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rare variant metabolic QTLs in a Middle Eastern
population
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Metabolomics-genome-wide association studies (MGWAS) have uncovered many metabolic
quantitative trait loci (mQTLs) influencing human metabolic individuality, though pre-
dominantly in European cohorts. By combining whole-exome sequencing with a high-
resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we
discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel
altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations,
and 11 common variant mQTLs to putative protein-altering variants. This is the first work to
report common and rare variant mQTLs linked to diseases and/or pharmacological targets in
a consanguineous Arab cohort, with wide implications for precision medicine in the Middle
East.
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ARTICLE

etabolites represent functional intermediates to the end

phenotype, can be conserved over several years’ time

frame, and can uniquely identify individuals!. Several
studies have shown that they are influenced by a combination of
genetics and environment, the latter comprising both life style
exposures and microbial interactions’. Recent technological
improvements have enabled the accurate detection of thousands
of metabolites (collectively, the metabolome), adding highly
informative downstream read-outs supporting genetic and tran-
scriptomic signatures in the study of personalized medicine?.
With the abundance of such omics data, it will become possible to
infer causal relationship between constitutive genetic variants and
metabolite levels to accurately predict the likelihood of developing
pathophysiologic signatures, as a normal individual progresses
into a disease state.

To date, there have been several large-scale genome-wide
association studies for metabolic traits (mMGWAS)3710 the largest
(with broad non-targeted metabolomics) of which interrogated
7000 individuals of European ancestry and discovered 145 sig-
nificant metabolomics quantitative trait loci (mQTLs)!!. While
studies to date have uncovered hundreds of mQTLs, they have
also faced certain limitations. First, they relied on imputed gen-
otyping array data for the discovery of common variant mQTLs,
where high-quality SNPs are in non-coding regions. More
recently, next-generation sequencing (NGS) technologies have
become more affordable and begun to identify protein-coding
variants largely affecting metabolite levels, yet on a small scale of
individuals or metabolites'>™!* and very recently on a larger
scale!® (published while finalizing this manuscript). Second,
metabolite detection platforms continue to rapidly improve, and
deeper resolution can be gained today than previously {)ossible.
Third, as with lack of diversity in most GWAS studies'®, most
mGWAS to date have focused predominantly on populations of
European descent”31117) and recently, Asian and African des-
cent!8, yet little or no efforts have been described in Middle
Eastern populations.

We present the first large-scale metabolomics exome-wide
association study of a highly consanguineous Middle Eastern
population, by combining 1,303 metabolites (from the most
recent Metabolon DiscoveryHD4 platform) with deep whole-
exome sequencing data of 614 Qataris for discovery, and imputed
array data of another 382 Qataris for replication analysis. We
integrate this data to discover loci affecting metabolites and
metabolite ratios in this population, while fine-mapping loci to
putative functional variants at or near sentinel SNPs (a sentinel
SNP or sentinel metabolite refers to a lead SNP or a lead meta-
bolite). Moreover, by leveraging elevated consanguinity in this
population, we also discover rare variant loci associated with
metabolite levels, underscoring the metabolic individuality of
subjects from this ethnic population.

Results

Subject selection and genotyping. A total of 996 Qatari subjects
were selected for this study (Table 1), of whom 614 were whole-
exome sequenced (WES) for the discovery step, and 382 were
array genotyped for replication. For the purpose of replication,
both data sets were imputed using a reference set of 108 deeply
covered, phased Qatari genomes. A total of 1,650,892 imputed
exome variants were available for the analysis after Quality
Control (see Methods). All samples were analyzed on Metabo-
lon’s DiscoveryHD4 platform, where a total of 1303 metabolites
were detected (Supplementary Data 1). After applying strict QC,
826 metabolites (including 249 unknowns) remained for the
association analysis (Fig. 1 gives a schematic representation of the
study design).
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Pre-discovery exploration of replication in Caucasians. As an
investigation step prior to discovery, we attempted to replicate
145 previously known loci!! in the discovery cohort. We found
exact or proxy SNPs (SNPs in LD) for 101 of 145 loci in our
dataset, of which sentinel metabolites in 80 loci were matched to
metabolites in our cohort. For 13 loci, we replicated associations
between the reported SNP and the reported metabolite at a
Bonferroni p-value (p <0.05/80 = 6.25 x 107#), and for another 15
loci, we replicated the association at the same/proxy SNP but with
another metabolite (p <0.05/(101 x 826) =5.9 x 1077) (Supple-
mentary Data 2). In total, we replicated 28 loci (19.3% of 145 loci,
35‘%1 1of 80 replicable loci)—including 11 of the 20 most significant
loci*".

