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Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties.
However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical
substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying
neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local,
voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by
pharmacological challenge (d-amphetamine, fluoxetine, and nicotine) to discriminate between stimulus-specific functional
connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar,
mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional
connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high
functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high
neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with
neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

1. Introduction

Functional connectivity analyses of neuroimaging data aim
to elucidate relationships between signals originating in
spatially distinct brain regions [1–7] as an indication of
coordinated activity in distributed neural systems, an ap-
proach that complements the more established univari-
ate approaches in which the responses in each brain
region are analyzed independently. Consistent with this
emphasis on interactions between distributed brain struc-
tures, neuroimaging data can be represented mathemati-
cally as a graph, or network, of nodes and links [8–11].
In this framework, image voxels or parcellated brain regions

represent the nodes and a measure of similarity in their
responses defines the connections between them [7, 12–17].

Recent developments in the theory of complex networks
have shown that the topological and statistical properties of
networks can reveal fundamental behaviors of the systems
that they model. For example, “small-world” topology,
characterized by dense local clustering and few-long range
connections [18, 19], can support connectivity at multiple
spatial-scales while minimizing wiring costs. Another class
of networks of particular interest is that of “scale-free”
networks, that is, graphs presenting a power-law distribution
of the node degree—the number of other nodes to which
each node is connected. Scale-free networks appear to be
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almost ubiquitous in real-world situations, including epi-
demiology, sociology, and cell biology, thus suggesting that
their properties satisfy some general principle of efficiency,
robustness and cost-effectiveness [18].

Brain functional connectivity is amenable to complex
network analysis, and the interest in the statistical properties
of these brain networks is growing rapidly [9–11]. The brain
presents several features reminiscent of complex networks,
including its ability to support both segregated and dis-
tributed information processing at multiple scales, its relative
robustness to random neuronal loss due to disease or aging,
and its efficiency in terms of low energy and wiring costs [20].
Indeed, functional connectivity networks constructed from
human fMRI data under a finger tapping paradigm were
shown to exhibit scale-free behavior, with the exponent of
the power law robust to the specific choice of threshold [13].
Other authors [14] have reported an exponentially truncated
power-law distribution for cortical functional connectivity
in human subjects. More generally, “small-world” topology
has been demonstrated in both “resting-state” functional
[14, 16, 21, 22] and anatomical [23, 24] connectivity in the
brain.

However, while global statistical parameters may be
informative of large scale connectivity properties, they do
not capture the heterogeneity of the brain. Indeed, different
anatomical structures that evolved at different times may
be characterized by different local network topology. Many
studies thus far have employed volume of interest (VOI)-level
parcellations and focused on cortico-cortical connections
in humans and primates [14, 25–27], with less attention
on the organization of subcortical networks and their
connections to cortical structures. Recently, a voxel-scale
analysis of human resting state data confirmed scale-free
and small-world global properties of the resulting brain
networks, and showed nodes of highest degree localized to
regions in the cingulate and superior temporal cortices as
well as the thalamus [28]. However, the extent to which
the afore-mentioned graph-theoretic properties hold in the
mammalian brain more generally has not, to date, been
resolved. Another key question is the manner in which
functional network properties are constrained by underlying
anatomical connections and the relationship between their
topological characteristics—an issue which has begun to
be elucidated in humans [29–33], where perturbed resting
functional network parameters in chronic disease states
[16, 21, 22] may be closely coupled to disruptions in
anatomical structure and connectivity [34]. In turn, the
extent to which network properties are modulated by the
active engagement of specific brain circuits has begun to
receive attention [35]. In humans, there is evidence that
global network structure is preserved in the presence of
modified connectivity relationships due to performance of
functional tasks [36, 37] or acute drug exposure [15].

In this paper, we report on a complex-network analysis
characterizing voxel-scale topological properties of func-
tional connectivity networks in the rat brain under distinct
pharmacological conditions. In contrast to human fMRI
studies, in which functional connectivity is typically probed
in the brain’s resting state or in the context of cognitive tasks,

we examine characteristics of complex networks derived
from the response of the rat brain to acute pharmaco-
logical challenge with three canonical drugs with distinct
pharmacological mechanisms (d-amphetamine, fluoxetine,
and nicotine), thus probing the dependence of functional
connectivity network parameters on the engagement of
different neurotransmitter systems. This approach, based
on intersubject correlations, follows a procedure estab-
lished in 2-DG autoradiography [38] and PET [39, 40]
and validated in pharmacological MRI (phMRI) [6, 41–
43]. Recent network-theoretic investigations of anatomical
networks based on cortical gray matter thickness derived
from MRI data have also employed this approach [23, 34].
Our aim was to work with explicit network representations
of the data with nodes defined at the voxel rather than a
regional parcellation scale and, in addition to node degree
(the number of connections from a given node to others),
to examine the node clustering coefficient (a measure
of “cliquishness” in node connections). We mapped the
anatomical distribution of these node parameters at single-
voxel resolution to investigate at high spatial resolution
how network connectivity depends on anatomical substrate
and pharmacological stimulus, and compare with VOI-level
summary statistics. These high-resolution neuroanatomical
distributions of complex network parameters in the rat
brain reveal foci of high connectivity in the sensorimotor
cortex but also drug-dependent features in sub-cortical and
prefrontal regions; in particular, a disjunct distribution of
nodes of highest degree versus those with highest clustering
coefficient.

