 0 0

0 ηDB

h2
BDB

xB
hBDB

−1

K
hBDB
BDB

(
1+

(
xB

KBDB

)hBDB

)−2

0

0 0 0

 .

When only retroactivity on C is considered, the retroactivity matrix R(~x), which is the same for all four
IFFLs, is calculated as (Gyorgy and Del Vecchio, 2014):

R(~x) =


0 0 0

0 0 0

0 0 ηDC

h2
C DC

xC
hC DC

−1

K
hC DC
C DC

(
1+

(
xC

KC DC

)hC DC

)−2

 .



5 Non-dimensionalization and Parameter Sampling

In order to reduce the dimensions of parameter space, we non-dimensionalized our models via methods
shown in a previous study (Cao et al., 2016). We rescaled the model parameters via the following equations:

x̃A = xAδA

βA
x̃B = xBδB

βB
x̃C = xCδC

βC

K̃ AB = K ABδA

βA
K̃ AC = K ACδA

βA
K̃BC = KBCδB

βB

K̃ AD A = K AD AδA

βA
K̃BDB = KBDBδB

βB
K̃C DC = KC DC δC

βC

η̃AD A = ηA

K AD A

η̃BDB = ηB

KBDB

η̃C DC = ηC

KC DC

(4)

For simplicity, we assumed proteins A, B, and C have equal decay rates, i.e., δA = δB = δC . To non-
dimensionalize time, we rescaled t against the mean lifetime (equal to the reciprocal of the decay rate):

τ= t
1
δ

= t ·δ. (5)

Non-dimensionlized models of IFFLs with and without retroactivity, are provided in Transparent Methods
Section 6. To simplify our analysis, we assume the following for all simulations carried out in this work
except for extensive simulations as described in Transparent Methods Section 13: each protein binds to
its downstream binding sites, including both the functional target site and accessible ND sites, with equal
affinity and equal cooperativity, i.e., K̃ AB = K̃ AC = K̃ AD A , K̃BC = K̃BDB , hAB = hAC = hAD A , and hBC = hBDB .
To ensure sufficient coverage of parameter space, we sampled the kinetic parameters K̃X DX (X = A,B ,C )
spanning two orders of magnitude: K̃X DX ∈ {0.01,0.03,0.1,0.3,1.0} and included both positive and negative
cooperative binding, sampling Hill coefficients hX DX (X = A,B ,C ) at 0.5, 1,0, and 2.0 (Mangan and Alon,
2003). The retroactivity coefficient η̃ is the total concentration of the accessible ND sites for a given TF
divided by the corresponding dissociation constant (Wang and Belta, 2019). Without loss of generality, the
basal fraction of the promoter that is active, γX (X = A,B ,C ) is assumed to be 10−5.



6 Non-Dimensionalized ODE Models for IFFL

Without retroactivity, the non-dimensionalized ODE model for the I1-FFL is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = (

1−γB
) (

x̃A
K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃A
K̃ AC

)hAC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .

I2-FFL:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = 1−γB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = 1−γC(

1+
(

x̃A
K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .

I3-FFL:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = (

1−γB
) (

x̃A
K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃B
K̃BC

)hBC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .

I4-FFL:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = 1−γB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃A
K̃ AC

)hAC
(

x̃B
K̃BC

)hBC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .



R(~̃x) with only retroactivity on A can be written as (Gyorgy and Del Vecchio, 2014):

R(~̃x) =


η̃AD A h2

AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A
K̃ AD A

)hAD A

)−2

0 0

0 0 0

0 0 0

 .

R(~̃x) with only retroactivity on B can be written as (Gyorgy and Del Vecchio, 2014):

R(~̃x) =


0 0 0

0 η̃BDB h2
BDB

(
x̃B

K̃BDB

)hBDB −1
(

1+
(

x̃B
K̃BDB

)hBDB

)−2

0

0 0 0

 .

R(~̃x) with only retroactivity on C can be written as (Gyorgy and Del Vecchio, 2014):

R(~̃x) =


0 0 0

0 0 0

0 0 η̃C DC h2
C DC

(
x̃C

K̃C DC

)hC DC −1
(

1+
(

x̃C

K̃C DC

)hC DC

)−2

 .



7 Proof of the Effects of η̃BDB on Response Time and Pulse Amplitude in IFFLs

Here we show that for any parameters, increases in retroactivity on node B, η̃BDB , in an I1-FFL lead to a
decrease in response time and an increase in pulse amplitude.

According to Transparent Methods Section 6, d x̃A
dτ , d x̃B

dτ , and d x̃C
dτ in an I1-FFL where only η̃BDB is allowed

to vary can be expressed as:
d x̃A
dτ

d x̃B
dτ

d x̃C
dτ

=


1

1+r AD A (x̃A ) 0 0

0 1
1+rBDB (x̃B ) 0

0 0 1
1+rC DC (x̃C )




f Ã

fB̃

fC̃

 , (6)

f Ã =
(

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
(1−γA)+γA − x̃A

fB̃ =
(

x̃A
K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
(1−γB )+γB − x̃B

fC̃ =
(

x̃A
K̃ AC

)hAC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) (1−γC )+γC − x̃C ,

(7)

r AD A (x̃A) = η̃AD A h2
AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A

K̃ AD A

)hAD A

)−2

rBDB (x̃B ) = η̃BDB h2
BDB

(
x̃B

K̃BDB

)hBDB −1
(

1+
(

x̃B

K̃BDB

)hBDB

)−2

rC DC (x̃C ) = η̃C DC h2
C DC

(
x̃C

K̃C DC

)hC DC −1
(

1+
(

x̃C

K̃C DC

)hC DC

)−2

,

(8)

where γA ,γB ,γC ∈ (0,1) such that x̃A , x̃B , x̃C ∈ (0,1).
Let ~̃x1 and ~̃x2 denote the concentrations of A, B , and C in two I1-FFL models (i.e., ~̃x1 = [x̃A1 , x̃B1 , x̃C1 ],

~̃x2 = [x̃A2 , x̃B2 , x̃C2 ]), in which all parameters are held identical except that node B is connected to different
numbers of downstream targets such that retroactivity coefficient η̃BDB equals η̃BDB1

and η̃BDB2
, respectively.

