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A significant amount of knowledge has been gained with the use of cell-based assays to

elucidate the mechanisms that mediate heart valve calcification. However, cells used in

these studies lack their association with the extra-cellular matrix or the influence of other

cellular components of valve leaflets. We have developed a model of calcification using

intact porcine valve leaflets, that relies upon a biological stimulus to drive the formation

of calcified nodules within the valve leaflets. Alizarin Red positive regions were formed

in response to lipopolysaccharide and inorganic phosphate, which could be quantified

when viewed under polarized light. Point analysis and elemental mapping analysis of

electron microscope images confirmed the presence of nodules containing calcium

and phosphorus. Immunohistochemical staining showed that the development of these

calcified regions corresponded with the expression of RUNX2, osteocalcin, NF-kB and

the apoptosis marker caspase 3. The formation of calcified nodules and the expression

of bone markers were both inhibited by adenosine in a concentration-dependent manner,

illustrating that the model is amenable to pharmacological manipulation. This organ

culture model offers an increased level of tissue complexity in which to study the

mechanisms that are involved in heart valve calcification.

Keywords: aortic valve, calcification, porcine, adenosine, lipopolysaccharide, osteoblasts, valve interstitial cells,

valve calcification model

INTRODUCTION

The development of a medical strategy to treat aortic stenosis is required to alleviate the burden
of the increasing numbers of patients who require aortic valve replacement, which is predicted
to increase with an aging population (1). The use of pharmacological agents to delay or even
remove the need for surgical replacement of diseased valves, or percutaneous implantation, would
represent a breakthrough in the treatment of patients with calcific aortic valve disease (2). The
translation of information gained from in vitro experiments using isolated cells into clinical studies
has been hampered by the limitations of available animal models of calcific valve disease (3). This
is illustrated by the disappointing results from clinical trials with statins (4, 5), despite data from in
vitro and in vivo studies that supported beneficial effects of statins against the development of valve
calcification (6–8).

The use of pathological specimens from humans and cultured cells from humans, sheep and pigs
has shed light on the biological mechanisms that mediate the differentiation of valve interstitial cells
(VIC) into an osteogenic cell phenotype, which is believed to be the responsible cell phenotype
in the development of calcified lesions in the fibrosa layer of the valve (9). Cell-based studies
have relied on a variety of endpoints to assess pro-calcifying stimuli, including the expression
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of osteogenic markers, evidence of osteogenic signaling and
the measurement of calcium using calcium specific dyes,
radiolabeled calcium or histochemical staining (Alizarin Red and
von Kossa) (10–12). With regards to mineralisation, previous
studies have questioned the “calcified nodule” model of valve
calcification using cultured porcine VIC, whereby analysis of
nodules formed in response to TGF-b1 and osteogenic media,
which stained positive for Alizarin Red, failed to show the
presence of mineralisation using live-cell imaging micro-Raman
spectroscopy (13). While the use of human cells is informative,
attempts to standardize conditions to induce calcification have
shown the dependence on passage number in the response of
osteogenic media containing organic phosphate (14). There is
also an influence of the compliance of the substrate on which cells
are grown with regards to calcification potential (15).

Based on the experience with vascular calcification (16, 17),
and knowledge gained with use of cultured cells to induce
calcification with respect to the use of lipopolysaccharide (LPS)
and inorganic phosphate (12, 18–20), we set out to establish an
organ culture model of valve calcification using intact porcine
aortic valve leaflets. Such a model would allow assessment of
the response of the VIC while they are in their physiological
environment with respect to the 3-D architecture of the
extracellular environment and the proximity of valve endothelial
cells (VEC).

METHODS

Stimulation of Leaflet Calcification
Porcine hearts were obtained from a local abattoir. Under sterile
conditions the aortic valve leaflets were removed from the aortic
root and placed immediately in DMEM. Each leaflet was pinned
to the base of a 6-well tissue culture plate coated with the silicone
elastomer, Sylgard (Sigma) and covered with 3mL of low glucose
DMEM with 0.4% FBS and antibiotics. To induce a calcification
response valve leaflets were incubated with LPS and inorganic
phosphate (sodium phosphate), with the media being changed
every 2–3 days. Experiments were conducted to determine the
optimal concentrations of LPS and phosphate, the duration of
incubation required, and the variability between different leaflets
and within different regions of each leaflet. The experiments
were performed in the presence of 0.4 unit/mL pyrophosphatase
(Sigma), which reduces levels of pyrophosphate, an endogenous
inhibitor of calcification and has been shown to increase the
calcifying effect of phosphate in porcine valve cusps (12). Once
the conditions for inducing and quantifying a calcification
response in the valve leaflets was achieved, the inhibitory effect
of increasing concentrations of adenosine was assessed.