2. Methods

2.1. MRI Data Acquisition. All experiments were carried
out in accordance with Italian regulations governing animal
welfare and protection. Protocols were also reviewed and
consented to by a local animal care committee, in accordance
with the guidelines of the Principles of Laboratory Animal
Care (NIH publication 86–23, revised 1985). MRI data were
acquired from male Sprague-Dawley rats using a Bruker
Biospec 4.7T scanner with a cylindrical volume coil for
RF transmit and a Bruker quadrature “rat brain” surface
receive coil. PhMRI data were acquired as RARE time series,
sensitized to changes in relative cerebral blood volume
(rCBV) by administration of a 2.67 mL/kg intravenous bolus
of the blood pool contrast agent Endorem (Guerbet, France).
Experiments were performed under 0.8% halothane main-
tenance anesthesia, neuromuscular blockade and artificial
ventilation with blood gas values maintained within physi-
ological range (30 < pCO2 < 50; pO2 > 100), and peripheral
blood pressure within the autoregulatory range associated
with halothane anesthesia [44, 45]. The data described in
this paper originate from three studies, for which acquisition
details were substantially similar and which have been
published previously [6, 46]. In the first study, the animals
were challenged with either d-amphetamine (1 mg/kg i.v.,
N = 17) or vehicle (saline, N = 7), respectively [6, 42]. In the
second, animals were challenged with fluoxetine (10 mg/kg
i.p., N = 7) [6]. In the third, animals were challenged with
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nicotine (1 mg/kg i.v., N = 9) [46]. In total, complex
networks were constructed as detailed below from four
subject cohorts: the d-amphetamine and vehicle groups in
the first study as well as from the fluoxetine and nicotine
groups.

2.2. Analysis Details

2.2.1. MR Image Preprocessing. Anatomical and time series
data were converted to Analyze (AVW 7.5) format and signal
intensity changes in each time series were transformed into
fractional rCBV on a voxel-wise basis, using a constrained
exponential model of the gradual elimination of contrast
agent from the blood pool to provide a robust prediction
of postinjection background signal and remove the worst
effects of this systematic trend in the resulting rCBV data
[47]. Data for each subject were then spatially normalized
to a stereotaxic rat brain template [48] by computing a nine
degree-of-freedom affine transform for the anatomical image
and applying the resulting transformation matrix to the
accompanying rCBV time series (FSL/FLIRT v.5.2). Finally,
the rCBV data were multiplied by a brain parenchyma mask
to remove extra-cranial and CSF contributions.

2.2.2. Time Series Analysis. Image-based time series analysis
of the response in individual subjects was carried out in
a general linear model framework in order to calculate
3D maps of the post-injection response amplitude in each
subject. The images were spatially smoothed with a Gaussian
kernel of FWHM = 0.6 mm, corresponding to ∼ 2× the in-
plane voxel dimension. All image processing was performed
with the voxel dimensions scaled up in the image headers by a
factor of 10, in order to ensure compatibility with any explicit
length scales that may be encoded in algorithms designed for
use with human data. However, explicit voxel dimensions are
quoted at the original scale. The design matrix for each study
comprised a signal model function identified by study-level
Wavelet Cluster Analysis (WCA), the temporal derivative of
this regressor and a linear ramp [49, 50]. This allows a good
model fit to signals whose temporal response profile can vary
slightly across subjects and brain regions.

The coefficients of the signal model function thus
provided a map of the post-injection response amplitude for
each subject. The response maps for the subjects in each
study were then stacked together so that each voxel had
an associated response vector. The inter-subject correlations
analyzed here leverage the differential anatomical profiles of
phMRI response between subjects [6, 42].

2.3. Creation of Network Representations. The response
maps, calculated at the template dimensions, were rebinned
in-plane by a factor of two. This was performed so that
subsequent adjacency matrices remained within the memory
limits of the IDL software used for much of the processing
and also to recover voxel volumes closer to the actual acqui-
sition resolution, since as part of the spatial normalization
process the time series’ were interpolated to the resolution
of the standard space template [48]. The rebinned response

maps thus had 0.12 mm3 voxels, close to the acquisition
resolution size of 0.09 mm3. A binary brain mask, covering
only slices for which complete data were present for all
subjects in all studies, was used to define brain parenchyma
voxels for further analysis. This resulted in networks of N =
8130 nodes (voxels).

A fully weighted, complete network was created for each
study by considering each voxel as a node and defining the
strength of the edge between each pair of voxels based on
the linear correlation between the response vectors associated
with each. Specifically, the weight of each edge wij was
defined as the absolute value of the Pearson correlation coef-
ficient ri j between the inter-subject response amplitudes in
each voxel, converted to lie under an approximately normal
distribution by applying Fisher’s r-to-z transformation:

wij =
∣
∣
∣zi j

∣
∣
∣,

zi j = 1
2

log

(

1 + ri j
1− ri j

)

,
(1)

where i, j ∈ {1, . . . ,Nnodes} specify the pair of nodes con-
nected by each edge. Note that these networks are undi-
rected—each edge simple conveys the strength of a con-
nection without regard to a causal direction. Each of the
four weighted networks was then converted into a binary
one by retaining only the edges with the highest weights
(i.e., representing the strongest connections). This step was
performed in order to make networks of this size tractable for
further analysis; specifically, calculation of nodewise network
parameters is substantially faster for sparse binary networks.
Although extension of complex network theory to weighted
networks is of considerable current interest, properties of
binary networks are well established and previous fMRI
network studies have also employed a binarization step. We
applied a threshold zthresh to the link weights, determined as
that which retained the strongest 2% of the Nnodes×(Nnodes−
1)/2 edges in the fully weighted network; that is, we worked
with equi-sparse networks, ensuring a consistent number of
network edges across data sets to emphasize differences in
the relative connection topology rather than overall edge
density per se. This value was empirically determined as
one that allows a diversity of node connectivities, whilst
retaining a connected network, and is consistent with the
thresholding scheme used in our previous seed region and
community structure analyses [43]. The network features
and in particular the anatomical profiles of the nodewise
connectivity parameters were robust across a range of
binarization thresholds (see Supplementary Data available
online at doi:10.1155/2012/615709). The threshold values
zthresh are summarized for each of the four networks analyzed
in Table 1.