21 common variant loci influence metabolites and ratios. To
discover all metabolites associated with exome variants in 614
Qataris, 1.6 million imputed exome variants (272,061 SNPs after
LD pruning) were tested for association with 826 metabolites (see
Supplementary Fig. 1 for distribution of kinship-based heritability
estimates for each super pathway). This step uncovered
3127 significant associations (Bonferroni p<2.2x107!) (Sup-
plementary Data 7), with an average inflation factor of 0.98
(range: 0.83-1.05). Those associations collapsed into 19 inde-
pendent loci (see Methods), which we attempted to replicate
(based on the sentinel SNP and the sentinel metabolite) in the
imputed array data set (n=382) and found that 17 of them
replicated (p <0.05/19 =0.0026) and one nominally replicated at
p <0.05 (Table 2, Supplementary Datas 3-5).

In addition to single-metabolite-variant associations, we
examined each locus to identify significantly associated metabo-
lite ratios'®. To limit multiple testing, two approaches were used
to examine associations of metabolic ratios. First, we computed
the associations between SNPs (within 100 Kb of the sentinel SNP
from single-metabolite association analysis) and the ratio of the
sentinel metabolite to all remaining 825 metabolites. Second, for
all SNPs where two metabolites had been nominally associated in
the discovery phase (p<107) but in opposite directions
(opposite beta signs), we computed the association of the given
SNP to the ratio of that pair of metabolites. Both p-value and p-
gain!? thresholds were used to find significant ratios. A total of
11 significant SNP to metabolite ratio associations were
discovered with p <0.05/(826 x 18 + 826 x 272,061) = 2.2 x 10710
and p-gain 2(1/(2 x 0.05) x (826 x 18) = 1.48 x 10° (see Methods).
Seven of these resulted in metabolic fine-mapping of seven of the
loci discovered in the single-metabolite phase (i.e. where a ratio
replaced the single metabolite as the sentinel association),
whereas the remaining four were new associations at loci not
associated with single metabolites. Only three of those four
replicated in the cohort of 382 individuals (Table 2, and
Supplementary Datas 3-5), resulting in a total of 10 SNP to
metabolite ratio associations.

Table 1 Demographics (sample characteristics)

Demographic category Attribute
Gender (% females) 45%

Age (mean +s.d.) 501+£12.6
T2D (% with diabetes) 56%

BMI (mean +s.d.) 32+6.6

Q1:442 Q2:339 Q3:70, admixed: 54,
not assigned: 91
WES: 614, array genotyped: 382

Population information:
#subjects
Genotyping source: #subjects

WES whole-exome sequencing
Q1, Q2, and Q3 refer to Bedouin, Persian, and African ancestries, respectively, that present
subpopulations of the people of Qatar3®
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Fig. 1 Schematic view of the study design for the common variant analysis. ‘A" indicates the first method for ratio computation, where we computed the
associations between SNPs (within 100 Kb of the sentinel SNP from single-metabolite association analysis) and the ratio of the sentinel metabolite to all
remaining 825 metabolites. 'B' indicates the second method for ratio computation, where for all SNPs for which two metabolites had been nominally

associated in the discovery phase (p <1074, but in opposite directions (opposite beta signs), we computed the association of the given SNP to the ratio of

