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Abstract

The evolution of antibiotic resistance is influenced by a variety of factors, including the avail-

ability of resistance mutations, and the pleiotropic effects of such mutations. Here, we iso-

late and characterize chromosomal quinolone resistance mutations in E. coli, in order to

gain a systematic understanding of the rate and consequences of resistance to this impor-

tant class of drugs. We isolated over fifty spontaneous resistance mutants on nalidixic acid,

ciprofloxacin, and levofloxacin. This set of mutants includes known resistance mutations in

gyrA, gyrB, and marR, as well as two novel gyrB mutations. We find that, for most mutations,

resistance tends to be higher to nalidixic acid than relative to the other two drugs. Resis-

tance mutations had deleterious impacts on one or more growth parameters, suggesting

that quinolone resistance mutations are generally costly. Our findings suggest that the prev-

alence of specific gyrA alleles amongst clinical isolates are driven by high levels of resis-

tance, at no more cost than other resistance alleles.

Introduction

The increasing prevalence of antimicrobial resistance (AMR) has become an urgent public

health problem worldwide. For example, resistance to ciprofloxacin, the most commonly pur-

chased antimicrobial by hospitals in Canada between 2008–2014 [1], in Escherichia coli rose to

26.7% in 2015 from 21.6% in 2009 [2]. The present AMR crisis has been attributed to the mis-

use and overuse of antibiotics, as well as the scarcity of novel drug development [3–7]. Given

the rapid increase in the prevalence of resistance, an understanding of the principles underly-

ing resistance evolution is vital.

Adaptation, of which the evolution of AMR is a prime example, is driven by the interplay

between mutation, selection, and demographic processes like drift. Mutation determines the

rate at which beneficial variants are introduced into a population, while selection and demog-

raphy govern the fates of these variants. Thus, in understanding the evolution of AMR, we are

interested in both mutation and selection. We expect, for example, that higher mutation rates

will generally lead to a more rapid evolution of resistance. The spread of a given mutation will

then be influenced by its selective consequences, including its effect on resistance, and on its

pleiotropic effects, such as fitness in the absence of antibiotic, and collateral sensitivity or cross

resistance to other antibiotics.
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The rate of mutation to resistance is given by the product of population size (N), overall

mutation rate (μ), and the fraction (f) of mutations that are beneficial (i.e., those that grant

resistance). Thus, resistance mutations will appear more frequently for larger populations, or

for populations with higher mutation rates. Up to a point, this dependence on Nμ leads to an

increase in the rate of adaptation; however, as Nμ approaches 1, a population is no longer lim-

ited by mutational input, but instead by competition between competing mutations (e.g.,

[8,9]).

Relevantly here, the fraction of mutations granting resistance almost certainly differs

between different antibiotics; for some antibiotics, there will be a greater availability of resis-

tance mutations. Variation in the availability of resistance mutations may reflect differences in

the number of genetic loci that can contribute to resistance. For example, resistance to trimeth-

oprim is largely conferred by mutations in a single gene encoding dihydrofolate reductase

(DHFR) [10], while resistance to chloramphenicol and streptomycin can be conferred by

mutations in a number of different genes [10,11]. Moreover, the number of individual muta-

tions conferring resistance may differ between genes: while a wide range of loss-of-function

lesions in the transcriptional regulator marR will grant multi-drug resistance [12], only a hand-

ful of mutations in gyrA confer quinolone resistance [13,14]. Thus, even given equal popula-

tion size and overall mutation rates, we expect different rates of evolution to resistance to

different antibiotics due to differences in the mutational target size.

Once a resistance mutation has arisen, its persistence and spread may be affected by its

pleiotropic effects, including its fitness costs and effects on resistance to other drugs [15–18].

In the presence of antibiotic, a resistant bacterium has a clear advantage compared to suscepti-

ble genotypes. However, in an antibiotic-free environment, a resistance mutation may impose

a burden, for example through reduced growth rates relative to sensitive strains [19–23]. How-

ever, while resistance mutations are often costly, not all resistance mutations bear a cost, and

such cost-free mutations are likely to persist [24–27]. Melnyk et al. (2015) [28] conducted a

meta-analysis including 179 single chromosomal mutations conferring resistance to 16 antibi-

otics from 8 bacterial species. They reported 8 no-cost mutations, with variable costs of resis-

tance depending on antibiotic class and the species assayed.