The resulting binary networks can be represented math-
ematically by an adjacency matrix A, whose elements ai j
describe the connectivity:

ai j =
{

1, if nodes i and j are connected

0, otherwise.
(2)
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Table 1: Summary of global network parameters for the four
phMRI networks and the random networks.

Drug zthresh Power law slope K C γ σSW

Amphetamine 0.71 −1.031 162.3 0.387 3.989 3.011

Fluoxetine 0.94 −0.888 183.1 0.453 3.893 2.836

Nicotine 0.96 −0.671 193.2 0.449 4.627 2.898

Vehicle 0.93 −0.844 177.8 0.422 4.795 2.672

For symbol definitions, see Section 2.

2.4. Nodewise Network Parameters. Based on the topology
defined by the adjacency matrix (2), a number of network
parameters can be derived that convey information about
the network. Here, we investigate the node degree k and the
clustering coefficient c, as follows.

The degree ki of any node i is simply the number of nodes
to which it is connected, that is, the number of edges incident
upon it:

ki =
Nnodes∑

j=1

ai j . (3)

The clustering coefficient ci is defined as the fraction of
total possible edges Nedges(Gi) in the sub-network Gi, defined
by all nodes directly connected to node i, that are actually
present:

ci =
2Nedges(Gi)

ki(ki − 1)
. (4)

In other words, this parameter reflects how many pairs of
nodes connected to a given node are also connected to each
other.

Global, whole-network histograms for the parameters k
and c were generated for each network. These distributions
capture global statistical properties of the network and
reflect its basic principles of organization. The form of the
histogram of node degree k is of particular interest and in
networks derived from human functional imaging data has
been observed to show power law behavior (a straight line
when plotted on logarithmic scales) up to a high-degree
cutoff [13, 14]. The power law behavior of the networks in
the present study was quantified by fitting an equation of the
form y = k−γ to the linear portion of the histogram, where
y is the frequency (number of nodes in the bin) and k is the
mean value of each bin in the histogram.

Each network was further characterized by calculating
the following global summary parameters:

(i) The power law decay constant from the degree dis-
tribution histogram;

(ii) K , the average degree ki over all nodes in the network;

(iii) C, the average clustering coefficient ci over all nodes
in the network.

The presence of long-distance links in random networks
results in small values of L, the average shortest path
between all node pairs, compared, for example, to regular

lattices with only next-neighbor links, with L scaling as
the logarithm of N (the total number of nodes). Watts
and Strogatz [18] identified a particular class of networks,
dubbed “small-world” networks, with comparable values
and scaling properties of L (L ≈ Lrandom) in the presence
of a high degree of local clustering C � Crandom (where
Lrandom and Crandom are the values from equivalent random
networks with the same Nnodes and link density). We thus also
report two indices that explicitly compare these properties in
the phMRI networks with those in appropriate comparator
networks, namely:

(i) γ = (C/Crandom), a measure of local clustering;

(ii) σSW = (C/Crandom)/(L/Lrandom), often referred to as
the “small world index” [19, 24].

For each phMRI network, we used 10 randomly rewired
versions of the network as a comparator null model [51].
All network parameters were calculated using the brain
connectivity toolbox in Matlab [52].

In addition, since each node corresponds to a position
in the image volume, their anatomical locations in the
brain were used to generate voxel-wise maps and profiles by
anatomical structure of each of the above parameters. In this
way, the dependence of the above parameters on brain region
was evaluated for networks associated with each drug.

For the anatomical structure profiling, volumes of
interest (VOIs) corresponding to specific brain structures
were selected to enable a formal statistical comparison of
differences in network parameters suggested by examination
of the parameter maps. VOIs were defined bilaterally using
a 3D reconstruction of a rat brain atlas coregistered with
the anatomical MRI template [48]. The VOIs selected were:
caudate putamen, cingulate cortex, insular cortex, medial
prefrontal cortex, parietal association cortex, visual cortex,
anterodorsal hippocampus, subiculum, ventral hippocam-
pus, primary motor cortex, whisker barrel field of the
primary somatosensory cortex, forelimb field of the primary
somatosensory cortex, dorsolateral thalamus, midline dorsal
thalamus and ventromedial thalamus.

3. Results

3.1. Global Network Properties. We first examined the global
characteristics of the rat brain networks. A summary of
the global parameters is provided in Table 1. Values of the
parameters γ and σSW were substantially greater than unity
and consistent with “small-world” behavior, whereby any
one node is connected to any other node in the network by
a far fewer number of edges than in a random network with
the same overall number of nodes and edges.