that pair of metabolites

Combined, we discovered 21 unique metabolite and metabolite
ratio quantitative trait loci (mQTLs) in Qataris (Fig. 2, and
Supplementary Figs. 2 and 3). The variance explained by these
genetic variants ranges from the highest value of 31% (5-
acetylamino-6-amino-3-methyluracil/1-methylxanthine with
rs4646257 in NAT2 locus) to 7% (association of undecanedioate
with ¢15p90683852 in SEMA4B locus) with an average of 14.8%
(Table 2, Fig. 3). Of the 21 loci, 7 (31%) were unknown to studies
that used older metabolomics platforms (studies prior to 2017)
and are defined here as newly identified loci (four loci were
concurrentl{ identified in a study published while finalizing this
manuscript'®, and three loci are novel (Table 2, Supplementary
Data 3). Five of those seven loci might be new due to the use of
the new metabolomics platform, another two (TMPRSSIIE and
SEMA4B) were not discovered in ref. 11, and other known loci
were fine-mapped to new metabolites, and not reported elsewhere
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(as rs2147896 in PYROXD2 with N-methylpipecolate, and
UGT3A1 with X-24348). We explored the frequencies of the
sentinel SNPs in the Genome Aggregation Database (gnomAD)?°
(Supplementary Data 3), and found that among the seven loci, the
sentinel SNP in two novel ones are not reported in the database
(PHYHDI1/NUP188, SEMA4B), and those in another two loci
(SLC22A24, TTC38/PKDRE]) are rare in other populations.

All 10 reported metabolite ratio associations represent meta-
bolic fine-mapping of loci discovered here or in previous studies.
According to this cohort, those ratios associate more strongly
than the single metabolites previously reported'!>. These
include the association of rs4646257 in NAT2 locus with the
ratio  5-acetylamino-6-amino-3-methyluracil/1-methylxanthine,
rs375811360 in NAT8 locus with 2-aminooctanoate/X-12511
(X-12511 is possibly 2-acetamidooctanoic acid as identified by
Metabolon), rs3756669 in UGT3A1I locus with X-24348/pregn-
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Table 2 21 Unique locus-metabolite pairs, indicating 7 newly identified and novel loci, 10 loci fine mapped with new metabolite
ratio associations, and 11 protein coding variants

Locus rsID Metabolite/Ratio p-value (pgain?) Beta Annotation® r2 Ref/NL/ Replication p-
(%)¢ NASY value®
5-acetylamino-6-amino-3-methyluracil -58 . 115
NAT2 rs4646257 i > 2.23%x10 0.970  IG, NFS: 31 (15) NAS
T-methylxanthine (6.83 x1046) rs1801280,
p.lle114Thr
rs4921913 5-acetylamino-6-amino-3-methyluracil 214%x10712 0.499 7.8 15y 9.6x107°
ACADS rs1799958 Ethylmalonate 218 %1073 0.885 p.Gly209Ser 285 (') 21x1072
NATS rs13538 Zﬂw 4.4x10747 -0.781 p.Phela3Ser 266 (15 NAS
-125M (8.6 %1035
rs13538 N-acetylcitrulline 5.5x10732 0.780 196 (115 3.7x107%
TMPRSSTIE  rs34109652 X-11491 (deoxycholic acid glucuronide or isomer)  3.28 x1073° -0.737 INT 214 (®) 3.8x1072°
SLCOTB1 rs4149056 glycochenodeoxycholate glucuronide (1) 3.06 x 1073 0.833 pVali74Ala 185 (15) NAS 55x10722
PYROXD2  rs2147896 N-methylpipecolate 9.13x10726 -0.663 p.Meta61Thr 183 (1) NAS 7.4%x1071°
UGT3AT  rs3756669 X-24348 . 1.55x10725 -0915 p.Cysi21Gly 166 () NAS
pregn steroid monosulfate (4.02x10'2)
rs3756669 X-24348 6.25x10713 -0.712 85 (M NAS 1.01x107°
1-(1-enyl-palmitoyl)-2-arachi-donoyl|-GPC(P-16:0,/20:4)" _25 _ 1115
FADS2 rs28456 X-24438(PC(P-16:0/203)] (958;52(1(1)076) 0.641 INT 178 (15) NAS
rs174560 X-24439 (PE(P-16:0/20:3)") 9.09x107" 0.457 INT 89 (115 1.6x1073
AGXT2 rs37370 3-aminoisobutyrate 8.45x1072! 0.810  p.Serl02Asn 13 @) 43x10710
PHYHDT'  rs181856093  X-22145 (2'-O-methyluridine) 3.29x10720 0.531  INT, NFS: 127 NL 1.3x107"
152302811,
INS:
€.3662-4A >
G
X-18921 -20 _ 1,15
THEM4 rs6690449 S02eh t(a;ésgx 2?09) 0.547 INT 141 (M15) NAS
rs2999534 X-23293 115% 107" 0426 1G 72 ("5 2.05x107*
UGTIAT rs78461713 bilirubin (E, E) 51x107"7 0.484 INT 106 (115 1.4%x10712
X-11440(tentatively steroid) 62 17 _ n 17
SULT2A1 rs62129970 4-androsten-3alpha, 17alpha-diol monosulfate(2) 375??321?010) 0951 1G n ™ 1410
SIC22A24F 1578176967 X-22379(androsterone glucuronide) 143 x10-16 0995  IG 108 (15 NAS
21-hydroxypregnenolone disulfate (6.75x106)
rs61285056 X-22379 (androsterone glucuronide) 9.11x10™M 0.765 INT 6.9 () 52x1078
SPTLCIPAT 152069258 . X23293 1.71x10716 0425 IG 106 NL 2.4%1076
cis-4-decenoyl carnitine (3.69 X 108)
TTC38! rst713sgey  §-22162 4264 x10716 0623 pAlal2val 104 (%) NAS
X-24513 (2.06 % 10°)
rs117135869 X-22162 8.8x107" 0.616 67 (™ 17 %1074
SLC22A5  rs274554 Tryptophan betaine 1.05%x10713 -0.430 INT g6 (1) 33x10710
ccBL2'e rs7530513 Imidazole lactate 5.6x10713 0.425 INT 8.1 ) 32x1072
SICI7AT  rsT165196 X-12824(hexanoylglutamine) 146 x 10712 -0543 pThr26dlle 88 (5 NAS 85x1078
X-T6087 (130 x 108)
CYP3A5 rs776746 X-12063 154 %1072 -0.620 SA, c.219- 7.8 (15 1.2x10712
237A>G
SEMA4B"  c15p90683852 Undecanedioate 118 x10710 0421 1G 7 NL 9.7x1074