Increased resistance to one antibiotic may be accompanied by increased cross-resistance to

other antibiotics. Cross-resistance is often observed between members of the same class of

antibiotic. For example, all quinolones target DNA gyrase and Topoisomerase IV, whose sub-

units are encoded by the gyrA/B and parC/E genes, respectively. Resistance to quinolones can

be conferred by point mutations affecting specific portions of GyrA and ParC, known as the

quinolone resistance-determining regions (QRDR) [13,29–31]. Changes at amino acid posi-

tions 83 and 87 of gyrA lead to a significant loss in quinolone susceptibility [32–34]. Moreover,

known resistance mutations in gyrB mutations affect amino acid positions 426 and 464, sites

that interact with the bound quinolone molecule close to the QRDR of GyrA [35–37].

Cross-resistance can also occur between drug classes—for example, marR mutations

selected by quinolones also confer resistance to phenicols, tetracyclines, and rifampicin

[31,38,39]. Mutations in marR, which encodes a negative regulator of the marRAB operon,

render the repressor function inactive, resulting in increased efflux and reduced permeability

[14,40–43]. By contrast, in collateral sensitivity or negative cross-resistance, acquisition of

resistance to one antibiotic may grant sensitivity to other antibiotics. For example, resistance

to aminoglycosides in E. coli can be conferred by electron transport chain mutations that

reduce proton-motive force (PMF). This decrease in PMF negatively affects the activity of

multi-drug efflux pumps, such as AcrAB-TolC, granting hypersensitivity to many other antibi-

otics [44,45].

The mutational landscape of quinolone resistance in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0224650 November 5, 2019 2 / 18

https://doi.org/10.1371/journal.pone.0224650


Here, we assess mutation rates, levels of resistance, and pleiotropic effects for chromosomal

mutations conferring resistance to different quinolones, in an effort to understand the full set

of parameters contributing to the origin, spread, and persistence of quinolone resistance.

Quinolones were first used clinically in the 1960’s, and have undergone multiple rounds of

development. The first-generation quinolone, nalidixic acid (nal), possesses a limited spectrum

of activity, but fluorination of the core structure generated the so-called 2nd -generation quino-

lones like ciprofloxacin (cip). Further overall structural developments resulted in 3rd-genera-

tion drugs such as levofloxacin (levo). We predict that, while broad mechanisms of resistance

will be shared between quinolones, resistance mutations will differ in their effects towards dif-

ferent antibiotics owing to differences in antibiotic penetration and/or structural

configuration.

Materials and methods

Bacterial strains and media

The E. coli laboratory strain K-12 (MG1655) was used for all experiments. Lysogeny broth

(LB) (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl per litre; Bishop) was used for agar and

broth cultures.

Quinolone susceptibility assays

Minimum inhibitory concentration (MIC) values for the ancestral strain and for antibiotic-

resistant mutants were determined for nalidixic acid, ciprofloxacin and levofloxacin (Sigma-

Aldrich) using a 96 well plate assay. Antibiotic concentrations started at 10μg/ml, 1μg/ml, and

8μg/ml for nal, cip, and levo, respectively, and were diluted in a two-fold series and dispensed

with 125μl/well of LB into 96-well plates. The 96 well plates were incubated overnight at 30 C,

with shaking at 150 rpm. The MIC was defined as the lowest concentration of antibiotic for

which 90% growth inhibition was visibly observed after overnight culture.

Fluctuation analysis and estimation of mutation rates

Mutation rates to resistance were determined using fluctuation assays [46,47]. A single colony

of E. coli MG1655 was grown overnight in liquid LB at 37 C, with shaking at 150 rpm. Fresh

200μl cultures were inoculated with ~100 cells each. Each independent culture was then grown

to saturation overnight. The final number of cells, Nt
, was estimated from plate counts on LB

without antibiotic. Selective plates were supplemented with antibiotics (nal, cip or levo) at a

concentration of 1xMIC or 2xMIC. 30 replicate populations were plated for each antibiotic at

each concentration. The observed number of mutants, r, was then counted for each replicate.