The degree histograms for all four of the phMRI
networks exhibited power law (count ∼ k−γ) behavior,
characterized by a near linear dependence of frequency on
k when displayed on a log-log plot, up to a high-k cut-
off of k ∼ 800–900 (Figure 1(a)). The presence of a cut-
off in the distribution of kreflects the finite size of the
networks. The decay parameters γ were similar in each case,
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Figure 1: Global parameter histograms. (a) Histograms of the node degree (k) reveal a power law dependence of frequency on k (evident as
a linear relationship in this log-log display) up to a high-frequency cutoff for all networks. The slope of the linear portion of the histograms
is similar in each network as indicated by the lines of linear fit (shown here offset below the data for visual clarity) and the values of γ in
Table 1. Note that the histogram for the vehicle network reaches zero at a lower value than the three drug challenge networks, indicating
fewer nodes with very high degree. (b) Histograms of the clustering coefficient (c) for each network reveal an increased spread of values for
each of the active drug networks relative to the vehicle network.

ranging from−0.67 for the nicotine network to−1.03 for the
amphetamine network (Table 1).

We also examined histograms of the clustering coefficient
c for each network (Figure 1(b)). While some differences in
the median values across networks were observed (Table 1),
we also found strong drug-dependent changes in the
distribution of c values; in particular, each of the three
active-drug networks evidenced a profile distinct from the
vehicle network and indicated drug-dependent increases and
decreases in c. While all three active drug networks showed
a broader spread of c values compared with vehicle, the
amphetamine network contained more nodes with lower
values of c, whereas the fluoxetine and nicotine networks
contained more nodes with higher values of c.

3.2. Anatomical Dependence of the Local Connectivity Param-
eter k. We next examined the anatomical dependence of
node degree and clustering coefficient, both by mapping
these parameters nodewise back onto the anatomical brain
template and by statistical comparison with the vehicle
network in selected brain structures of interest. The maps
of the node degree k revealed a strong dependence of
connectivity on brain region in all of the phMRI networks
(Figure 2).

In the amphetamine network, voxels with the highest
values of k were localized in particular to frontal and pre-
frontal cortical regions, including the orbitofrontal, medial
prefrontal, cingulate, insular, motor, and somatosensory
cortex (Figure 2(a)). Sub-cortical regions containing highly-
connected voxels included parts of the striatum (caudate
putamen and accumbens), structures in the ventromedial
thalamus and medial hypothalamus, with small foci also in
the regions of the ventral subiculum and lateral entorhinal
cortex.

In the fluoxetine network (Figure 2(b)), voxels in cortical
regions were also characterized by high k, but there were
substantially more highly-connected sub-cortical nodes evi-
denced by high-connectivity nodes in the caudate putamen,

amygdala and more extensively in the thalamus. Midbrain
regions, including parts of the superior colliculi, periaque-
ductal grey, and medioventral nodes consistent with the
raphe nuclei were also highly connected in the fluoxetine
network.

The nicotine network also evidenced high connectivity
in prefrontal and frontal cortices, parietal association cortex,
with focal high-k subcortical foci within the thalamus,
hypothalamus and amygdala (Figure 2(c)).

In contrast, the anatomical distribution of k in the
vehicle network was scattered with a noisier and overall
less symmetric appearance than for the networks derived
from the three psychoactive drugs (see Supplementary
Data)—only slight anatomical dependence was evident with
regions of relatively higher connectivity including the medial
prefrontal cortex, and nodes within the thalamus and ventral
hippocampus/entorhinal cortical regions.

3.3. Anatomical Dependence of the Clustering Coefficient c.
The anatomical distributions of the cluster coefficient c are
shown in Figure 3. Again, similarities and differences in the
anatomical features across networks are evident.

In the amphetamine network (Figure 3(a)), the regions
of high c showed some commonality with those of high k
(cf. Figure 2(a))—in particular in frontal (somatosensory,
motor) and prefrontal cortices. However, high-k foci in the
ventromedial thalamus and hypothalamus were not evident
in the c map. Moreover, in the caudate putamen, high-c
nodes were found more rostrally than high-k nodes.

In the fluoxetine network (Figure 3(b)), the regions of
high-c in the frontal slices were more medial and preferen-
tially localized to the mPFC and accumbens, in contrast to
the k map where the high-k voxels were distributed across
the motor cortex and more widely in the caudate putamen.
Compared with the amphetamine network, more high-c
nodes were localized in more caudal regions, including the
midbrain areas identified above.

In the nicotine network, regions of high-c appear less
well-defined than those of high-k, but high-c regions in the
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Figure 2: Anatomical distributions of node degree k. (a) amphetamine, (b) fluoxetine, and (c) nicotine phMRI networks. In order to
highlight the neuroanatomical correspondence of the most highly connected nodes, the overlay shows the upper quartile (75%–100%) of
the k distribution for each network (the color scale maxima are compressed slightly to optimize the dynamic range.)

more dorsal sensorimotor cortices and ventral hippocam-
pus/entorhinal cortex are evident (Figure 3(c)). Interestingly,
the medial and prefrontal cortices, identified in Figure 2 as
high-k regions, are not regions of high c in this network.

The vehicle network showed few anatomically meaning-
ful regions of high c, with the exception of the medial pre-
frontal cortex and entorhinal cortex (Supplemental Data).