At τ = 0, xI undergoes a stepwise increase and is kept constant afterwards. The initial values of x̃A, x̃Bi

(i = 1,2), and x̃C are the corresponding steady values before the increase in xI . Without loss of generality,
we assume η̃BDB1

< η̃BDB2
. We now show that ∀τ > 0, x̃C1 (τ) < x̃C2 (τ), i.e., the concentration of C in I1-FFL

model #1 is less than the concentration of C in I1-FFL model #2 at all positive times.
First, we prove the following two lemmas:

Lemma 1. Let d x̃
dτ = g (x̃)(c − x̃). If 0 < x̃(0) < c, and g (x̃) is positive and smooth for all x̃ ∈ (0,∞), then d x̃

dτ > 0
for all τ≥ 0+.

Proof. It is clear that x̃ has a unique steady state equal to c for x̃ ∈ (0,∞). Because d x̃
dτ > 0 for x̃ < c and

0 < x̃(0) < c, we have d x̃
dτ > 0 for all τ≥ 0+.

Lemma 2. Suppose that a smooth function h(τ) defined on [0,∞) satisfies the following properties: (i) there
exists a positive integer k such that d k h

dτk (0+) > 0 and d i h
dτi (0+) = 0 for all i = 0,1,2, ...,k−1; (ii) for any τ∗ in (0,∞)

where h(τ∗) = 0 we always have dh
dτ (τ∗) > 0. Then h(τ) > 0 for all τ> 0.



Proof. Property (i) of h(τ) implies that h(τ) > 0 on some interval (0,δ). Let (0,T) be the largest interval where
h(τ) > 0. We claim that T =∞. If T <∞, then by continuity, h(T) = 0. We immediately arrive at a contradiction
as property (ii) implies that h(τ) for τ near but less than T cannot be decreasing.

Theorem 1. ∀τ> 0, x̃C1 (τ) < x̃C2 (τ).

Proof. We begin by showing that x̃A and x̃B are monotonically increasing in time. Based on (7), we know
0 < x̃A(0) < x̃Ass for nonzero xI . From Lemma 1 it follows that d x̃A

dτ > 0 for all τ≥ 0+.

Let H Ã(x̃A) =
(

x̃A
K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
. Assume that there exists τ∗ ≥ 0+ at which fB̃ (τ∗) = 0. Using that fB̃ (τ∗) = 0,

d HA (x̃A )
d x̃A

> 0 for x̃A > 0, and d x̃A
dτ > 0 for τ≥ 0+, we get

d 2x̃B

dτ2

∣∣∣∣
τ=τ∗

= d

dτ

[
1

1+ rBDB (x̃B )
fB̃

]∣∣∣∣
τ=τ∗

= d

dτ

[
1

1+ rBDB (x̃B )

]
· fB̃

∣∣∣∣
τ=τ∗

+ 1

1+ rBDB (x̃B )
· d fB̃

dτ

∣∣∣∣
τ=τ∗

= 1

1+ rBDB (x̃B )
· d fB̃

dτ

∣∣∣∣
τ=τ∗

= 1

1+ rBDB (x̃B )
·
[

d HA(x̃A)

dτ
(1−γB )− d x̃B

dτ

]∣∣∣∣
τ=τ∗

= 1

1+ rBDB (x̃B )

d HA(x̃A)

d x̃A

d x̃A

dτ
(1−γB )

∣∣∣∣
τ=τ∗

> 0.

Because (i) d x̃B
dτ

∣∣∣
τ=0+

= 0, d 2 x̃B
dτ2

∣∣∣
τ=0+

> 0 (ii) d 2 x̃B
dτ2

∣∣∣
τ=τ∗ > 0 wherever d x̃B

dτ

∣∣∣
τ=τ∗ = 0 and τ∗ > 0, based on

Lemma 2 we know that d x̃B
dτ > 0 for all τ> 0.

Next, we will show that ∀τ > 0, x̃B1 (τ) > x̃B2 (τ). Let wB (τ) = x̃B1 (τ)− x̃B2 (τ). Based on (7), we know that
x̃B1 (0+) = x̃B2 (0+), i.e., wB (0+) = 0. Consider any τ∗ ≥ 0+ at which wB (τ∗) = 0, i.e., x̃B1 (τ∗) = x̃B2 (τ∗). Because

η̃BDB1
< η̃BDB2

, based on (8) we know 1
1+rBDB1

(x̃B1 )

∣∣∣∣
τ=τ∗

> 1
1+rBDB2

(x̃B2 )

∣∣∣∣
τ=τ∗

. Hence,

d wB

dτ

∣∣∣∣
τ=τ∗

= d

dτ

[
x̃B1 − x̃B2

]∣∣∣∣
τ=τ∗

=
[

1

1+ rBDB1
(x̃B1 )

fB̃1
− 1

1+ rBDB2
(x̃B2 )

fB̃2

]∣∣∣∣∣
τ=τ∗

=
(

1

1+ rBDB1
(x̃B )

− 1

1+ rBDB2
(x̃B )

)
fB̃

∣∣∣∣∣
τ=τ∗

= 0, if τ∗ = 0+ as fB̃

∣∣
τ=0+ = 0

> 0, if τ∗ > 0 as
d x̃B

dτ
> 0 for τ> 0 =⇒ fB̃

∣∣
τ=τ∗ > 0.

If τ∗ = 0+, we can further show that

d 2wB

dτ2

∣∣∣∣
τ=0+

= d 2

dτ2

[
x̃B1 − x̃B2

]∣∣∣∣
τ=0+

=
(

1

1+ rBDB1
(x̃B )

− 1

1+ rBDB2
(x̃B )

)
d HA(x̃A)

d x̃A

d x̃A

dτ
(1−γB )

∣∣∣∣∣
τ=0+

> 0.