For estimating the number of mutational events m, the MSS maximum-likelihood method

was used [48]. This method is based on a recursive algorithm for estimating the Luria-Del-

bruck distribution for a given number of mutational events [46]. This method is valid over the

entire range of values of m [49,50]. The mutation rate per cell per generation, M, is calculated

as m divided by the total number of bacteria plated on selective plates (Nt) [47,51,52].

PCR amplification and sequencing of candidate genes

Targeted sequencing of the known resistance loci gyrA and marR was carried out in order to

identify potential resistance mutations. To ensure independence, a single mutant colony was

picked from every plate from the fluctuation assay on which there was growth, and inoculated

overnight in LB broth without antibiotic. DNA was then extracted using the EZ-10 spin col-

umn bacterial DNA miniprep kit (Bio Basic) and PCR was used to amplify the QRDR of gyrA
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(Gyrase forward—5’GTAAAACGACGGCCAGTGATGAGCGAC3’, Gyrase reverse—5’CGGTA
CGGTAAGCTTCTTC3’) and the entire marR gene (MarR-forward 5’GTAAAACGACGGCCA
GTGGTCAATTCA3’, MarR reverse—5’TCTGGACATCGTCATACCTC3’). PCR amplicons

were sent to Genome Quebec for Sanger sequencing. Mutations in these particular regions

were compared with the wild type MG1655 strain of E. coli.

Whole-genome sequencing

Whole-genome sequencing was carried out to identify potential resistance mutations in clones

for which mutations were observed in neither gyrA nor marR. Sequencing libraries were pre-

pared using the Nextera XT kit (Illumina), and sequencing was carried out on the MiSeq plat-

form using paired-end 300bp reads. Raw reads were processed using Trimmomatic-0.35 [53],

allowing for a minimum Phred-scaled quality score of 20 for leading and trailing bases, trun-

cating reads once average quality dropped below 20 in a 4bp sliding window, and dropping all

reads of length less than 36. Read quality was assessed using FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/).

Reference-based assembly was carried out using Bowtie-2 [54], with E. coli K-12 (MG1655;

NC_00913.2) as the reference genome. SNPs were called using Samtools [55] and SNP effects

were inferred using SNPeff [56].

24-hour growth curve analysis

Fitness in the absence of antibiotic was estimated using 24-hour growth curves for each single

colony isolate. Growth curves were obtained in triplicate in 96-well plates, inoculated at a

1:100 dilution from overnight cultures. OD600 was measured on a Bioteck ELx808 plate reader

every 37 minutes for 24 hours, incubating at 37 C with 30 s of shaking every 5 minutes. Three

growth parameters, lag time, maximum growth rate and optical density at stationary phase

after 24 hours, were estimated using the program GrowthRates [20].

Results and discussion

Estimation of mutation rates

We estimated mutation rates to resistance for each of the three quinolones nal, cip, and levo

using fluctuation assays [46]. The probability of a mutational event per cell per generation was

estimated at 1x and 2x MIC where MIC values were 10 μg/ml, 15 ng/ml, and 31 ng/ml for nal,

cip, and levo, respectively. The number of observed mutants (r) on each of 30 selective plates

was used to estimate mutation rates to nalR, cipR, and levoR, using the MSS maximum likeli-

hood method [50]. At 1x and 2x MIC, mutation rates differed between antibiotics, with lower

rates to nalR than to cipR or levoR (cip>levo>nal), presumably because fewer resistance muta-

tions are available for nal that can grant sufficiently high levels of resistance (Fig 1, Table 1).

Identification of resistance mutations

We obtained a total of 56 spontaneous quinolone resistant mutants from the fluctuation assays

(one from each plate), and identified putative resistance mutations in 50 of these (Table 2).