3.4. Differences between Drug and Vehicle Networks by An-
atomical Region. We also examined the anatomical pro-
files of k and c across selected VOIs representing brain
structures of interest. Figure 4 illustrates the differences in
connectivity structure between the active drug networks and
the vehicle network. Consistent with the nodewise maps
reported above, the latter was characterized by relatively
flat profiles of both parameters with the exception of the
mPFC and cingulate cortex (Figure 4(d)). In contrast, the
other three networks show clear shifts, as a function of
both brain region and drug, in the values of both k and c
(Figures 4(a), 4(b), and 4(c)). While some brain regions

exhibited an increase in connectivity in the active pharma-
cological state, in others the values were decreased relative to
vehicle.

We further examined these differences in anatomical
profile of k and c at the VOI level by statistical comparisons
between the node parameter values within each brain
structure for each psychoactive drug network compared
to vehicle (Mann-Whitney tests). Results for the node
degree k are summarized in Table 2. The fluoxetine network
had the highest connectivity in thalamic regions, and a
differential distribution of k across different hippocampal
regions. In contrast, the amphetamine network exhibited
very low connectivity within the thalamic and hippocampal
regions and a differential distribution across cortical regions.
Profiles of c by VOI for each of the amphetamine, fluoxe-
tine, and nicotine networks also confirmed the differential
anatomical dependence indicated by the parameter maps
(Table 3). Common differences from vehicle across all three
psychoactive drug networks were increased k in cingulate,
motor and somatosensory cortices, and increased c in motor
and somatosensory cortices. In other brain regions—in
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Table 2: Differences in degree k by VOI compared to vehicle network.

Brain region VOI Amphetamine Fluoxetine Nicotine

Prefrontal cortex
Cg + +++ +++

mPFC + — ns

Somatosensory
and motor cortex

M1 +++ +++ +++

S1BF +++ +++ +++

S1FL +++ +++ +++

Other cortex
ctxV — +++ +++

Ins +++ ns ns

PtA ns + +++

Hippocampus
hcAD — — ns

hcS −− ns ns

hcV — ns −
Striatum CPu ns +++ —

Thalamus
thalDL — +++ —

thalMD — ++ ns

thalVM ns ns ns

“+” signs indicate significantly greater k compared to vehicle while “−” signs reflect significantly lower k, determined in each case using Bonferroni-corrected
Mann-Whitney tests: + or − indicates Pc < 0.05, ++ or – indicates Pc < 0.01, and +++ or — indicates Pc < 0.001 (Abbreviations: Cg: cingulate cortex;
mPFC: medial prefrontal cortex (prelimbic and infralimbic regions combined); M1: primary motor cortex; S1BF: barrel field of primary somatosensory
cortex; S1FL: forelimb field of primary somatosensory cortex, ctxV: visual cortex; Ins: insular cortex; PtA: parietal cortex; hcAD: anterodorsal hippocampus;
hcS: subiculum region of hippocampus; hcV: ventral hippocampus; CPu: caudate putamen; thalDL: dorsolateral thalamus; thalMD: mediodorsal thalamus;
thalVM: ventromedial thalamus.)
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Figure 4: VOI profiles of network parameters. Selected VOIs rank ordered by degree (median k value in each VOI) for each network.
Amphetamine, fluoxetine, and nicotine networks (a–c) show both increases and decreases in k and c relative to the mainly flat VOI profile
of the vehicle network (d). Rank ordering of both parameters is similar for amphetamine and nicotine, but less closely coupled for the
fluoxetine network (see Table 2 for VOI abbreviation definitions.)

particular subcortically—the anatomical profiles were drug-
dependent.

3.5. Neuroanatomical Differences between High-k and High-
c Foci. At the scale of individual nodes (voxels), graphs of
c versus k (Figure 5) revealed that these two parameters
were not related by a simple monotonic dependence. For
all four networks, there was a far greater range of values
of c at lower values of k. The vehicle network (Figure 5(d))
was characterized by a spread in c values between ∼0.1
and 0.7 at low k, with the range of c converging to a
value ∼0.4 as k approached a maximum value ∼1000. In
contrast, for each of the three active drug networks the
distribution extended over a greater range in both k and
c. Dividing the brain into cortical and sub-cortical nodes
revealed that in the amphetamine and nicotine networks,
cortical nodes were shifted toward higher k and c, whereas
in the amphetamine network in particular the sub-cortical
nodes were shifted toward lower values of both k and c
(Figures 5(a) and 5(c)). In contrast, both cortical and sub-
cortical nodes in the fluoxetine network were characterized
by a greater extent toward higher values of k and c, with little
decrease in either parameter relative to vehicle (Figure 5(b)).
For all networks, nodes of highest degree were not those
with highest cliquishness, as represented by the clustering
coefficient.

Building on the above observations of differences
between active drug and vehicle networks at the VOI scale,
we anatomically mapped nodes of altered connectivity at
the finer neuroanatomical scale offered by the individual
voxel nodes. Using the vehicle network as representing a
baseline physiological state, we determined common cutoff
values of k and c for the three active drug networks. The
95th percentile of the vehicle k distribution and the 2.5th
and 97.5th percentiles of the vehicle c distribution yielded
cutoff values of k > 657, c < 0.28, and c > 0.50, shown as
dashed lines in Figure 5. The con/disjunction maps depicted
in Figure 6 highlight the voxels in which the nodes of highest
k and those of highest c are localized for each network and
indicate the presence of heterogeneity on a finer spatial scale
than VOI-scale parcellation schemes.