Now because (i) wB (0+) = 0, d wB
dτ

∣∣∣
τ=0+

= 0, d 2wB
dτ2

∣∣∣
τ=0+

> 0 (ii) d wB
dτ

∣∣∣
τ=τ∗ > 0 wherever wB (τ∗) = 0 and τ∗ > 0,

based on Lemma 2 we know that wB (τ) > 0, i.e., x̃B1 (τ) > x̃B2 (τ) for all τ> 0.



Finally, we will show that ∀τ > 0, x̃C1 (τ) < x̃C2 (τ). Let wC (τ) = x̃C2 (τ)− x̃C1 (τ). Based on (7), we know
x̃C1 (0+) = x̃C2 (0+), i.e., wC (0+) = 0. Consider any τ∗ ≥ 0+ at which wC (τ∗) = 0, i.e., x̃C1 (τ∗) = x̃C2 (τ∗). Let
x̃C = x̃C1 (τ∗) = x̃C2 (τ∗).

d wC

dτ

∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

(
fC̃2

− fC̃1

)∣∣∣∣
τ=τ∗

.

If τ∗ > 0+, then x̃B1 (τ∗) > x̃B2 (τ∗), which based on (7) indicates that fC̃2
(τ∗) > fC̃1

(τ∗). In this case,
d wC

dτ

∣∣∣
τ=τ∗ > 0.

Now consider the case where τ∗ = 0+. Because x̃B1 (0+) = x̃B2 (0+) and x̃C1 (0+) = x̃C2 (0+), we know that
∀n ∈N, ∂n

∂x̃n
i

(
d x̃C1

dτ

)∣∣∣
τ=0+

= ∂n

∂x̃n
i

(
d x̃C2

dτ

)∣∣∣
τ=0+

(i = A,B1,B2,C1,C2). Using the chain rule we can further show that

d 2wC

dτ2

∣∣∣∣
τ=0+

= d

dτ

(
d x̃C2

dτ

)
− d

dτ

(
d x̃C1

dτ

)∣∣∣∣
τ=0+

= ∂

∂x̃A

(
d x̃C2

dτ

)
d x̃A

dτ
+ ∂

∂x̃B2

(
d x̃C2

dτ

)
d x̃B2

dτ
+ ∂

∂x̃C2

(
d x̃C2

dτ

)
d x̃C2

dτ

− ∂

∂x̃A

(
d x̃C1

dτ

)
d x̃A

dτ
− ∂

∂x̃B1

(
d x̃C1

dτ

)
d x̃B1

dτ
− ∂

∂x̃C1

(
d x̃C1

dτ

)
d x̃C1

dτ

∣∣∣∣
τ=0+

= ∂

∂x̃A

(
d x̃C2

dτ

)
d x̃A

dτ
− ∂

∂x̃A

(
d x̃C1

dτ

)
d x̃A

dτ

∣∣∣∣
τ=0+

= 0,

d 3wC

dτ3

∣∣∣∣
τ=0+

= d 2

dτ2

(
d x̃C2

dτ

)
− d 2

dτ2

(
d x̃C1

dτ

)∣∣∣∣
τ=0+

= d

dτ

[
∂

∂x̃A

(
d x̃C2

dτ

)
d x̃A

dτ

]
+ d

dτ

[
∂

∂x̃B2

(
d x̃C2

dτ

)
d x̃B2

dτ

]
+ d

dτ

[
∂

∂x̃C2

(
d x̃C2

dτ

)
d x̃C2

dτ

]
− d

dτ

[
∂

∂x̃A

(
d x̃C1

dτ

)
d x̃A

dτ

]
− d

dτ

[
∂

∂x̃B1

(
d x̃C1

dτ

)
d x̃B1

dτ

]
− d

dτ

[
∂

∂x̃C1

(
d x̃C1

dτ

)
d x̃C1

dτ

]∣∣∣∣
τ=0+

= ∂

∂x̃A

(
d x̃C2

dτ

)
d

dτ

(
d x̃A

dτ

)
+ d

dτ

[
∂

∂x̃A

(
d x̃C2

dτ

)]
d x̃A

dτ
+ ∂

∂x̃B2

(
d x̃C2

dτ

)
d

dτ

(
d x̃B2

dτ

)
+ d

dτ

[
∂

∂x̃B2

(
d x̃C2

dτ

)]
d x̃B2

dτ
+ ∂

∂x̃C2

(
d x̃C2

dτ

)
d

dτ

(
d x̃C2

dτ

)
+ d

dτ

[
∂

∂x̃C2

(
d x̃C2

dτ

)]
d x̃C2

dτ

− ∂

∂x̃A

(
d x̃C1

dτ

)
d

dτ

(
d x̃A

dτ

)
− d

dτ

[
∂

∂x̃A

(
d x̃C1

dτ

)]
d x̃A

dτ
− ∂

∂x̃B1

(
d x̃C1

dτ

)
d

dτ

(
d x̃B1

dτ

)
− d

dτ

[
∂

∂x̃B1

(
d x̃C1

dτ

)]
d x̃B1

dτ
− ∂

∂x̃C1

(
d x̃C1

dτ

)
d

dτ

(
d x̃C1

dτ

)
− d

dτ

[
∂

∂x̃C1

(
d x̃C1

dτ

)]
d x̃C1

dτ

∣∣∣∣
τ=0+

= ∂

∂x̃A

(
d x̃C2

dτ

)
d 2x̃A

dτ2 + ∂2

∂x̃A
2

(
d x̃C2

dτ

)(
d x̃A

dτ

)2

+ ∂

∂x̃B2

(
d x̃C2

dτ

)
d 2x̃B2

dτ2 + ∂

∂x̃C2

(
d x̃C2

dτ

)
d 2x̃C2

dτ2

− ∂

∂x̃A

(
d x̃C1

dτ

)
d 2x̃A

dτ2 − ∂2

∂x̃A
2

(
d x̃C1

dτ

)(
d x̃A

dτ

)2

− ∂

∂x̃B1

(
d x̃C1

dτ

)
d 2x̃B1

dτ2 − ∂

∂x̃C1

(
d x̃C1

dτ

)
d 2x̃C1

dτ2

∣∣∣∣
τ=0+

= ∂

∂x̃B2

(
d x̃C2

dτ

)
d 2x̃B2

dτ2 − ∂

∂x̃B1

(
d x̃C1

dτ

)
d 2x̃B1

dτ2

∣∣∣∣
τ=0+

.