Targeted sequencing identified 36 gyrA mutants, 9 marR mutants, and 1 double gyrA, marR
mutant. Whole-genome sequencing identified an additional 4 gyrB mutants. We note that

gyrA/gyrB or marR/gyrB double mutants will be undetected by our approach. However, given

that only one gyrA/marR double mutant was detected, the frequency of double mutants is

probably low. In gyrA, mutations were observed at nucleotides encoding amino acid positions

67, 81, 83, and 87 (Fig 2A), consistent with previous findings that the GyrA QRDR spans

The mutational landscape of quinolone resistance in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0224650 November 5, 2019 4 / 18

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pone.0224650


amino acid 67 to 107 [29,57–59]. The most common alterations in the gyrA QRDR region

were S83L (n = 18) and D87G/N/Y (n = 11). These mutations were found in mutants isolated

against all three drugs, presumably because these positions are located within the positively

charged region close to the DNA-enzyme binding site [31]. Amino acids 83 and 87 are located

near the active site of DNA gyrase, along with the tyrosine-122 residue that interacts with the

broken DNA strand following cleavage [59–66]. The α helix-4 region is particularly essential

Fig 1. Spontaneous mutation rate per 108 cells to quinolone resistance among E. coli K-12 (MG1655). Mutation

rates were estimated from 30 independent cultures at 1x and 2x MIC. Error bars represent 95% confidence intervals.

Note that no colonies were obtained at 2xMIC for Nal.

https://doi.org/10.1371/journal.pone.0224650.g001

Table 1. Spontaneous mutation rates to quinolone resistance in E. coli K-12 (MG1655).

Antibiotic Antibiotic

concentration (μg/

ml)

Mutation rate per culture

‘m’

Mutation rate (M) per 108

cells

Upper 95% Confidence

interval

Lower 95% Confidence

interval

Nalidixic acid

(1xMIC)

11.11 0.368 0.76 0.49 0.39

Ciprofloxacin

(1xMIC)

0.015 1.158 2.41 1.06 0.91

Ciprofloxacin

(2xMIC)

0.030 0.293 0.61 0.42 0.33

Levofloxacin

(1xMIC)

0.0312 1.067 2.22 1.01 0.86

Levofloxacin

(2xMIC)

0.0625 0.174 0.36 0.29 0.22

https://doi.org/10.1371/journal.pone.0224650.t001

The mutational landscape of quinolone resistance in Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0224650 November 5, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0224650.g001
https://doi.org/10.1371/journal.pone.0224650.t001
https://doi.org/10.1371/journal.pone.0224650


to quinolone binding and the substitution to leucine at position 83 makes the vicinity of α
helix-4 of the gyrase less electron rich, crippling gyrase-quinolone binding [33,61,67]. Muta-

tions at position 87 and 81 also perturb the alignment of the α helix-4 structure.

marR mutations were obtained only in levoR isolates. These point, frameshift, and missense

mutations were dispersed throughout the gene, as expected given that the Mar phenotype can

arise from any loss-of-function mutation (Fig 2C). MarR consists of two domains, one N-C

terminal domain and a helix-turn-helix (HTH) DNA binding domain. The closely packed

hydrophobic core and intermolecular hydrogen bonds stabilize the N-terminus (residues 10–

21) of one subunit and the C-terminus (residues 123–144) of the second subunit, holding the

dimer together. Some of the mutations reported in this study belong to the oligomerization

dimer domain of MarR, such as those at positions 10, 27, and 33 of one terminal subunit, and

positions 123 and 126 of the other equivalent subunit. The rest of the MarR protein is linked

via antiparallel helices emerging out from each of the subunits, encompassing the DNA bind-

ing domain (residues 55–100) [12,42]. Mutations at positions 64 and 69 fall in the HTH DNA

Table 2. MIC fold-increase and mutations in gyrA, gyrB and marR among nalR, cipR, and levoR mutants of E. coli K-12 (MG1655).

S.

No.