Interestingly, nodes with highest values of c were, in
general, differentially localized from those with the highest
values of k. For all three drug networks, high-k and high-
c nodes were identified within the sensorimotor cortex,
with the greatest amount of overlap for the amphetamine
network. Clear boundaries between high-k and high-c nodes
separated the sensorimotor and prefrontal/cingulate cortices
in all networks (Figure 6). In the amphetamine network, the
mPFC was dominated by high-k nodes, whereas a portion
of the cingulate cortex more caudally was a high-c focus. In
the fluoxetine network, both mPFC and cingulate contained
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Table 3: Differences in clustering coefficient c by VOI compared to vehicle network.

Brain region VOI Amphetamine Fluoxetine Nicotine

Prefrontal cortex
Cg ns +++ ns

mPFC ns +++ ++

Somatosensory
and motor cortex

M1 +++ +++ +++

S1BF +++ +++ +++

S1FL +++ +++ +++

Other cortex
ctxV — +++ +++

Ins ++ ns +++

PtA — +++ +++

Hippocampus
hcAD — − ns

hcS — +++ ++

hcV — +++ ns

Striatum CPu — +++ +++

Thalamus
thalDL — +++ +++

thalMD — +++ ns

thalVM — +++ ns

“+” signs indicate significantly greater k compared to vehicle while “−” signs reflect significantly lower k, determined in each case using Bonferroni-corrected
Mann-Whitney tests: + or – indicates Pc < 0.05, ++ or – indicates Pc < 0.01, and +++ or — indicates Pc < 0.001. (See Table 2 for abbreviation definitions.)

high-c foci, whereas in the nicotine network the mPFC
and cingulate were high-k regions. The fluoxetine network
showed an interesting differential distribution between the
dorsal (CPu) and ventral (nucleus accumbens) striatum,
with the former dominated by nodes of high degree whereas
the latter featured nodes of high clustering coefficient. More
caudally, the fluoxetine and nicotine networks had high-c
foci in entorhinal cortex/ventral hippocampal regions along
with midbrain structures.

The low-c nodes were localized to sub-cortical and
midbrain regions in the amphetamine network, consistent
with preferential localization of the high-k and high-c
regions to frontocortical brain regions (see Supplementary
Data). Low-c nodes for the fluoxetine and nicotine networks
were few and localized primarily to the brain edge (see
Supplementary Data).

4. Discussion

There is increasing interest in using functional imaging
techniques to probe connectivity properties of the brain.
In this context, it can be intuitive to think of the imaging
data—and by extension the brain—as a network, comprising
a set of nodes with functional connections defined by links
between them. Beyond the conceptual tractability of such a
representation, this approach also enables concepts in net-
work theory to be leveraged. The present study extends the
application of complex network theory in functional imaging
of the rat brain by examining global as well as voxel scale,
nodewise, network parameters for data sets characterizing
the response to three canonical psychoactive drugs differing
in both clinical/behavioral profile and mechanism of action.

Whole-network histograms of connectivity parameters
can reveal statistical properties of the network that have
deep repercussions for its behavior. Moreover, changes in

connectivity properties may also reflect disease states—
for example, the global network-mean clustering coefficient
and small-world index have been shown to be reduced in
Alzheimer’s Disease relative to normal aging [16, 22]. For all
four of the phMRI networks considered here, whole-brain
histograms of k demonstrated the characteristic scale-free
signature up to a high-k cutoff as previously reported for
human brain motor task [13] and resting state [14] data.
The form of these distributions was robust to the binariza-
tion threshold and independent of the challenge drug. A
distribution of this type is qualitatively different from that
found with random networks, where the degree distribution
is strongly unimodal [53]. Heavy-tailed, scale-free degree
distributions reflect the presence of a significant number
of highly connected nodes, or “hubs,” a characteristic that
results in short average distance between any two nodes of
the network, and in robustness to random failure of nodes
[53]. This is consistent with our observation in the present
study of highly-connected brain regions in both cortical
and sub-cortical structures in all three active drug networks.
Scale-free characteristics have been found in several network
analyses of functional imaging data in humans [13, 14].
However, structural studies, based, for example, on diffusion
MRI tractography [26], tend to find more exponential
distributions (linear on a log-linear scale), consistent with
the relatively uniform distribution of neuronal density in
grey matter [54]. Hence, it may be argued that the presence
of highly connected hubs reflects functional organization of
the brain, rather than the structure of the neuronal substrate
[10].

In the present study, the anatomical distributions of
two key nodewise connectivity parameters—the node degree
k and the clustering coefficient c—revealed bilaterally
symmetric patterns whose features correlated well with
known anatomical subdivisions of the brain—including, for
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Figure 5: Scatter plots of c versus k for all nodes, at the voxel scale. Overall, low degree (k) nodes were associated with a spread of clustering
(c) behaviors, whereas the nodes of highest degree had clustering coefficients toward the middle of the range. Compared with vehicle (d), the
active-drug networks (a–c) had a greater range in both k and c. Amphetamine and nicotine showed a differential shift in the k-c distributions
between cortical and subcortical nodes, whereas for fluoxetine nodes in both brain subdivisions were shifted to higher values. The green
lines indicate cutoff values used to identify nodes whose k and/or c characteristics were outside the range associated with the vehicle state
(see text).

example, sensorimotor, cingulate, and prefrontal cortices
(see Figures 2, 3, and 6). These patterns revealed a common
increase in connectivity in sensorimotor cortical regions but
a dependence on the challenge drug elsewhere in the brain.
A statistical analysis of nodes grouped into anatomical VOIs
demonstrated significant differences from vehicle in median
k and c within large-scale brain structures. Interestingly, both
increases and decreases in connectivity relative to vehicle
were observed (Figures 4 and 5). This is consistent with a
preferential functional engagement of certain interregional
connections and a suppression of others in the pharma-
cologically active states. The presence of common features
of the anatomical distribution in the sensorimotor cortex
for all node-parameters investigated (high k and high c)
suggests that these reflect a general functional or structural
organization of the rat brain, consistent with the high local
connectivity of cortical grey matter.

