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Abstract

Persistent pain produces complex alterations in sensory pathways of the central nervous system
(CNS) through activation of various nociceptive mechanisms. However, the effects of pain on
higher brain centers, particularly the influence of the stressful component of pain on the limbic
system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic
factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also
been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation
during exposures to various stressors. Results of this study showed that injections of complete
Freund's adjuvant (CFA) into the hind paw increased NK-| receptor and BDNF mRNA levels in
the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the
amplification of ascending pain signaling. An opposite effect was observed in the hippocampus,
where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously
observed in immobilization models of stress and depression. Western blot analyses demonstrated
that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-
binding protein (CREB), while in the hippocampus the activation of this transcription factor was
significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF
genes may be partially regulated by common intracellular transduction mechanisms mediated
through activation of CREB. These findings suggest that persistent nociception induces differential
regional regulation of NK-I receptor and BDNF gene expression and CREB activation in the CNS,
potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent
sensory activation vs. modulation of the higher brain structures such as the hippocampus.

Introduction

To date, pain-induced peripheral and central sensory acti-
vation has been well characterized; however, little empha-
sis has been placed on studying the physiological
mechanisms of the stress-like component of pain and its
relationship to mood or affect. The importance of the

emotional aspects of chronic pain and their impact on
cognition and the overall perception of the nociceptive
stimuli is augmented by clinical observations that major-
ity of chronic pain patients often suffer from various
forms of depressive illnesses [1-4]. The hippocampus, one
of the main regulators of affect within the limbic system,
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has been previously shown to exhibit a robust stress-
induced neurodegenerative plasticity related to the patho-
physiology of depression [5-8]. Furthermore, the hippoc-
ampus has also been associated with the processing of
pain-related information, particularly its potential role in
shaping the affective-motivational response to noxious
sensory stimulation. For example, peripheral administra-
tion of formalin was shown to attenuate levels of Fos pro-
tein in the rat hippocampus [9], while microinjections of
lidocaine or glutamate receptor antagonists directly into
the dorsal hippocampal formation decreased formalin-
related nociceptive behaviors [10,11].

The tachykinin neuropeptide substance P (SP) and brain-
derived neurotrophic factor (BDNF), each expressed by a
subset of primary sensory neurons, are known modulators
of nociceptive processing within the CNS [12-14]. Upon
tissue injury or noxious stimulation, SP and BDNF are
released into laminae I and II of the spinal cord dorsal
horn, where through activation of their respective postsy-
naptic receptors, neurokinin-1 (NK-1) and tyrosine kinase
B (trkB), contribute to development of hyperalgesia and
central sensitization associated with chronic pain [15-18].
Both NK-1 receptors and BDNF are also highly expressed
in the limbic system, primarily the amygdala, the hippoc-
ampus and the hypothalamus [14,19,20]. Their potential
involvement in the processing of mood/affect has been
suggested by clinical observations that NK-1 receptor
antagonists have antidepressant properties [21,22], while
amplification of hippocampal BDNF levels is considered
to be a possible common down-stream effect of various
antidepressant psychopharmacotherapies [23,24]. How-
ever, the influences of these neuromediators on modula-
tion of neuronal plasticity following chronic pain,
particularly their functional differences in the spinal dor-
sal horn vs. the hippocampus, are still largely undefined.

Previous studies have shown that intracellular transcrip-
tional regulation of NK-1 receptor and BDNF genes, dur-
ing either spinal nociceptive processing or stress-related
stimulation of hippocampus, may be modulated by trans-
duction pathways involving activation of extracellular sig-
nal-regulated kinases (ERK)/cAMP response element
binding protein (CREB) cascades [25-29]. Once activated
by wide variety of extracellular signals through dual phos-
phorylation at threonine (Thr202) and tyrosine (Tyr204)
sites [30], p-ERK proteins translocate from the cytoplasm
into the nucleus and activate transcription factors such as
CREB. Subsequently, CREB phosphorylated at serine!33
(p-CREB) further induces transcription of genes contain-
ing cAMP response element (CRE) binding sites in their
promoter regions [31], such as c-fos, NK-1, BDNF, and
trkB [32-34]. The ERK/CREB-dependent cascade repre-
sents one of many intracellular pathways through which
the extracellular stimuli, such as pain, may be transduced
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into post-translational and transcriptional responses
within the neuronal tissue [25].