Assessment of Leaflet Calcification
Quantification of Calcium Deposition
On completion of the experiment, valve leaflets were fixed in
10% formal saline. Valve leaflets were cut into 3 pieces radially
(left, center and right portions of the leaflet) and were processed,
mounted in wax blocks sectioned and stained with Alizarin Red.
Images were taken under polarized light and image analysis was
carried out using Image J (Figure 1).

Immunohistochemistry for Calcification Markers
Prior to immunoperoxidase staining, 5µm thick paraffin wax
sections of valve leaflets were dewaxed and rehydrated in water.
Antigen retrieval was carried out by immersing the slides in
0.1M citrate buffer (pH 6) and microwaving for 10min, the
slides were then left in the same buffer for a further 20min
followed by tap water wash. Endogenous peroxidases in the
tissue were blocked by incubating with 3% hydrogen peroxide for
5min. To reduce non-specific binding, the slides were incubated
with blocking buffer [3% Bovine serum albumin (BSA, Sigma)
+ 3% normal horse serum (Vector laboratories)], for 30min.
Slides were then incubated overnight in a moist chamber with
antibodies against rabbit polyclonal RUNX2 at 1:200 (Abcam),
mouse monoclonal Osteocalcin 1:600 (Abcam), rabbit polyclonal
Osteopontin 1:500 (Chemicon), mouse monoclonal NF-kB 1:800
(BD transduction), Rabbit monoclonal cleaved caspase 3 1:200
(R&D systems). Antibody dilutions were made in half-strength
blocking buffer. Negative controls consisted of blocking buffer.
After thorough washing, all the slides were incubated with
VECTASTAIN R© Elite R© ABC-Peroxidase Kit (R.T.U. Universal)
for 30min for each secondary and tertiary antibody (Vector
Laboratories). Specimens were then incubated with DAB (Sigma)
for 5min washed well in tap water, stained the nuclei with
Haematoxylin for 1min and mounted using Aquatex (VWR).
Stained slides were scanned using Hamamatsu Nanozoomer.

Elemental Analysis by Energy-Dispersive X-Ray

Spectroscopy
10µm thick paraffin wax sections were dewaxed and rehydrated
to water, air-dried, mounted on SEM stubs coated with
Gold/Palladium. Elemental analysis was performed by Energy-
dispersive X-ray spectroscopy (EDAX) on a JEOL 6,010 analytical
scanning electron microscope.

Data Analysis
Photomicrographs of the three sections (left, middle and right)
from each leaflet, stained with Alizarin Red and viewed under
polarized light, or antibody staining viewed under normal light,
were analyzed with Image J. Firstly the area of the leaflet was
calculated by tracing around the edge of the section (SArea).
The section was then viewed under the Red channel and the
threshold adjusted to highlight only areas of positive staining.
The area fraction (AF) for the whole field of view was then
calculated (FofVArea), which was subsequently used to calculate
the percentage area of positive staining of the section [(AF x
FofVArea/SArea) x100]. The mean of the values for three regions
of each leaflet was then calculated to give the result for each
leaflet. For quantification of antibody staining in Figure 8, Image
J software was used to calculate the percentage of area stained
of photomicrographs of identical size at x40 magnification from
regions of whole leaflet sections that were either Alizarin Red
positive or negative. Statistical analysis was performed using
ANOVA followed by the Dunnett’s post-hoc test or a T-test
where appropriate. Numerical data is expressed as the mean ±

standard error of the mean. Values for N referred to the number
of individual cusps that were studied.
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FIGURE 1 | Schematic diagram of the experimental protocol. Following incubation of the pinned-out valve leaflets, they are fixed while still in the wells with 10%

formal saline. Each leaflet is cut into 3 portions radially, processed and embedded in wax blocks and cut longitudinal sections cut on a microtome. Alizarin Red

staining of a slide from each of the three leaflet portions is viewed under polarized light and then quantified using Image J, to ultimately calculate the percentage of the

area of the leaflet that stains for Alizarin Red.
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FIGURE 2 | Optimisation of the response of valve leaflets to LPS and phosphate. (A) The effect of LPS concentration on calcium accumulation in porcine aortic valve

leaflets in culture for 14 days in the presence of 3mM phosphate (*p = 0.071, **p = 0.003, ANOVA; n = 3) and representative images of sections stained with Alizarin