Regions of high k reflect voxels that are functionally
connected to many others. Studies in which clusters of
functional connections in these data were elucidated [6,

42, 43, 55–57] indicate that the voxels in the sensorimotor
cortices are likely to be preferentially connected to each
other, consistent with the widespread distribution of high-
k nodes in the cortex for all three drug networks. However,
foci of high node degree were also observed as a function
of challenge drug in subcortical structures including the
thalamus and striatum, and midbrain regions including
the raphe nucleus. The clustering coefficient c reflects the
extent to which the nodes connected to a given node are
interconnected within themselves and can be interpreted as
an index of local connectivity (where “local” is defined by
connections and does not necessarily coincide with anatom-
ical locality) and also representative of local information
transfer efficiency [15, 58]. For the d-amphetamine network,
the anatomical profiles of k and c both had a strong cortical
localization, consistent with a strong cortical subnetwork
[42]. In contrast, for fluoxetine regions of high c were more
localized to prefrontal/cingulate cortices and sub-cortical
structures such as the thalamus. This is consistent with the
observation of a large sub-network involving these structures
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Figure 6: Maps of high-k and high-c foci for each drug network. These maps were created using cutoff values of k and c based on the vehicle
parameter distributions (see Figure 5). The maps illustrate the anatomical disjunction between nodes of highest clustering, compared with
those of highest degree. The neuroanatomical dependence of these is a function of the applied pharmacological challenge for prefrontal and
subcortical regions, but similar across networks in the sensorimotor cortex.

by both seed region analysis [6] and network partitioning
approaches [43, 55]. The nicotine network also showed
widespread elevated node degree in cortical regions, but
less clear anatomical structure in the maps of the clustering
coefficient. Nevertheless, the VOI analysis demonstrated a
different anatomical profile of both k and c in the response
to nicotine, in comparison with the other drug networks.
Overall, the high-k and high-c nodes shown in Figure 6
lie within the communities of “core” nodes identified in a
network partitioning analysis of the same data [55].

In networks such as those considered here, with connec-
tions based on the response to the injection of a pharmaco-
logical agent, comparison with a vehicle network is valuable.

Explicit comparison with a vehicle group is standard
practice in more traditional group analysis approaches in
order to differentiate the effects of the pharmaceutical
compound per se from those due to the solvent in which it
is dissolved. Ideally a benign vehicle, such as physiological

saline in the group analyzed here, is used and expected to
elicit minimal response. Nevertheless, in addition to captur-
ing physiological “baseline” variation in the time courses,
vehicle injection may itself give rise to weak effects. In the
present context, this allows network structure arising from
the intravenous injection of the vehicle to be characterized
and used as a baseline for determining effects due to the
compounds of interest. In the vehicle group analyzed herein,
an intravenous injection volume of 1 mL/kg was used, along
with a 0.3 mL/kg flush, yielding a total injection volume
of 1.3 ml/kg, injected over one minute. For a 300 g rat,
assuming a blood volume of 18.77 mL, this equates to ∼7%
of the total blood volume. When using blood pool contrast
agents as in the CBV method employed in the present
study, this results in a slight dilution of the agent which
can manifest as a small central signal change post-injection.
The injection may also give rise to an autonomic response
whose response in particular brain regions may manifest
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as correlated signal changes, albeit of small amplitude.
The network analysis showed weaker anatomical features of
connectivity parameters in the vehicle network than in the
other three, with elevated k and c observed in prefrontal
cortical regions. Indeed, the global degree distribution of
the vehicle network had a scale-free structure very similar
to the other phMRI networks, consistent with findings of
preserved global topological structure in the presence of
cognitively and pharmacologically induced perturbations
in (local) functional connectivity in human brain imaging
studies [15, 36, 37].

Nevertheless, the connectivity characteristics in the active
drug networks were qualitatively different from the vehicle
network, as evident from Figures 4–6. Indeed, using the
vehicle network as a quantitative reference, regions of both
high-k and high-c were clearly identified for all three active
drug networks (Figures 5 and 6). These indicated the
presence of foci in frontal cortices as a common feature
across drugs. Moreover, by considering nodes at the scale
of individual voxels, we were able to resolve an anatomical
differentiation between the nodes with highest k and those
with highest c at a finer spatial scale than that of typical
VOI parcellations. While the use of more liberal cutoff values
in Figure 6 would result in increased overlap between high-
k and high-c nodes, the selected values convey that nodes
with highest values of k do not, in general, coincide with
nodes of highest c—a finding implied also in the scatter
plots depicted in Figure 5. Furthermore, the maps in Figure 6
also illustrate how the highest-k and highest-c nodes often
occupy anatomically adjacent brain structures, particularly
in frontal cortical, prefrontal cortical and striatal regions.
Sub-cortical foci were also identified, in particular in the
fluoxetine network. In contrast, few sub-cortical high-k or
high-c nodes were identified for the amphetamine network
at the thresholds used here, despite the presence of a sub-
network from the VTA projecting forward to the ventral
forebrain and the mPFC [6, 42, 55]; this may reflect the
smaller size of this module, or potentially a “sequential”
nature of connections along this highly localized pathway
(see, e.g., Figure 3 in [6]), which would also tend to produce
lower k and c values.