To address nociceptive regulation of regions of the CNS
related to potentially distinct sensory vs. affective func-
tions, we measured NK-1 receptor and BDNF gene expres-
sion in the spinal cord and the hippocampus following
administration of complete Freund's adjuvant (CFA) into
the rat hind paw. Furthermore, Western blot analysis was
used to assess whether the changes in transcription of
these two genes was correlated with CFA-evoked altera-
tions in amounts of nuclear p-ERK and p-CREB proteins.

Methods

Animal housing and handling

Young adult male Sprague Dawley rats (Harlan Farms,
Indianapolis, IN), used for all experiments, were age
matched (7-8 weeks old) at the beginning of the treat-
ments. All animals were allowed at least one week of
habituation before any treatments were applied. The
maintenance of the rat colony and all the animal treat-
ments were in accordance with NIH laboratory care stand-
ards and approved by the University of Kansas Medical
Center Institutional Animal Care and Use Committee.
Efforts were made to minimize animal suffering and to
reduce the number of animals used in this study. Rats
were housed (12 h light/dark cycle) in groups of three per
cage with ad libitum access to food and water; they were
mixed together so there is one member of each treatment
group in every cage. All rats, including the sham control
group, were handled the same way to reduce the effects of
stress associated with handling on the results.

Experimental design

Rats (200-300 g) received a subcutaneous (s.c.) injection
of 50 uL of Complete Freund's Adjuvant (CFA) (Sigma
Chemical Co., St. Louis, MO) into the plantar aspect of
the right hind paw. To establish a time-course of CFA's
effects, rats were decapitated at several time points after
CFA injection: 24 h (n =5 or 6), 4 days (n = 6) and 10 days
(n=06). In order to address the long-term effects of periph-
eral nociception, two additional groups of animals
received either a single (1x; CFA injection on day 0; n = 6)
or triple (3x; CFA injections on days 0, 7 and 14; n = 5 or
6) CFA administrations over a period of 21 days. Sham
control (n = 5 or 6) animals received no injection of CFA
into the hind paw, but were momentarily restrained and
their right hind paw manipulated. Otherwise, controls
were handled identically to the treatment animals in
terms of housing regime, daily transport from the animal
facilities to the laboratory, and interactions with the han-
dler.
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Tissue dissection

Immediately after decapitation, rat brains and spinal
cords from the same animals were removed. Brains were
dissected along the sagittal midline, followed by bilateral
removal of the hippocampus. Spinal cord tissues were
rapidly removed using hydraulic pressure (a forceful injec-
tion of ice-cold isotonic saline) applied to the caudal end
of the vertebral canal with a 60 ml syringe and a 16-gauge
needle. The lumbar portions (L1-L6) of the vertebral col-
umn were then dissected. The dorsal horn regions were
dissected by cutting the lumbar portion of the spinal cord
along the sagittal axis and dividing it into quarters. Only
the ipsilateral side of the spinal cord was assayed.