Then because ∂
∂x̃B1

(
d x̃C1

dτ

)∣∣∣
τ=0+

= ∂
∂x̃B2

(
d x̃C2

dτ

)∣∣∣
τ=0+

< 0 and d 2wB
dτ2

∣∣∣
τ=0+

> 0, we know d 3wC
dτ3

∣∣∣
τ=0+

> 0.

Now as (i) wC (0+) = 0, d wC
dτ

∣∣∣
τ=0+

= 0, d 2wC
dτ2

∣∣∣
τ=0+

= 0, d 3wC
dτ3

∣∣∣
τ=0+

> 0 (ii) d wC
dτ

∣∣∣
τ=τ∗ > 0 wherever wC (τ∗) = 0

and τ∗ > 0, based on Lemma 2 we know that wC (τ) > 0, i.e., x̃C1 (τ) < x̃C2 (τ) for all τ> 0.

Theorem 2. RTx̃C1
>RTx̃C2

(RT: response time).



Proof. Based on the previous lemmas and previous theorem, we know that x̃C has a unique steady state
x̃Css . Note also that neither x̃Css nor x̃C (0) depends on the choice of η̃X DX (X = A,B ,C ).

Based on Theorem 1, we know that x̃C2 is larger than x̃C1 . This means when x̃C1 reaches the midpoint
between x̃C (0) and x̃Css (for biological implications, we only consider x̃C (0) < x̃Css ), x̃C2 has reached a value
larger than the midpoint. By continuity of x̃C , we know that x̃C2 must have reached the midpoint earlier than
x̃C1 . This in turn implies that the response time of x̃C1 is larger than the response time of x̃C2 .



8 Proof of the Effects of Intermodular Retroactivity on Response Time and Pulse
Amplitude in IFFLs

We now consider the model of an IFFL where node B is connected to, and hence, serves as the input to
other circuits (Figure S2). Using the method shown in a previous study (Gyorgy and Del Vecchio, 2014), we
can derive a model for an IFFL in which intermodular retroactivity is accounted for. d x̃A

dτ , d x̃B
dτ , and d x̃C

dτ in an
I1-FFL where only node B is connected to n additional modules (nodes) can be expressed as:


d x̃A
dτ

d x̃B
dτ

d x̃C
dτ

=


1 0 0

0
1+rBDB (x̃B )

1+rBDB (x̃B )+Σn
i=1SBi (x̃B ) 0

0 0 1




g Ã

gB̃

gC̃

 (9)

where

SB i (x̃B ) = η̃B i h2
B i

(
x̃B

K̃B i

)hBi −1
(

1+
(

x̃B

K̃B i

)hBi
)−2

(10)

and

g Ã = 1

1+ r AD A (x̃A)
f Ã

gB̃ = 1

1+ rBDB (x̃B )
fB̃

gC̃ = 1

1+ rBDB (x̃B )
fC̃ ,

(11)

where r AD A , rBDB , rC DC , f Ã, fB̃ , and fC̃ are defined the same as in (6).
Let ~̃x1 and ~̃x2 denote the concentrations of A, B , and C in two I1-FFL models (i.e., ~̃x1 = [x̃A1 , x̃B1 , x̃C1 ],

~̃x2 = [x̃A2 , x̃B2 , x̃C2 ]), in which all parameters are held identical except that node B is connected to different
numbers of binding sites in the k-th module of its context (1 ≤ k ≤ n). η̃B k equals η̃B k

1
and η̃B k

2
, respectively.

At τ = 0, xI undergoes a stepwise increase and is kept constant afterwards. The initial values of x̃A, x̃Bi

(i = 1,2), and x̃C are the corresponding steady values before the increase in xI . Without loss of generality,
we assume that for one given k, η̃B k

1
< η̃B k

2
. We now show that ∀τ> 0, x̃C1 (τ) < x̃C2 (τ), i.e., the concentration

of C in I1-FFL model #1 is less than the concentration of C in I1-FFL model #2 at all positive times.
We begin by showing that x̃A and x̃B are monotonically increasing in time. From the proof of Theorem

1, we already know that d x̃A
dτ > 0 for all τ≥ 0+. Assume that there exists τ∗ ≥ 0+ at which d x̃B

dτ = 0, i.e., gB̃ = 0.
Using that d gB̃

dτ

∣∣∣
τ=τ∗ > 0 wherever gB̃

∣∣
τ=τ∗ = 0 and τ∗ ≥ 0+ from the proof of Theorem 1, we get

d 2x̃B

dτ2

∣∣∣∣
τ=τ∗

= 1+ rBDB (x̃B )

1+ rBDB (x̃B )+Σn
i=1SB i (x̃B )

d gB̃

dτ

∣∣∣∣∣
τ=τ∗

> 0.

Then because(i) d x̃B
dτ

∣∣∣
τ=0+

= 0, d 2 x̃B
dτ2

∣∣∣
τ=0+

> 0 (ii) d 2 x̃B
dτ2

∣∣∣
τ=τ∗ > 0 wherever d x̃B

dτ

∣∣∣
τ=τ∗ = 0 and τ∗ > 0, based on

Lemma 2 we know that d x̃B
dτ > 0 for all τ> 0.