(Continued)
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FIGURE 2 | Red, imaged under polarized light for each concentration of LPS. (B) The effect of phosphate concentration on calcium accumulation in porcine aortic

valve leaflets in culture for 14 days in the presence of 100 ng/mL LPS (*P = 0.015, **P = 0.001, ANOVA; n = 4) and representative images of sections stained with

Alizarin Red, imaged under polarized light for each concentration of phosphate. (C) Time course of the effect of culture media (black bars) and 100 ng/mL LPS and

3mM phosphate (cross-hatched bars) on calcium accumulation in porcine aortic valve leaflets in culture for 3 to 14 days (*P = 0.001, 2 way ANOVA, n = 2) and

representative images of sections stained with Alizarin Red, imaged under polarized light for each time point.

RESULTS

Stimulation of Leaflet Calcification
To identify a suitable concentration of LPS to use, the
effect of 10–200 ng/mL of LPS was assessed in the presence
of 3mM phosphate for 14 days. LPS was able to give a
concentration-dependent increase in Alizarin Red staining in
porcine valve leaflets, where the response of LPS at 10 ng/mL
was indistinguishable from the control group (no LPS), while
that of 100 & 200 ng/mL showed that 15–20% of the cross-
sectional area of the leaflet stained positive for Alizarin Red
(Figure 2A). In another series of experiments, to optimize the
concentration of inorganic phosphate, the concentration of
LPS was kept at 100 ng/mL and the concentration varied of
phosphate between 0.9mM and 5mM (DMEM contains 0.9mM
phosphate) for 14 days. Supplementation of DMEM with 3mM
and 5mM phosphate gave a progressive increase Alizarin Red
staining up to ∼20% of the valve area (Figure 2B). Based on the
findings of these initial experiments, all subsequent experiment
used 100 ng/mL of LPS and 3mM phosphate. To check if the
incubation time of LPS and phosphate was optimal, a time-course
experiment over the 14-day period was performed. After 3 and 7-
days incubation with 100 ng/mL LPS and 3mM phosphate, there
were no measurable increases in Alizarin Red staining. After
10 days there was marked, but variable increase in calcification,
which was further increased after 14-days (Figure 2C). These
results confirmed that the experiments required at least 14 days
of incubation with LPS and phosphate.

Leaflet Specific and Regional Effect of
Calcification Response
To check if there was any variation in the calcification response
of the left-coronary, right-coronary and non-coronary leaflets,
we analyzed the response of each individual leaflet to 100 ng/mL
LPS and 3mM phosphate. Results show that the calcification
response did not differ between the three different valve leaflets
(Figure 3A). To validate the measurement of calcification in the
three regions across each leaflet, the response in the left, middle
and right portion of each leaflet, in each of the three leaflets was
compared. No statistical difference in the response of each region,
in each cusp could be seen (Figure 3B). It was noteworthy that
the right portion of the non-coronary cusp was markedly more
variable than the other regions studied.

EDAX Elemental Analysis
Scanning electron microscope images of valve treated with
100 ng/mL LPS and 3mM phosphate showed electron dense
nodules in specific regions of the leaflet, which were not evident
in the media only treated tissue (Figures 4A,B). Point analysis
of LPS/phosphate stimulated valve leaflets by EDAX showed a

prominent peak in the spectra for calcium at 3.69 KeV and
for phosphorus at 2.01 KeV. In contrast, media treated valve
leaflets showed no peak corresponding to calcium or phosphorus.
The appearance of silicon in the spectra is due to inadvertent
detection of the glass slide (Figures 4C–F). In addition to the
spectral analysis, the chemical nature of the image seen on the
electron micrographs was confirmed with elemental mapping,
whereby the presence of calcium and phosphorus coincided with
the image of the nodule (Figure 5).