Solution hybridization — nuclease protection assays

The NK-1 receptor and BDNF (BDNF cDNA plasmid was
graciously provided by Ronald Duman, Ph.D., Yale Medi-
cal Center) sense and antisense cCRNA probes were gener-
ated by an in vitro run-off transcription reaction [23,35].
Synthesis of the antisense 32P-labeled cRNA probes using
[a-32P]UTP (3000 Ci/mmol) was based on the protocol
suggested by Promega (Madison, WI). Probes were puri-
fied through a NucAway spin column (Ambion, Austin,
TX), and DNA template was subsequently digested using
RQ1 Dnase (Promega, Madison, WI). The total cellular
RNAs were extracted from both the hippocampal and spi-
nal tissue samples using a rapid quanidinium isothiocy-
anate-phenol/chloroform extraction method and then
assayed for NK1, BDNF or B-actin mRNAs using solution
hybridization - nuclease protection assays as previously
described [35-37]. Specific mRNA amounts were deter-
mined by comparison to cRNA quantitation standards.
Levels of B-actin mRNA, unaffected by peripheral inflam-
matory nociception in either spinal cord or the hippocam-
pus, served as gel loading controls and to ensure that the
detected changes in NK-1 receptor and BDNF mRNA lev-
els were not due to a CFA-related global modulation of
gene expression within the CNS. Data values for NK-1
receptor and BDNF gene expression are reported as pg spe-
cific mRNA/ng B-actin mRNA [mean + S.E.M.].

Western blot analysis

Fresh ipsilateral dorsal horns of the spinal cord and bilat-
eral hippocampal tissues were initially homogenized in
lysis buffer containing a cocktail of phosphatase and pro-
teinase inhibitors, followed by the isolation of the nuclear
fractions using the Nuclear extract kit from Active Motif
(Carlsbad, CA). Tissue protein concentrations were deter-
mined using the BCA protein assay kit (Pierce, Rockford,
IL). Protein samples were electrophoretically separated on
an SDS-PAGE gel (10% Tris-HCI; Bio-Rad, Hercules, CA)
and transferred to polyvinylidene difluoride membranes
(0.2 um pores; Millipore, Bedford, MA). The membranes
were blocked with 2% bovine serum albumin (BSA) for 2
h at room temperature (RT) and then incubated with
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overnight at 4°C with anti-p-ERK (detects ERK1/2 MAPKs
phosphorylated at Tyr294; 1:200; Santa Cruz Biotechnol-
ogy) or anti-p-CREB (detects CREB phosphorylated at
Ser!33; 1:1000; Upstate Cell Signaling Solutions) primary
antibodies. All antibodies were diluted in Tris-buffered
saline solution containing 0.5% Tween 20 (TBST) and
0.2% BSA. After washing in TBST, the blots were incu-
bated with horseradish peroxidase (HRP)-conjugated sec-
ondary antibody for 2 h at RT (1:2000, Santa Cruz
Biotechnology for p-ERK1/2; and 1:70000, Jackson Labo-
ratories for p-CREB). Following the rinse in TBST, the
blots were developed using enhanced chemillumines-
cence for 1 min and exposed onto Kodak MR autoradio-
graphic film. To obtain loading controls, the blots were
incubated in stripping buffer (1 M glycine pH 7.0, 20%
SDS) for 1 h at 60°C and reprobed with antibodies recog-
nizing total protein (1:1000, Cell Signaling Technology
primary antibody for ERK1/2 or CREB; secondary anti-
body: 1:10000, Santa Cruz Biotechnology). Autoradio-
graphs were scanned using a Gel-Doc imaging system
(Bio-Rad, Milan, Italy) and analyzed with Quantity One
1-D software (Bio-Rad, Hercules, CA).

Statistical analysis

Data from all the experiments were analyzed using analy-
sis of variance (ANOVA) with either Fisher's PLSD or Stu-
dent-Newman-Keuls' tests used for post-hoc comparisons.
Significance was considered to be p < 0.05.

Results

Nociception-evoked regulation of NK-I receptor and
BDNF gene expression in the spinal cord and hippocampus
As a model of persistent, peripheral inflammation, we
used 50 pL injections of CFA into the plantar surface of
the hind paw, which produced robust local swelling, ery-
thema, and an overall hypersensitivity of the injected paw
that lasted for days. Twenty-four hours after the subcuta-
neous injection of CFA into the right hind paw, NK-1
receptor mRNA levels were significantly increased by
144% in the ipsilateral dorsal horn (Fig. 1A), supporting
our previous findings [35,38]. At 4 days post CFA treat-
ment, NK-1 receptor gene expression was still up-regu-
lated, but by day 10, NK-1 receptor mRNA levels were
similar to sham controls. At 21 days, neither a single (1x)
nor a triple (3x; injections on days 0, 7 and 14) CFA
administration produced a significant increase of NK-1
receptor gene expression in the spinal cord. Figure 1B
shows that nociceptive regulation of the BDNF gene ini-
tially appeared similar to NK-1, as CFA increased BDNF
mRNA levels at 24 h and 4 days post-treatment. However,
BDNF gene expression was continuously up-regulated
throughout the entire time course, with most robust
response occurring at 21 days after three weekly (3x)
injections of CFA (228% increase in BDNF mRNA levels
when compared to sham controls).
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Figure |