Next, we will show that ∀τ> 0, x̃B1 (τ) > x̃B2 (τ). Let wB (τ) = x̃B1 (τ)− x̃B2 (τ). Based on (7) and (9), we know
that x̃B1 (0+) = x̃B2 (0+), i.e., wB (0+) = 0. Consider any τ∗ ≥ 0+ at which wB (τ∗) = 0, i.e., x̃B1 (τ∗) = x̃B2 (τ∗) =
x̃B (τ∗). Because η̃B k

1
< η̃B k

2
, based on (10) we know SB k

1
(x̃B )

∣∣∣
τ=τ∗

< SB k
2

(x̃B )
∣∣∣
τ=τ∗

. Hence,

d wB

dτ

∣∣∣∣
τ=τ∗

=
(

1+ rBDB (x̃B )

1+ rBDB (x̃B )+Σn
i=1,i 6=k SB i (x̃B )+SB k

1
(x̃B )

− 1+ rBDB (x̃B )

1+ rBDB (x̃B )+Σn
i=1,i 6=k SB i (x̃B )+SB k

2
(x̃B )

)
gB̃

∣∣∣∣∣
τ=τ∗

= 0, if τ∗ = 0+ as gB̃

∣∣
τ=0+ = 0

> 0, if τ∗ > 0 as
d x̃B

dτ
> 0 for τ> 0 =⇒ gB̃

∣∣
τ=τ∗ > 0.



If τ∗ = 0+, we can further show that

d 2wB

dτ2

∣∣∣∣
τ=0+

=
(

1+ rBDB (x̃B )

1+ rBDB (x̃B )+Σn
i=1,i 6=k SB i (x̃B )+SB k

1
(x̃B )

− 1+ rBDB (x̃B )

1+ rBDB (x̃B )+Σn
i=1,i 6=k SB i (x̃B )+SB k

2
(x̃B )

)

· d gB̃

dτ

∣∣∣∣
τ=0+

> 0.

Now because (i) wB (0+) = 0, d wB
dτ

∣∣∣
τ=0+

= 0, d 2wB
dτ2

∣∣∣
τ=0+

> 0 (ii) d wB
dτ

∣∣∣
τ=τ∗ > 0 wherever wB (τ∗) = 0 and τ∗ > 0,

based on Lemma 2 we know that wB (τ) > 0, i.e., x̃B1 (τ) > x̃B2 (τ) for all τ> 0.
Finally, following the rest of the proof for Theorem 1, we know that x̃C1 (τ) < x̃C2 (τ) for all τ > 0. Then,

similar to the proof of Theorem 2, we conclude that the response time of x̃C1 is larger than the response
time of x̃C2 .



9 Non-Dimensionalized ODE Models for Other Sign-Sensitive Response-Acceleration
Motifs

Without retroactivity, the non-dimensionalized ODE model for a type-1 two-input circuit is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃A2

dτ
= f Ã2

= (
1−γA2

) (
xI2

KI A2

)hI A2

1+
(

xI2
KI A2

)hI A2
+γA2 − x̃A2

d x̃B

dτ
= fB̃ = (

1−γB
)

(
x̃A2

K̃ A2B

)hA2B

1+
(

x̃A2
K̃ A2B

)hA2B
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃A
K̃ AC

)hAC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .

The non-dimensionalized ODE model for a type-4 two-input circuit is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃A2

dτ
= f Ã2

= (
1−γA2

) (
xI2

KI A2

)hI A2

1+
(

xI2
KI A2

)hI A2
+γA2 − x̃A2

d x̃B

dτ
= fB̃ = (

1−γB
) 1

1+
(

x̃A2
K̃ A2B

)hA2B
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃A
K̃ AC

)hAC
(

x̃B
K̃BC

)hBC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃B
K̃BC

)hBC
) +γC − x̃C .

The non-dimensionalized ODE model for a negative autoregulated circuit is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃C

dτ
= fC̃ = (

1−γC
) (

x̃A
K̃ AC

)hAC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃C

K̃CC

)hCC
) +γC − x̃C .

When only retroactivity on A is considered, the retroactivity matrix R(~̃x), which is the same for both type-1



and type-4 two-input circuits, is given as:

R(~̃x) =


η̃AD A h2

AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A
K̃ AD A

)hAD A

)−2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

When only retroactivity on A is considered, the retroactivity matrix R(~̃x) for a negative autoregulated
circuit is given as:

R(~̃x) =


η̃AD A h2

AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A
K̃ AD A

)hAD A

)−2

0 0

0 0 0

0 0 0

 .

When only retroactivity on C is considered, the retroactivity matrix R(~̃x) for a negative autoregulated
circuit is given as:

R(~̃x) =


0 0 0

0 0 0

0 0 η̃C DC h2
C DC

(
x̃C

K̃C DC

)hC DC −1
(

1+
(

x̃C

K̃C DC

)hC DC

)−2

 .



10 Proof of the Effects of η̃AD A and η̃C DC on Response Time in a Negative Autoreg-
ulated Circuit

In this section, we show that for any parameters, response time always increases in a negative autoregu-
lated circuit if retroactivity on node A or C, η̃AD A or η̃C DC , increases.

d x̃A
dτ and d x̃C

dτ in a negative autoregulated circuit where only η̃AD A may be allowed to vary can be ex-
pressed as: [ d x̃A

dτ

d x̃C
dτ

]
=

[ 1
1+r AD A (x̃A ) 0

0 1
1+rC DC (x̃C )

][
f Ã

fC̃

]
, (12)

f Ã =
(

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
(1−γA)+γA − x̃A

fC̃ =
(

x̃A
K̃ AC

)hAC(
1+

(
x̃A

K̃ AC

)hAC
)(

1+
(

x̃C

K̃CC

)hCC
) (1−γC )+γC − x̃C ,

(13)

r AD A (x̃A) = η̃AD A h2
AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A

K̃ AD A

)hAD A

)−2

rC DC (x̃C ) = η̃C DC h2
C DC

(
x̃C

K̃C DC

)hC DC −1
(

1+
(

x̃C

K̃C DC

)hC DC

)−2

,

(14)

where γA ,γC ∈ (0,1) such that x̃A , x̃C ∈ (0,1).
Let ~̃x1 and ~̃x2 denote the concentrations of A and C in two negative autoregulated circuit models (i.e.,