Expression of Inflammatory, Calcification
and Apoptotic Markers by
Immunohistochemistry
To assess if LPS was inducing an inflammatory response in
the valve leaflet, the expression of NF-kB was investigated.
In untreated leaflets no staining for NF-kB was evident
(Figures 6A,B). In contrast LPS and phosphate treated leaflets
show regional staining, some of which that associated
with the cell nuclei (Figures 6C,D). By examining the
staining in sequential sections of valve leaflets from media
treated (Figures 7A,C,E,G,I) and LPS and phosphate
(Figures 7B,D,F,H,J), it was possible to show that areas
that showed positive staining for Alizarin Red (Figure 7B)
were associated with areas of positive staining for osteocalcin,
RUNX2, NF-kB and caspase 3 (Figures 7D,F,H,J, respectively).
Quantification of the staining in Alizarin Red positive areas,
compared to areas that were negative for Alizarin Red, show
that there were significantly greater levels of staining for
osteocalcin, RUNX2, NF-kB and caspase 3 in the calcified areas
(Figures 8A–D, respectively). The lack of caspase 3 staining in
control valves indicated the absence of apoptosis after 14-days
incubation in media alone.

Pharmacological Modulation of Porcine
Leaflet Calcification
Based on our previous observations, where adenosine was
shown to inhibit the expression of osteoblast marker in cultured
human VIC (10), we assessed the ability of adenosine to
inhibit the calcification of intact porcine leaflets stimulated
with 100 ng/mL of LPS and 3mM phosphate for 14 days. In
these experiments, one leaflet from each valve was used as
a positive control, while the other two leaflets were treated
with adenosine. The effects observed in the adenosine treated
leaflets were expressed as a percentage of the positive control
for the corresponding valve. Immunohistochemical staining
for RUNX2 (Figures 9A–C), osteopontin (Figures 9D–F) and
osteocalcin (Figures 9G–I) showed stronger staining in the LPS
and phosphate treated leaflets, compared to control. Addition
of 10−5M adenosine to LPS and phosphate, resulted in a

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 October 2021 | Volume 8 | Article 734692

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chester et al. Valve Calcification Model

FIGURE 3 | Leaflet-specific and regional effects of LPS and phosphate. (A) Leaflet specific effects of 100 ng/mL LPS and 3mM phosphate on calcium accumulation

in the left-, right- and non-coronary leaflets of porcine aortic valves. Values are the mean of the measurement from the three regions of each leaflet (p > 0.05, ANOVA;

n = 6). (B) Comparison of the effect of 100 ng/mL LPS and 3mM in the 3 regions of the left- right- and non-coronary leaflet assessed for calcium accumulation

(p > 0.05, ANOVA; n = 6).
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FIGURE 4 | Electron microscopy and EDAX analysis of calcified valve leaflets. Scanning electron micrographs of porcine valve leaflets stimulated with media alone (A)

or 100 ng/mL LPS and 3mM phosphate for 14-days (B), with presence of calcified areas (white arrows) (x100 magnification, scale bar = 100µM). High power view

and point analysis (yellow cross) of aortic valve leaflets from control and LPS/PO4 treated valves (x1,000 magnification, scale bar =10µM) (C,D), and the spectrum

showing no calcium or phosphorus peaks in the control (E), but their presence in the LPS/PO4 treated tissue (F).
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FIGURE 5 | Elemental mapping of LPS and phosphate treated valve leaflets. Scanning electron micrographs showing the elemental distribution of carbon, oxygen,

phosphorus, calcium and silicon. Regions of greater electron density corresponding to the distribution of calcium and phosphorus.
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FIGURE 6 | Expression of NF-kB in calcified valve leaflets. Low and high-powered images of immunohistochemical staining for NF-kB in untreated (A,B) and

100 ng/mL LPS & 3mM phosphate treated (C,D) valve leaflets. Nuclear expression of NF-kB can be seen in (D) (black arrows). (A,C) scale bar, 200µM; (B,D) scale

bar, 500µM.

marked reduction in the staining for RUNX2, osteopontin
and osteocalcin. Lower concentrations of adenosine (10−8 and
10−7M) had no significant effect on the amount of Alizarin Red
staining in the leaflets. At concentrations above 10−7M, there was
a progressive reduction in the amount of Alizarin Red staining,
which reached statistical significance at 10−5M (Figure 10A).
Corresponding to reductions in Alizarin Red staining, there was
also significant reductions in antibody staining for osteocalcin,
oeteopontin and RUNX2 in valve leaflets treated with 10−5M
adenosine (Figures 10B–D, respectively). The areas measured
for staining of each antibody were similar in all 3 groups
(Figure 10E).