Histograms showing levels of NK-I receptor and BDNF
mRNA in the ipsilateral dorsal horn of the rat spinal cord 24
h, 4 days, 10 days and 21 days after a unilateral injection of
complete Freund's adjuvant (s.c.) into the right hind paw. A)
NK-1 receptor gene expression was significantly increased at
24 h and 4 days following CFA injection, with more robust
response occurring at the earliest time point. At 10 and 21
days post CFA treatment NK-1 receptor mRNA levels were
similar to sham controls. B) CFA treatments evoked
increases in ipsilateral dorsal horn BDNF gene expression at
all time points, with most robust up-regulation occurring at
21 days, following a triple CFA treatment. Data are
expressed in pg mMRNA/ng B-actin mRNA (Mean £ S.EM,; n=
6); *p < 0.05 compared to the sham control group [ANOVA
and Fisher's PLSD]; # < 0.05 compared to the CFA over 2|
days (1%; single injection) [ANOVA and Fisher's PLSD].

The effects of peripheral nociception on the hippocampus
differed from those found in the spinal cord. Due to the
unilateral nature of the pain treatment, all the gene
expression assays were initially performed on both the
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ipsilateral and contralateral sides of the hippocampus.
However, the mRNA levels are shown as hippocampal
bilateral average, since CFA did not evoke any sided differ-
ences in expression of either NK-1 receptor or BDNF
genes. Figure 2A demonstrates that injections of CFA sig-
nificantly decreased hippocampal NK-1 receptor mRNA
levels, similar to our previous findings after formalin
administration [36]. Down-regulation of NK-1 receptor
gene expression occurred as early as 24 h and persisted
through the 21stday post-CFA administration. Unlike the
spinal cord, the largest changes were observed in rats that
received triple CFA (3x) injections, which reduced NK-1
receptor mRNA levels by 83%. Likewise, hippocampal
BDNF mRNA levels were also significantly reduced at 24
h and 4 days after CFA treatments (Fig. 2B). Interestingly,
when measured at 21 days post CFA injection (1x), no
changes in BDNF gene expression were observed, suggest-
ing that the effects of a single CFA treatment on the hip-
pocampal BDNF are less persistent than in the spinal cord.
Moreover, three injections (3x) evoked similar diminish-
ing effects on hippocampal BDNF mRNA levels as those
observed at earlier time points.

Nociception-evoked activation of ERK and CREB proteins
in the spinal cord and hippocampus

In order to address the intracellular signal transduction
pathways that may underlie the regulation of NK-1 recep-
tor and BDNF gene expression during inflammatory pain
in the CNS, we measured changes in the activation of
ERK1/2 and CREB proteins using Western blot analysis
(Fig. 3). Tissue levels of total endogenous ERK and CREB
proteins were also determined and used as SDS-PAGE
loading controls; the data are expressed as increases in
phosphorylated protein when compared to the total pro-
tein levels. Figure 4A shows that phosphorylation of ERK1
(p44) protein was not significantly altered in either the
dorsal horn or the hippocampus at 24 h post-CFA treat-
ment, nor after three weekly injections administered over
21 days. Similarly, CFA produced no apparent changes in
activation of the hippocampal ERK2 (p42) either; how-
ever, in the spinal cord, a 55% increase in levels of p-ERK2
were observed 21 days after three CFA treatments (Fig.
4B). Phosphorylated CREB, which may be activated by
various signaling pathways, can directly modulate the
expression of NK-1 receptor and BDNF genes through the
CRE sites on their promoter regions. As indicated on Fig-
ure 5, CFA increased levels of nuclear p-CREB protein in
the ipsilateral dorsal horn at 24 h and 21 days (70% and
104% increases, respectively), while in the hippocampus
phosphorylation of CREB was significantly diminished (a
33% decrease at 24 h vs. 26% decrease at 21 days), indi-
cating a similar region-dependent pattern of regulation as
observed with NK-1 receptor and BDNF genes.
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Figure 2