~̃x1 = [x̃A1 , x̃C1 ], ~̃x2 = [x̃A2 , x̃C2 ]) , in which all parameters are held identical except that node A is connected
to different numbers of downstream targets such that retroactivity coefficient η̃AD A equals η̃AD A1

and η̃AD A2
,

respectively. At τ= 0, xI undergoes a stepwise increase and is kept constant afterwards. The initial values
of x̃Ai and x̃Ci (i = 1,2) are the corresponding steady values before the increase in xI . Without loss of
generality, we assume η̃AD A1

< η̃AD A2
. Now we will show that ∀τ > 0, x̃C1 (τ) > x̃C2 (τ), i.e., the concentration

of C in I1-FFL model #1 is larger than the concentration of C in I1-FFL model #2 at all positive times.

Theorem 3. ∀τ> 0, x̃C1 > x̃C2 and RTx̃C1
< RTx̃C2

(RT: response time).

Proof. We begin by showing that x̃A and x̃C are monotonically increasing in time. Based on (12), we know
x̃A(0) < x̃Ass for nonzero xI . From Lemma 1 it follows that d x̃A

dτ > 0 for all τ≥ 0+.

Let H Ã(x̃A) =
(

x̃A
K̃ AC

)hAC

1+
(

x̃A
K̃ AC

)hAC
and HC̃ (x̃C ) = 1

1+
(

x̃C
K̃CC

)hCC
. Assume that there exists τ∗ ≥ 0+ at which fC̃ (τ∗) = 0.

Because fC̃ (τ∗) = 0, d HA (x̃A )
d x̃A

> 0 for x̃A > 0, and d x̃A
dτ > 0 for τ≥ 0+, we get

d 2x̃C

dτ2

∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

d fC̃

dτ

∣∣∣∣
τ=τ∗

+ d

dτ

[
1

1+ rC DC (x̃C )

]
fC̃

∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

[
d [HA(x̃A)HC (x̃C )]

dτ
(1−γC )− d x̃C

dτ

]∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

[
d HA(x̃A)

d x̃A

d x̃A

dτ
HC (x̃C )+ d HC (x̃C )

d x̃C

d x̃C

dτ
HA(x̃A)

]
(1−γC )

∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

d HA(x̃A)

d x̃A

d x̃A

dτ
HC (x̃C )(1−γC )

∣∣∣∣
τ=τ∗

> 0.



Because (i) d x̃C
dτ

∣∣∣
τ=0+

= 0, d 2 x̃C
dτ2

∣∣∣
τ=0+

> 0 (ii) d 2 x̃C
dτ2

∣∣∣
τ=τ∗ > 0 wherever d x̃C

dτ

∣∣∣
τ=τ∗ = 0 and τ∗ > 0, based on

Lemma 2 we know that d x̃C
dτ > 0 for all τ> 0.

Next, we will show that ∀τ> 0, x̃A1 > x̃A2 . Let w A(τ) = x̃A1 (τ)− x̃A2 (τ). Based on (13), we know x̃A1 (0+) =
x̃A2 (0+), i.e., w A(0+) = 0. Consider any τ∗ ≥ 0+ at which w A(τ∗) = 0, i.e., x̃A1 (τ∗) = x̃A2 (τ∗). Since η̃AD A1

<
η̃AD A2

, based on (14) we know 1
1+r AD A1

(x̃A1 )

∣∣∣∣
τ=τ∗

> 1
1+r AD A2

(x̃A2 )

∣∣∣∣
τ=τ∗

. Hence,

d w A

dτ

∣∣∣∣
τ=τ∗

= 1

1+ r AD A1
(x̃A1 )

f Ã1
− 1

1+ r AD A2
(x̃A2 )

f Ã2

∣∣∣∣∣
τ=τ∗

=
[

1

1+ r AD A1
(x̃A)

− 1

1+ r AD A2
(x̃A)

]
f Ã

∣∣∣∣∣
τ=τ∗

> 0.

Now because (i) w A(0+) = 0, d w A
dτ

∣∣∣
τ=0+

> 0 (ii) d w A
dτ

∣∣∣
τ=τ∗ > 0 wherever w A(τ∗) = 0 and τ∗ > 0, based on

Lemma 2 we know that w A(τ) > 0, i.e., x̃A1 (τ) > x̃A2 (τ) for all τ> 0.
Finally, we will show that ∀τ > 0, x̃C1 > x̃C2 . Let wC (τ) = x̃C1 (τ)− x̃C2 (τ). Based on (13), we know that

x̃C1 (0+) = x̃C2 (0+), i.e., wC (0+) = 0. Consider any τ∗ ≥ 0+ at which wC (τ∗) = 0, i.e., x̃C1 (τ∗) = x̃C2 (τ∗). Because
x̃A1 (τ) > x̃A2 (τ) for all τ> 0, we know HA(x̃A1 ) > HA(x̃A2 ) for all τ> 0. Thus,

d wC

dτ

∣∣∣∣
τ=τ∗

= d

dτ

[
x̃C1 − x̃C2

]∣∣∣∣
τ=τ∗

= 1

1+ rC DC1
(x̃C1 )

fC̃1
− 1

1+ rC DC2
(x̃C̃2

)
fC̃2

∣∣∣∣∣
τ=τ∗

= 1

1+ rC DC (x̃C )

(
fC̃1

− fC̃2

)∣∣∣∣
τ=τ∗{

= 0, if τ∗ = 0+

> 0, if τ∗ > 0.