Antibiotic MIC WT (ug/

ml)

MIC fold

increase of

mutants

Resistance mutation Total number of nalR, cipR and levoR

mutants

Number of gyrA, gyrB and marR
mutants

Nal Cip Levo gyrA gyrB marR
Nalidixic

acid

10 11

1 64 A67S 2

2 256 S83L 6

3 128 D87G 2

4 64 D426N 1

Ciprofloxacin 0.015 24

1 64 G81C/D 3

2 128 S83L 4

3 32 S83W 2

4 64 D87Y/G/

N

7

5 32 H281L 1

6 32 S464Y 1

7 16 L509G 1

Levofloxacin 0.031 21

1 8 G81C 1

2 16 S83L 8

4 8 D87G 1

3 16 D87G R27P 1

5 16 E10stop 1

6 16 L33R 1

7 8 Q42E 1

8 4 L64fs 1

9 16 G69E 1

10 8 T102S 1

11 8 Q117stop 1

12 4 L123S 1

13 8 N126fs 1

https://doi.org/10.1371/journal.pone.0224650.t002
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binding motif. Other mutations reported here at position 42 and 102 residue at α and β sheets

of MarR, which are essential for the interaction between the two antiparallel strands of HTH

DNA binding domain [42].

WGS revealed gyrB mutations in four isolates for which no gyrA or marR mutations were

detected (Fig 2B). H281L, S464F, and L509Q mutations were found in strains isolated on cip,

and a D426N mutation was found in a strain isolated on nal. The GyrB enzyme consists of two

domains, an N-terminal domain (amino acid 2–393) that incorporates the ATPase catalytic

site, and a C-terminal domain (amino acid 394–804) that interacts with GyrA [68,69]. D426N

and S464F have been previously reported to confer quinolone resistance [35,59,64,70,71]. Both

of these mutations are part of the QRDR of GyrB and cause conformational changes in the

structure of the gyrase subunits [37,59]. The gyrB D426N mutation has been reported before

along with a mutation at position L447, both of which provide a neutral vicinity, owing to

their respective opposite charges. Both of these residues are suggested to be part of a quino-

lone-binding pocket [31,35,36,70,72].

Interestingly, the H281L and L509G mutations have not been previously reported to confer

quinolone resistance. These two novel mutations are located outside the GyrB QRDR. Position

281 is located in the transducer region of GyrB, which forms a cavity just large enough to facili-

tate the transfer of the trapped double-stranded DNA through the DNA gate in the presence of

ATP [73,77–79]. Position 509 is within the TOPRIM domain of GyrB, part of the catalytic

DNA cleavage-rejoining complex along with the GyrA winged helix domain [79,80].

Fig 2. The domain structures of Gyrase A, B, and MarR. Mutations obtained in this study are indicated in bold above. Panel A: Arrangement of GyrA. This

subunit of DNA gyrase consists of the breakage-reunion (BRD) domain, and the quinolone resistance determining region (QRDR-A) site. Panel B:

Arrangement of GyrB, with the ATPase, Transducer (221–392), and Toprim (418–533) regions. The QRDR-B is shown within the Toprim domain of GyrB

[73]. Panel C. MarR domain structure, comprising four helices (H) and three ß-sheets (B). H3 and H4 (57–80) are the recognition and DNA binding motifs

containing H-T-H motifs and the ß-sheet winged structure. H1, H5, and H6 are associated with dimerization [42,74–76].

https://doi.org/10.1371/journal.pone.0224650.g002
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Direct responses to selection

An increase in fitness in the selective environment is referred to as the direct response to selec-

tion; here, the direct response to selection is measured by an increase in MIC towards the drug

on which a mutant was selected. We found substantial variation between drugs in the magni-

tude of the direct response. Mutants isolated on nal showed a stronger direct response to selec-

tion than did mutants isolated on cip or levo, with a mean increase of 256-fold MIC towards

nal. Mutants isolated on cip and levo showed mean increases of 64-fold and 16-fold towards

cip and levo, respectively (Fig 3).