Histograms showing NK-I receptor and BDNF mRNA levels
in the rat hippocampus 24 h, 4 days, and 2| days following a
unilateral injection of complete Freund's adjuvant (s.c.) into
the right hind paw. A) Hippocampal NK-1| receptor gene
expression was significantly decreased bilaterally at all time
points post CFA injection. The most robust decreases in
NK-1 receptor mRNA levels occurred at 21 days after a tri-
ple CFA injection; significant difference was observed when
compared to either the control group or a single CFA injec-
tion 21 days group. B) CFA evoked bilateral decreases in
hippocampal BDNF mRNA levels at 24 h and 4 days post
injection. Note that at 21| days, a single CFA treatment (1x)
had no effect, while a triple injection (3%) induced a signifi-
cant down-regulation of BDNF gene expression. Data are
expressed in pg MRNA/ng B-actin mRNA (Mean £ S.EEM; n =
6); *p < 0.05 compared to the sham control group [ANOVA
and Fisher's PLSD]; #p < 0.05 compared to the CFA over 21
days (I%; single injection) [ANOVA and Fisher's PLSD].

Discussion
The mechanisms by which inflammatory nociception is
processed within the spinothalamic pathways of the CNS
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Representative images of Western blot analysis showing the
effects of CFA-induced hyperalgesia on p-ERK1/2 and p-
CREB protein levels in the rat hippocampus vs. the ipsilateral
dorsal horn of the spinal cord. Total protein from nuclear
fractions of the tissue was immunoblotted with either mono-
clonal anti-phosphoERK /2 (p-ERK: M, = 44 kDa; p-ERK2:
M, = 42 kDa) or monoclonal anti-phosphoCREB (p-CREB: M,
= 43 kDa) antibody. Tissue levels of constitutively expressed
total ERK and total CREB proteins were used as loading con-
trols. Proteins were visualized using secondary antibodies
conjugated to HRP and a chemilluminescence detection sys-
tem.

have been well established at both cellular and molecular
levels. However, the impact of painful stimulation on the
higher brain centers, mainly the emotion- and cognition-
processing components of the CNS, is still unclear.
Besides the sensory aspects of nociception, a negative
impact on affect is essential for accurate characterization
of a stimulus as "painful". Therefore, improved under-
standing of how pain affects the mood-controlling
regions of the brain would be very beneficial to treatment
of chronic pain in the clinical setting.

The experiments in this study were designed to conduct a
direct comparison of CFA-induced peripheral nociception
on the expression of NK-1 receptor and BDNF in the spi-
nal cord and hippocampal formation, one of the central
limbic regions involved in the regulation of affect. Current
results demonstrate that NK-1 receptor and BDNF mRNA
levels are initially increased in the ipsilateral dorsal horn
at 24 h and 4 days post CFA (Fig. 1), consistent with
results of other studies [35,39,40]. Previous reports have
suggested that SP and BDNF may co-localize in the same
large dense-core vesicles (LDCVs) of the small diameter
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Histograms showing quantitative results of Western blot
analysis for activation of ERK proteins 24 h (single injection)
and 21 days (three injections) after a unilateral administration
of complete Freund's adjuvant (s.c.) into the right hind paw.
A) CFA had no effect no phosphorylation of ERKI in either
ipsilateral dorsal horn of the spinal cord or bilateral hippoc-
ampus. B) Hippocampal levels of p-ERK2 protein were not
affected by the CFA treatment; however, in the dorsal horn
CFA evoked a significant increase in p-ERK2 at both 24 h and
21| days after the administration. Optical density values are
expressed as a ratio between the phosphorylated ERK (acti-
vated form) and total ERK (inactive form). Data are shown as
% increase over sham control (n = 5); *p < 0.05 compared to
control group (ANOVA and Student-Newman-Keuls' post-
hoc test).