If τ∗ = 0+, then using d HA (x̃A )
d x̃A

> 0 for x̃A > 0, d w A
dτ

∣∣∣
τ=0+

> 0, and d wC
dτ

∣∣∣
τ=0+

= 0, we can further show that

d 2wC

dτ2

∣∣∣∣
τ=0+

= d 2

dτ2

[
x̃C1 − x̃C2

]∣∣∣∣
τ=0+

= 1

1+ rC DC (x̃C1 )

d HA(x̃A1 )

d x̃A1

d x̃A1

dτ
HC (x̃C1 )(1−γC )

− 1

1+ rC DC (x̃C2 )

d HA(x̃A2 )

d x̃A2

d x̃A2

dτ
HC (x̃C2 )(1−γC )

∣∣∣∣
τ=0+

= 1

1+ rC DC (x̃C )

d HA(x̃A)

d x̃A

(
d x̃A1

dτ
− d x̃A2

dτ

)
HC (x̃C )(1−γC )

∣∣∣∣
τ=0+

> 0.

As (i) wC (0+) = 0, d wC
dτ

∣∣∣
τ=0+

= 0, d 2wC
dτ2

∣∣∣
τ=0+

> 0 (ii) d wC
dτ

∣∣∣
τ=τ∗ > 0 wherever wC (τ∗) = 0 and τ∗ > 0, based on

Lemma 2 we know that wC (τ) > 0, i.e., x̃C1 (τ) > x̃C2 (τ) for all τ> 0.
Then, similar to the proof of Theorem 2, we conclude that the response time of x̃C1 is shorter than the

response time of x̃C2 .



Now we consider d x̃A
dτ and d x̃C

dτ in a negative autoregulated circuit where only η̃C DC may be allowed to
vary. Let ~̃x1 and ~̃x2 denote the concentrations of A and C in two negative autoregulated circuit models (i.e.,
~̃x1 = [x̃A1 , x̃C1 ], ~̃x2 = [x̃A2 , x̃C2 ]), in which all parameters are held identical except that node C is connected
to different numbers of downstream targets such that retroactivity coefficient η̃C DC equals η̃C DC1

and η̃C DC2
,

respectively. At τ= 0, xI undergoes a stepwise increase and is kept constant afterwards. The initial values
of x̃Ai and x̃Ci (i = 1,2) are the corresponding steady values before the increase in xI . Without loss of
generality, we assume η̃C DC1

< η̃C DC2
. Now we will show that ∀τ> 0, x̃C1 (τ) > x̃C2 (τ), i.e., the concentration of

C in I1-FFL model #1 is larger than the concentration of C in I1-FFL model #2 at all positive times.

Theorem 4. ∀τ> 0, x̃C1 > x̃C2 and RTx̃C1
< RTx̃C2

(RT: response time).

Proof. Similar to before, we have that x̃A and x̃C are monotonically increasing in time, i.e., (i) ∀τ≥ 0+, d x̃A
dτ > 0

(ii) ∀τ> 0, d x̃C
dτ > 0 (see proof of Theorem 3).

Next, we will show that ∀τ > 0, x̃C1 (τ) > x̃C2 (τ). We define wC (τ) and τ∗ similarly as in the proof of

Theorem 3 such that wC (τ∗) = 0. Because η̃C DC1
< η̃C DC2

, we have 1
1+rC DC1

(x̃C1 )

∣∣∣∣
τ=τ∗

> 1
1+rC DC2

(x̃C2 )

∣∣∣∣
τ=τ∗

. Thus,

d wC

dτ

∣∣∣∣
τ=τ∗

=
(

1

1+ rC DC1
(x̃C )

− 1

1+ rC DC2
(x̃C )

)
fC

∣∣∣∣∣
τ=τ∗{

= 0, if τ∗ = 0+

> 0, if τ∗ > 0.

If τ∗ = 0+, then using d HA (x̃A )
d x̃A

> 0 for x̃A > 0 and d x̃A
dτ > 0 for τ≥ 0+, we can further show that

d 2wC

dτ2

∣∣∣∣
τ=0+

=
[

1

1+ rC DC1
(x̃C1 )

− 1

1+ rC DC2
(x̃C2 )

]
d HA(x̃A)

d x̃A

d x̃A

dτ
HC (x̃C )(1−γC )

∣∣∣∣∣
τ=0+

> 0.

Now because (i) wC (0+) = 0, d wC
dτ

∣∣∣
τ=0+

= 0, d 2wC
dτ2

∣∣∣
τ=0+

> 0 (ii) d wC
dτ

∣∣∣
τ=τ∗ > 0 wherever wC (τ∗) = 0 and τ∗ > 0,

based on Lemma 2 we know that wC (τ) > 0, i.e., x̃C1 (τ) > x̃C2 (τ) for all τ > 0. Then similar to the proof of
Theorem 2, we conclude that the response time of x̃C1 is shorter than the response time of x̃C2 .



11 Two-node Negative Feedback Loops

Model for the two-node NFBL is: [ d x̃A
dτ

d x̃B
dτ

]
=

[ 1
1+r AD A (x̃A ) 0

0 1
1+rBDB (x̃B )

][
f Ã

fB̃

]
,

f Ã = (
1−γA

) (
xI

KI A

)hI A

1+
(

xI
KI A

)hI A

1

1+
(

x̃B
K̃B A

)hB A
+γA − x̃A

fB̃ = (
1−γB

) (
x̃A

K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B ,

r AD A (x̃A) = η̃AD A h2
AD A

(
x̃A

K̃ AD A

)hAD A −1
(

1+
(

x̃A

K̃ AD A

)hAD A

)−2

rBDB (x̃B ) = η̃BDB h2
BDB

(
x̃B

K̃BDB

)hBDB −1
(

1+
(

x̃B

K̃BDB

)hBDB

)−2

.



12 Response Time of IFFLs with OR Logic at Different Levels of η̃BDB

Under the assumption of OR logic, the non-dimensionalized ODE model for an I1-FFL without retroactivity
is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = (

1−γB
) (

x̃A
K̃ AB

)hAB

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
)

(
x̃A

K̃ AC

)hAC

1+
(

x̃A
K̃ AC

)hAC
+ 1

1+
(

x̃B
K̃BC

)hBC

+γC − x̃C .