DISCUSSION

This study sets out an ex-vivo organ culture model of valve
calcification that can quantify the level of calcium incorporated
into the valve and assess phenotypic changes in the cells that
reside in calcified regions. Elemental analysis and mapping
showed that the nodules that were visible with the scanning
electron microscope were comprised of calcium and phosphorus.
The use of intact valve leaflets has the advantage that the VIC are

retained in the physiological arrangement with respect to their
association with the extracellular matrix and their relationship
with the VEC. Intact valve leaflets from pigs and mice have
previously been used to assess the effects of pro-calcific stimuli,
including inorganic phosphate osteogenic media, osteogenic
media supplemented with TGFβ1 and mechanical injury (11, 12,
21–24).

These previous studies have largely relied upon osteogenic
media, which contains β-glycerophosphate, dexamethasone, and
ascorbic acid, to drive the calcification response. In contrast,
this model uses LPS, a TLR4 receptor agonist, to drive the
calcification response and the subsequent initiation of an
inflammatory response, as evidenced by nuclear expression of
NF-kB in the calcified regions. The contribution of specific
cell types within the valve leaflet to the response of LPS
was not studied, however LPS has previously been shown
to stimulate a calcification response in cultured VIC and
to augment the effects of calcification of VIC to gamma–
interferon (18, 20, 25, 26). Phosphate in combination with
inorganic pyrophosphatase has also previously been shown
to stimulate increase levels of radiolabeled calcium and
the formation of Alizarin Red positive lesions, in intact
valve leaflets over an 8-day period (12). Based on these
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FIGURE 7 | Colocalisation of Alizarin Red staining with osteogenic, inflammatory and apoptotic markers. Sequential sections of a valve leaflet stimulated media alone

(left column) or 100 ng/mL LPS and 3mM phosphate (right column) for 14-days. Histochemical staining for Alizarin Red (A,B) co-localizes with regions of

immunohistochemical staining for osteocalcin (C,D), RUNX2 (E,F), NF-kB (G,H) and caspase 3 (I,J). Scale bar, 500µM.
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FIGURE 8 | Quantification of osteogenic, inflammatory and apoptotic markers in Alizarin Red positive and negative areas of valve leaflets. Percentage area staining of

1.1 mm2 regions from non-calcified and calcified regions for (A) osteocalcin (*P = 0.012, T-Test; n = 4), (B) RUNX2 (**P < 0.001, T-Test; n = 4), (C) NF-kB

(**P < 0.001, T-Test; n = 4) and (D) caspase 3 (**P < 0.001, T-Test; n = 4).

findings we included pyrophosphatase to block the anti-
calcification effect of pyrophosphate in the valve leaflets. We
observed an augmentation of the response to 100 ng/mL
LPS, with increasing phosphate concentration. Since there was
no significant difference in the effect between 3 and 5mM
phosphate, we opted to choose the lower concentration, since this
is nearer to the concentration used in previous studies and below

the concentration required for phosphate to have a direct effect
on calcification (12, 14).

From the analysis of the data on the quantification of the
percentage area of each leaflet that showed positive staining with
Alizarin Red, we determined that the most accurate way to assess
the degree of calcification in each valve leaflet was to sample
each leaflet in three areas and calculate the mean of the three
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FIGURE 9 | Effect of adenosine on the expression of osteogenic markers. Immunohistochemical staining in media alone (left column), 100 ng/mL LPS 3µM

phosphate treated (center column) and 100 ng/mL LPS 3mM phosphate and 10−5M adenosine treated (right column) valve leaflets. Section were stained with RUNX2

(A–C), osteopontin (D–F) and osteocalcin (G–I). Scale bar, 100µM.