primary nociceptors, and that their release is dependent
on the activation of tyrosine kinase A (trkA) receptors due
to enlarged levels of nerve growth factor (NGF) in the
periphery [14]. Increases in NK-1 receptor and BDNF gene
expression in the dorsal horn likely represent a secondary
effect resulting from facilitated activation of NMDA, NK-1
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Quantitative results of Western blot analysis showing the
effects of CFA-evoked peripheral nociception on activation
of CREB protein. CFA increased phosphorylation of CREB in
the ipsilateral dorsal horn at 24 h (single injection) and 21
days (three injections) post administration. Note that in the
hippocampus the same treatment produced an opposite
effect; p-CREB levels were significantly reduced at all time
points. Optical density values are expressed as a ratio
between the p-CREB (activated form) and total CREB (inac-
tive form). Data are shown as % increase over sham control
(n =5); *p < 0.05 compared to control group (ANOVA and
Student-Newman-Keuls' post-hoc test).

and trkB receptors located on the secondary afferents. This
effect is considered to be directly related to increased SP
and BDNF release from the terminals of primary nocicep-
tors in response to peripheral inflammation [15].

Another important aspect of this study was to address the
long-term effects of nociception on CNS gene plasticity.
Thus, 10 and 21 day time points were included in the
experimental design. Previously we reported that a single
injection of CFA produces thermal and mechanical hyper-
algesia for about 10-12 days post injection; however,
when CFA was administered three times (weekly injec-
tions) over 21 day period, hyperalgesia was present
throughout the entire time course [41]. Therefore, we also
compared the effects of single vs. triple CFA treatments on
gene expression over a 21 day period. Spinal NK-1 recep-
tor gene expression was not affected at these later time
points (Fig. 1A), while the BDNF mRNA levels continued
to increase, with the most robust response occurring after
three weekly administrations of CFA (Fig. 1B). The dis-
crepancy in pain-induced regulation of these two genes at
later time points could be due to an array of factors, rang-
ing from differences in susceptibility during long-term
sensory regulation to diverse intracellular conditions
required for induction of transcription or stabilization of
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the mRNAs. Besides having roles in activity-dependent
excitability, BDNF is also important for neuronal survival,
regeneration, outgrowth and overall maintenance [42],
suggesting that continuous expression of the BDNF gene
may be more important in development of latent stages of
chronic pain. Overall, the initial nociception-induced up-
regulation of NK-1 receptor and BDNF gene expression in
the spinal cord supports the requirement of these neuro-
modulators for the maximum amplification of ascending
pain signaling during central sensitization.

Nociceptive information from the periphery and the spi-
nal cord is transmitted to the brain mainly through spi-
nothalamic and parabrachial ascending pathways [43].
Furthermore, complex neuronal networks connect the
parabrachial area or the thalamus to the limbic regions
such as the hippocampus, the amygdala and the hypotha-
lamus, which can modulate spinal nociceptive processing
through activation of descending monoaminergic path-
ways from the brain stem [44]. However, the limbic areas
of the brain, particularly the hippocampus, are also
involved in control of stress responses and are considered
to be the main regulators of mood or affect. CFA evoked
robust decreases in NK-1 receptor and BDNF mRNA levels
in the hippocampal formation, contrary to the prominent
up-regulation seen in the spinal cord. A similar type of
hippocampal plasticity was previously observed after
either peripheral formalin injections or immobilization
stress, as both of these stimuli were shown to down-regu-
late hippocampal NK-1 and BDNF gene expression
[36,38,41]. The mechanisms responsible for the similarity
between nociception- and stress-evoked effects in the hip-
pocampus are not fully understood, but previous results
suggest that maintenance of the nociceptive regulation of
the hippocampus is not dependent upon continuous acti-
vation of the HPA axis [41]. The current results provide
additional evidence that persistent nociception may have
a significant effect on modulation of the higher brain
centers, further suggesting that both the NK-1 receptor
and BDNF may play a prominent role in pain processing
within limbic structures such as the hippocampus.