As in previous studies examining network characteristics
of functional imaging networks, we reduced each complete,
weighted network (in which all possible links exist and have
a variable weight dependent on the correlation in response
between its two nodes) to a binary one. The primary reason
for this was computational tractability for the relatively
large (ca. 104 nodes) networks that resulted from retaining
the spatial scale of functional image voxels. For the main
results presented here, we thresholded each network so as
to retain the strongest 2% of the edges in the binarized
version. The resulting network topology represents a middle
ground between two undesirable extremes: as more edges
are retained, node connections become increasingly dense
and topological distinction is lost; alternatively, as fewer
edges are retained, the network becomes disconnected and
topological information becomes increasingly suppressed.
In fact, the global network properties and the relative
anatomical distribution of the network parameters k and c

are robust to the precise value of the binarization threshold
over a range of thresholds in this “intermediate” regime
of interest (see Supplementary Data). Furthermore, the 2%
networks at the voxel scale satisfy the K > ln(Nnodes) criteria
for estimable topological properties in random comparator
networks of the same size [15].

In human studies, brain functional connectivity is typi-
cally derived from fMRI series by calculating correlations in
the time domain. Recent progress has also been made toward
establishing robust and reproducible temporal correlation
patterns in rodent fMRI [59–64]. Based on the nature of
the present phMRI data, acquired with a lower temporal
resolution than required to resolve temporal correlations, we
constructed and characterized networks derived from inter-
subject correlations in the response amplitude following
drug administration, following a procedure established in
2DG autoradiography [38] and PET [39, 40]. The correlated
responses used to determine the links can be interpreted
as reflecting a functional coupling in response to the
pharmacological challenge in each case [38]. It should be
noted that the concept of functional connectivity was first
introduced in this context, based on inter-subject correlation
analysis and prior to the invention of fMRI. Moreover, this
approach has been employed recently to elucidate anatomical
networks of grey matter volume from structural MRI data
[23, 34]. The use of cross-subject correlations to derive
functional connectivity from phMRI data has been recently
demonstrated [6], shown to delineate functional connec-
tivity along different neurotransmitter systems when they
were selectively stimulated pharmacologically, and further
validated in subsequent work [42, 55].

The images in this study were smoothed before conver-
sion into the network representation, introducing a local
correlation between responses in neighboring voxels. A key
reason for smoothing is to compensate in part for residual
differences in image alignment between different subjects
when performing group-level, voxel-wise operations. In the
present data, the networks are derived from inter-subject
correlations and so spatial normalization of the image data to
a common space is critical. To assess the effect of smoothing,
we also performed the analyses on networks derived from
unsmoothed image data. Smoothing did not greatly affect
global characteristics nor anatomical distribution of param-
eters; a fine anatomical resolution was maintained (Figures
2, 3, and 6). The results in terms of global and anatomical
parameter distributions were highly consistent with those
obtained from the smoothed image networks—the most
noticeable difference was that the parameter maps appeared
noisier and less easy to interpret visually in the unsmoothed
case. Thus, to depict the neuroanatomical dependence of
the network parameters with maximum clarity, we presented
data based on the smoothed images.

An important feature of networks generated from func-
tional imaging data is that each node represents a brain
region and has a well-defined neuroanatomical location.
Here, we investigated the dependence of node degree and
clustering coefficient in response to different pharmaco-
logical stimulation in the rat. Global degree histograms
indicated similar global, scale-free structure in all networks.
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However, nodewise maps at the scale of functional image
voxels and VOI-level comparisons of these parameters
revealed drug- and brain region-dependent modulation of
connectivity parameters relative to the physiological baseline
state. Increases in both node degree and clustering coeffi-
cient in frontal cortices were observed for all active-drug
networks, revealing foci of high connectivity independent
of the pharmacological challenge. Sub-cortical and pre-
frontal features were stimulus-dependent, and showed a
disjunct distribution of nodes of highest degree versus
those with highest clustering coefficient. These findings
suggests that the cortical foci of high connectivity reflect the
intrinsic functional organization of the rat brain, with the
connectivity properties and node roles in sub-cortical and
prefrontal regions being more dependent on the activation
of specific neurotransmitter systems, that is, on the specific
dynamics of the functional processes elicited by the different
pharmacological challenges.

Summary

The brain’s functional architecture is complex, and largely
unknown. Recently, correlation analyses of brain activity
measured by neuroimaging methods have been shown to
resolve patterns of functional connectivity, thus providing
a powerful means to unravel its details. Functional con-
nectivity data can be naturally represented in the form of
networks, in which the nodes are represented by individual
brain regions or image voxels and their interconnections
are determined by the correlation strength between each
pair of regions. The global topological properties of these
networks reveal emergent features of the brain and provide
measures of the integration of function within the brain.
However, the mammalian brain is not a homogeneous
network. For example, the neocortex presents a substantially
different functional organization compared with subcortical
structures. Here, we applied functional MRI methods to
study the anatomical distribution of local network param-
eters in the rat brain at high spatial resolution (∼ 400μm)
under different stimulus conditions. We demonstrate that
substantial differences in network topology and functional
connectivity exist between brain regions that evolved at
different times. Some of these statistical properties are inde-
pendent of the neurotransmitter system activated, indicating
that they reflect general features of the underlying anatomical
connectivity rather than specific aspects of the functional
process elicited by the stimulation paradigm.
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