observations. We were subsequently able to show that there was
no bias toward any of the three individual aortic valve leaflets
or to left, middle or right regions of each of the cusps. The
Alizarin Red staining did not follow a specific pattern, nor was
it exclusively associated with the fibrosa layer of the valve leaflets.
There was a tendency for the calcification to occur at either end
of each cusp. This could be due to the development of tension
in the cusp when it was pinned into position in the culture
plate or during the 14-day culture period. We aim to extend
this model with the use of a stretch bioreactor to investigate
the application of cyclic strain on the calcification response of
LPS and phosphate. It has been previously shown that strain
increased calcified nodule formation and enhances the response
to TGFβ1 and BMP (11, 27). The advantage offered by this model
includes the ability to quantify changes in cell phenotype and
of calcification and adjacent sections of valve leaflets. There was
increased expression of osteoblast markers and the osteoblast
transcription factor RUNX2, both of which are known to be
expressed in calcified valves (28, 29). The presence of caspase-
3 in the calcified regions demonstrates a role for apoptosis in
the calcification response, suggesting that dystrophic calcification
may also be occurring alongside osteogenic calcification. Both
osteogenic and dystrophic calcification are features of the disease
in human valves (30, 31). This model gives the opportunity
to probe for other markers or mediators of calcification via
antibody staining and/or western blotting. Recently a multi-
omics approach to define the pathogenesis of calcific aortic

valve disease has been advocated (32). Comparing the changes
induced in this model using transcriptomics, proteomics and
metabolomics will define the pathways that mediate the response
and allow comparison with cell-based models and pathological
samples from humans.

We were also able to show that the calcification response was
amenable to pharmacological manipulation with adenosine. Our
previous studies have shown an inhibitory effect of osteogenic
markers induced by osteogenic media (10). Here we were able
to demonstrate an inhibitory effect of adenosine on levels
of calcification induced by LPS and phosphate, which was
associated with a reduction in osteopontin, osteocalcin and
RUNX2 expression. The beneficial effects on adenosine on valve
calcification have previously been reported in a murine aortic
root challenged with osteogenic media. A1 and A2b receptors
were shown to mediate anti-calcification effects of adenosine,
while A2a receptor exacerbated the calcifying effect of osteogenic
media (33). Themodel described in this paper would be amenable
to similar receptor antagonist studies.

There are several limitations of the model described in this
paper. The effect of LPS and phosphate takes at least 2 weeks to
develop. A significant degree of calcification was observed after
10 days in some valves, but overall, the effect was more consistent
with a longer incubation time. The data for time-course
experiment in Figure 2C was based data from only 2 animals.
While this experiment was only intended only to provide
evidence of the shortest incubation time to give consistent
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FIGURE 10 | Inhibitory effect of adenosine on calcification and expression of osteogenic markers. Effect of increasing concentrations of adenosine (10−8-10−5M) on

the expression of Alizarin Red in sections of valve leaflet response to 100 ng/mL and 3mM phosphate (*P = 0.008, T-Test; n = 8 and **P = 0.011, T-Test; n = 6) and

representative images of sections stained with Alizarin Red imaged under polarized light for each treatment group (A). Quantification of the area of positive staining in

control (media alone), 100 ng/mL and 3mM phosphate and 100 ng/mL & 3mM phosphate with 10−5M adenosine for (B) osteocalcin (**P = 0.001, *P = 0.029,

ANOVA; n = 11–15 areas from 3 valves), (C) osteopontin (**P < 0.001, *P = 0.029, ANOVA; n = 13–15 areas from 3 valves) and (D) RUNX2 (*P = 0.003,

**P = 0.001, ANOVA; n = 9–14 areas from 3 valves). (E) The mean area per measurement was similar in all 3 groups.
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response to LPS and inorganic phosphate, further studies with
more samples and longer time points may demonstrate the need
for a longer duration for the experiment to give less variation in
the response of the leaflets. By keeping each valve leaflet intact,
a larger number of hearts are required to run more complex
experimental protocols (e.g., concentration-response, antagonist
studies). We avoided cutting each valve into smaller pieces, to
avoid damage to the endothelial layer and maintain the integrity
of the valve structure. Lastly, this model relies on the use of
porcine tissue, which may not respond in an identical manner
to human tissue. However, this type of study with human tissue
would be virtually impossible due to the number of valves that
would be required.

This organ culture model relies upon a combination of a
biological stimulus and the promoting effects of phosphate to
yield a quantifiable calcification response and an opportunity to
simultaneously identify changes in the expression of phenotypic
markers associated with valve calcification. We demonstrate
that the model is amenable to pharmacological modulation by
adenosine. The presence of all the cellular components and
extracellular matrix will allow future studies to identify new
markers and mediators of valve calcification as well as to serve as
a tool for pre-clinical assessment of new anti-calcification agents.
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