Among resistance mutations, gyrA mutations consistently showed higher levels of resis-

tance than gyrB or marR, regardless of the antibiotic they were isolated on, which impacts the

variation in MIC values significantly (Table 3). Furthermore, within each gene, the level of

resistance varied by mutation. In the case of gyrA, the S83L mutation conferred higher resis-

tance among all the isolates compared to other mutational sites of gyrA (87, 81 or 67). This

suggests that the widespread occurrence of the S83L mutation amongst clinical isolates is due

to the high level of resistance (S1 Fig).

Cross resistance between quinolones

Cross-resistance between quinolones was widespread: all of the resistant mutants isolated on

one quinolone displayed increased resistance, in varying degrees, to the other two quinolones.

Nonetheless, different quinolones were not equally affected by the resistance mutations (Fig

4). Overall, mutants were more resistant towards nal than they were towards cip or levo.

Among cip and levo, mutations showed smaller gains in resistance on levo. Nevertheless, sig-

nificant correlations between levels of resistance for cip and levo (Pearson’s r = 0.64, t = 6.2,

Fig 3. Direct responses to selection. Changes in MIC for resistant mutants towards the drug on which they were

selected: nal (A), cip (B), and levo (C). The boxplot presents the median, first, and third quartiles, with whiskers

showing either the maximum (minimum) value or 1.5 times the interquartile range of the data, whichever is smaller

(larger).

https://doi.org/10.1371/journal.pone.0224650.g003
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P = 8.433e-08), nal and cip (r = 0.47, t = 3.93, P = 0.0002), and nal and levo (r = 0.38,

t = 3.07, P = 0.0032) suggest a closer relationship between the newer quinolones. This varia-

tion in resistance among quinolones can be explained by the intrinsic structural drug differ-

ences between older and newer quinolone classes. Nal is devoid of any cyclic derivatives

whereas cip and levo have substituents at positions C-6, C-7 and C-8, that offer greater spec-

trum/potency of activity. Thus, the modified quinolone substituents likely reduce resistance

levels by increasing the affinity for GyrA, and by stabilizing the quinolone-DNA complex

[33,81–96].

These trends are also evident for specific loci. gyrA mutants showed the highest gain in

resistance (average 128xMIC) on nal in comparison with cip (32xMIC) or levo (16xMIC).

gyrB mutants also displayed a higher increase in resistance to nal (64xMIC), but the same

increase on cip and levo (16xMIC). The novel H281L and L509G mutations gained similar

increases in resistance with cip and levo, at 32xMIC and 16xMIC respectively. On nal, H281L

gained 64xMIC whereas L509G gained similar increase as with cip or levo, i.e. 16xMIC. Mean-

while, marR mutants did not show as high increases in MICs, with increases of 32x, 16x, and

8xMIC on nal, cip, and levo.

Table 3. Two-way analysis of variance (ANOVA) for the effects of antibiotic and gene on levels of resistance.

Factor F-value P-value

Gene 10.00 0.00025�

Antibiotic 39.30 1.34e-10�

Gene�Antibiotic 2.83 0.09

https://doi.org/10.1371/journal.pone.0224650.t003

Fig 4. Cross-resistance between antibiotics. Fold-increase in MIC of resistant mutants isolated on nal (A), cip (B), and levo

(C) against all three antibiotics. The boxplot presents the median, first, and third quartiles, with whiskers showing either the

maximum (minimum) value or 1.5 times the interquartile range of the data, whichever is smaller (larger).

https://doi.org/10.1371/journal.pone.0224650.g004
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Costs of resistance

The persistence of resistance in the absence of antibiotic is determined in part by the fitness

costs associated with resistance mutations [97–99]. No-cost mutations may contribute to the

persistence of resistance mutations in the absence of antibiotic. We measured three fitness

components in the absence of antibiotic for our set of quinolone resistant mutants: maximum

growth rate (Vmax), density at stationary phase (Max OD), and length of lag phase. Resistant

mutants were consistently found to be costly, exhibiting significant differences in Vmax, Max

OD, and lag time compared to their drug-susceptible ancestor MG1655 (Fig 5, Table 4) (S2

Fig). Thus, overall we observe significant costs of resistance for quinolone resistance muta-

tions, consistent with previous studies [92,100–102].