Under the assumption of OR logic, the non-dimensionalized ODE model for an I4-FFL without retroac-
tivity is given as:

d x̃A

dτ
= f Ã = (

1−γA
) (

xI
KI A

)hI A

1+
(

xI
KI A

)hI A
+γA − x̃A

d x̃B

dτ
= fB̃ = (

1−γB
) 1

1+
(

x̃A
K̃ AB

)hAB
+γB − x̃B

d x̃C

dτ
= fC̃ = (

1−γC
)

(
x̃A

K̃ AC

)hAC

1+
(

x̃A
K̃ AC

)hAC
+

(
x̃B

K̃BC

)hBC

1+
(

x̃B
K̃BC

)hBC

+γC − x̃C .



13 IFFL Acceleration Persists in the Absence of Parameter Isometry

We generated random kinetic parameters via Latin hypercube sampling. To ensure an even distribution
over the large space, K̃X (X = AB , AC ,BC ) and δX (X = A,B ,C ) were sampled uniformly on a log scale from
the same ranges of values used in the literature (Cao et al., 2016; Shi et al., 2017): K̃X ∼ 0.001− 1 and
δX ∼ 0.01−1. Hill coefficients hX (X = AB , AC ,BC ) were sampled uniformly from a linear interval starting at
0.5 and ending at 2, including both positive and negative cooperativity.



14 Simulated Synthetic IFFL

The I2-FFL model shown in Figure 6 is given as:

d xL

d t
= fL =βL

(
1−γL

) (
xI

KI L

)hI L

1+
(

xI
KI L

)hI L
+γL

−δL xL

d xT

d t
= fT = 1

1+ηDT

h2
T E x

hT E −1
T

K
hT E
T E

(
1+

(
xT

KT E

)hT E
)−2

βT

 1−γT

1+
(

xL
KLT

)hLT
+γT

−δT xT


d xE

d t
= fE =βE

 1−γE(
1+

(
xL

KLE

)hLE
)(

1+
(

xT
KT E

)hT E
) +γE

−δE xE ,

where L, T , and E represent LmrA, TAL21, and EYFP, respectively. TAL21 is assumed to bind to pUAS-Rep2
(promoter) and DT (decoy sites) with the same affinity and cooperativity, as they share the same operator
binding sites. ηDT is the concentration of the decoy sites of TAL21. The kinetic parameters used in the model
are taken from Supplementary Figure 3 (Wang et al., 2019): βL = 5×104 MEFL/hr, γL = 1×10−4, δL = 9.5/hr,
βT = 1.66×105MEFL/hr, γT = 2.36×10−5, KLT = 3.73×105MEFL, hLT = 0.59, δT = 1.5/hr, βE = 4.68×105MEFL/hr,
γE = 1.1×10−3, KLE = 3.73×105MEFL, hLE = 0.59, KT E = 2.9×105MEFL, hT E = 0.72, δE = 0.3/hr. Production
rates βX (X = L,T,E) are ten times the values given in the earlier study (Wang et al., 2019) as the rates
given in the earlier study (Wang et al., 2019) represent the cell subpopulation with the lowest production
rates. δX (X = L,T,E) are increased for the sake of a faster response time. Biologically, this can be achieved
by adding degradation tags to the proteins.



15 Significance of Motifs

Following the method outlined in a previous study (Alon, 2007), we compared the number of the times an
IFFL is observed in real networks to the number of times an IFFL is expected in a randomized network .
We began by computing the number of times an IFFL is expected to appear in a randomized ER network.
Let G denote a network (graph) consisting of E edges and N nodes. The probability of an edge in a given
direction with the correct interaction type between a pair of nodes is (Alon, 2007):

p = E/N 2 ∗k, (15)

where k is the probability that a given edge is positive (activation) or negative (inhibition).
According to the same study (Alon, 2007), the average number of occurrences of an IFFL in the ran-

domized ER network is approximately equal to the number of ways of choosing n nodes out of N times the
probability to get g edges with correct interaction types in the correct places:

< NG >= N n pg , (16)

where both n and g equal 3, since an IFFL contains three nodes and three edges. For convenience of
notations, we denote the number of occurrences of an IFFL in real networks by N̂G .

We searched the Regulon database v10.0 (Santos-Zavaleta et al., 2018) and the TRRUST database
v2 (Han et al., 2018) for TF-gene interactions in the E. coli (Regulon), mouse (TRRUST), and human
(TTRUST) TRNs. The number of genes (nodes), number of edges (interactions), percentage of activation,
percentage of inhibition, and the number of IFFLs are listed in Table S12. Plugging these values into (16),
we obtained < NG >.

The comparison between real and randomized networks is shown in Table S12. The number of occur-
rences of an IFFL in a real E. coli, mouse, and human TRN is approximately 118.68, 85.61, and 161.96
times the number of occurrences of an IFFL in a randomized E. coli, mouse, and human TRN.

In addition, we found 86 out of 154 inhibitors in E. coli (Regulon) are negatively auto-regulated, whereas
only 5 out of 448 inhibitors in mouse (TTRUST) and 4 out of 470 inhibitors in human (TTRUST) are auto-
repressors. The number of occurrences of a negative autoregulatory loop in a real E. coli, mouse, and
human TRN is approximately 104.88, 6.94, and 4.30 times the number of occurrences of a negative au-
toregulatory loop in a randomized E. coli, mouse, and human TRN (Table S13).

Following the same method as above, we compared the number of real and randomized two-node
negative feedback loops (NFBLs) in different organisms. The number of occurrences of a two-node NFBL
in a real E. coli, mouse, and human TRN is approximately 4.82, 18.02, and 18.44 times the number of
occurrences of a two-node NBFL in a randomized E. coli, mouse, and human TRN (Table S14).
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