Previous studies have suggested that CNS events leading
to central sensitization during peripheral inflammation,
hippocampal regulation due to stress, or long-term poten-
tiation associated with spatial learning and memory may
be dependent on similar intracellular transduction mech-
anisms, primarily the activation of cytosolic ERK and sub-
sequent phosphorylation of nuclear CREB [29,45-50].
Both of these proteins are important for activity-depend-
ent gene expression, and are thought to play a key role in
synaptic plasticity contributing to translation of acute
stimuli into long-term events such as the development
and maintenance of chronic pain or depression. Western
blot analysis showed that 24 h or 21 days after CFA
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administration, p-ERK levels were generally not altered in
either the dorsal horn or the hippocampus, except for
slight increases in spinal p-ERK2 (Fig. 4). Previous reports
suggest that robust activation of spinal ERK following CFA
[25,26,50] may be transient, since p-ERK levels usually
peak within minutes after application of painful stimulus
and then start to diminish due to increased dephosphor-
ylation by various MAP kinase phosphatases [25,26,50].
We addressed initial p-ERK activation by assessing protein
levels at 10 min after 50 pL of CFA (data not shown);
however, changes in the regulation of either spinal or hip-
pocampal p-ERK levels were not observed at this time
point either. The discrepancy with previous reports may
be due to a lesser amount of CFA used in our experiments,
methods and/or quantitiative end-points used in each
study, or differences in specific time points when protein
changes were measured. However, eventual activation of
transduction proteins such as ERKs and other intracellular
kinases often initiates long-term synaptic plasticity
through modulation of post-translational and transcrip-
tional events that outlast both the initiating stimulus and
kinase activation [25]. This may, in part, explain increased
levels of nuclear p-CREB in the ipsilateral dorsal horn at
both 24 h and 21 days (3x) after CFA treatments (Fig. 5).
Elevated activation of CREB in the spinal cord further sup-
ports the role of this transcription factor in persistent
nociception. Similar to NK-1 receptor and BDNF gene
expression, CFA diminished hippocampal p-CREB levels,
a phenomenon reminiscent of that previously reported
during stress and depression [24,51], possibly by trigger-
ing intracellular events common to both types of stimuli.
Besides ERKs, the activation of CREB may be coupled to
other transduction factors, primarily the calcium/calmod-
ulin-dependent protein kinase (CaM kinases)- or protein
kinase A (PKA)-dependent cascades [27,52], to trigger the
transcription of target genes such as NK-1 receptor and
BDNF. Due to their similar patterns of nociception-
evoked regulation, these data imply that expression of
NK-1 receptor and BDNF genes could be at least partially
controlled by CREB-dependent intracellular signaling in
both the sensory and affective systems of the CNS [32].
However, the transcription of NK-1 receptor gene at the
later phase of inflammation is probably dependent on
other regulatory pathways, since no changes were
observed in the dorsal horn 21 days after CFA.

Conclusion

Our original hypothesis was that NK-1 receptor and BDNF
gene expression may be co-regulated by peripheral nocic-
eption, but the results of this study demonstrated that is
not the case, particularly at the longest time points tested
in our chronic pain model. However, diverse patterns of
gene expression suggest that NK-1 receptors and BDNF
may have different roles in various regions of the CNS
during chronic pain, since the spinal cord is an integral
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component of the sensory system, while the hippocam-
pus is a part of the limbic system and a key contributor in
regulation of affect. Novel information about the modu-
lation of sensitivity, function, and plasticity of the genes
encoding relevant neurotransmitters and their receptors,
which contribute to the overall perception of pain, may
give us a better idea of how to control the negative effects
of pain on the mood and may provide a major insight into
the development of improved therapeutic regimens for
treating depression-like aspects of chronic pain.
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