Some studies have reported that mutations granting higher levels of resistance impose

higher costs [28]. However, we fail to find a significant relationship between MIC and any fit-

ness component. No correlations were found between MIC and growth rate (P = 0.42, Ken-

dall’s tau = 0.08), length of lag phase (P = 0.82, tau = 0.02) or cell density (P = 0.12, tau = 0.15)

(Fig 6). We note that gyrA mutations confer no greater costs than other resistance mutations

(gyrB, marR). Moreover, amongst the handful of mutations in gyrA (S83, D87, G81) that can

confer high level resistance [58,63], a few prominent alleles of gyrA tend to be found in E. coli
clinical isolates [24,62,103,104]. That these mutations confer high levels of resistance, but are

no more costly than other gyrA mutations (Fig 6), could help to explain the prevalence of spe-

cific gyrA mutations amongst clinical isolates.

Conclusions and perspectives

Quinolones target DNA gyrase and topoisomerase IV. Resistance against these drugs can be

achieved by target alteration and/or through efflux and permeability associated mutations. We

find that all 50 spontaneous mutants obtained through fluctuation assays were resistant

through mutations in the known resistance conferring genes gyrA, gyrB, and marR. This find-

ing suggests that there are few other quinolone resistance mutations available in E. coli K-12;

this is somewhat surprising, given that selection experiments in P. aeruginosa have identified

novel resistance mutations [105]. We find significant costs of resistance, and differences in the

mutational supply rate among resistant isolates. Notably, we find gyrA mutations conferred

higher resistance, without greater fitness cost, than other mutations. This finding may explain

the prevalence of gyrA mutations in clinical samples. We also find variation in cross-resistance

Fig 5. Costs of resistance of quinolone resistant mutants. The fitness components measured are growth rate, cell

density, and lag time between gyrA, gyrB, and marR resistance mutations. All the fitness components are compared to

control E. coli K-12 (MG1655). The boxplot presents the median, first, and third quartiles, with whiskers showing

either the maximum (minimum) value or 1.5 times the interquartile range of the data, whichever is smaller (larger).

https://doi.org/10.1371/journal.pone.0224650.g005

Table 4. Effects of resistance mutations on growth parameters.

Factor Post hoc (Tukey HSD) comparisons with E. coli K-12 MG1655

Growth rate Length of Cell density at

(OD600/minute) lag time (minutes) stationary phase

(OD600)

Mean P-value Mean P-value Mean P-value

gyrA-MG1655 -0.032 0.0000011 33.4 <2.0e-16 -0.55 <2.0e-16

gyrB-MG1655 -0.033 0.0000191 28.9 <2.0e-16 -0.52 <2.0e-16

marR-MG1655 -0.029 0.0000173 32.3 <2.0e-16 -0.53 <2.0e-16

https://doi.org/10.1371/journal.pone.0224650.t004
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amongst quinolone resistant isolates, implying that different resistance mutations respond dif-

ferently to quinolone variants. Thus, antibiotic variants may have different implications for the

evolution of resistance. Optimally, we should choose an antibiotic for which resistance is

costly, and where single mutations have relatively small effect, as was the case here for

levofloxacin.

Supporting information

S1 Fig. Comparison between mean fold-increase in MIC values for different resistance

mutations in gyrA, gyrB, and marR regions. Resistance mutations isolated as a direct selec-

tion on nal (A), cip (B), and levo (C).

(EPS)

Fig 6. No correlation between level of resistance (fold-increase in MIC) and growth rate, cell density or length of

lag phase for all mutants.

https://doi.org/10.1371/journal.pone.0224650.g006
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S2 Fig. Variation in costs of resistance—Growth rate, cell density, and lag phase between

gyrA (A), gyrB (B), and marR (C) resistance mutations. All the fitness components are com-

pared to control E. coli K-12 (MG1655). The boxplots present the median, first, and third quar-

tiles, with whiskers showing either the maximum (minimum) value or 1.5 times the

interquartile range of the data, whichever is smaller (larger).

(EPS)

S1 File. The supplementary data file associated with this article.
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