Biochemical Name" indicates compounds that have not been officially confirmed based on a standard, but Metabolon is confident in its identity

p.## (missense), bold font indicates functional variant

apgain was introduced in'® as “an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations
alone”, calculated as pgain = min (pval(m1),pval(m2))/pval(mi/m2), given two metabolites m7 and m2

PSNP Annotation and Nearest Functional SNP (NFS), function, mutation, 1G refers to intergenic, INT (Intron), INS (Intron near splice), SA (Splice Acceptor)

r2 is percent of variance explained

dReference or Novel Locus (NL) or Novel Association (NAS)

®Exact replication SNP is indicated in Supplementary Dataset 4

fNewly identified/novel loci

&Newly identified nominally replicated

steroid-monosulfate, rs28456 in FADS2 locus with 1-(1-enyl-
palmitoyl)-2-arachidonoyl-GPC(P-16:0/20:4)/X-24438 (X-24428
is PC(P-16:0/20:3) as identified by Metabolon), rs6690449
in THEM4 locus with X-18921/X-23680 and rs1165196 in
SLCI7A1 locus with X-12824/X-16087 (X-12824 is hexanoylglu-
tamine as identified by Metabolon) (see expanded loci associa-
tions—Supplementary Data 5). Notably, the variance explained by
ratios was much higher than that explained by any single
metabolite for the same locus (Table 2); for example, for the
NAT?2 locus, the variance explained by the ratio of metabolites is
3.9-fold greater than that explained by the single metabolite;
similarly, 1.9-fold greater in the FADS2, UGT3AI and THEM4
loci, 1.5-fold greater in SLC22A24 and TTC38/PKDRE]J loci, and

4 | (2018)9:333

1.3-fold greater in the NAT8 locus (comparison of ratios to single
metabolites—Fig. 4).

We investigated the 21 loci for known eQTLs and disease or
pharmacological associations using several databases (biological
details are in Supplementary Data 6): GTEx portal (version 2.1,
Build #201), OMIM database?!, Orphanet disease database,
CHEMBL targets database, PharmaGKB?? and SNIPA (see URLs
in Methods). We found that seven sentinel SNPs are in genes
encoding enzymes or transporters. Additionally, 16 sentinel SNPs
are known eQTLs, including 5 at novel and newly identified loci
(PHYHDI/NUPI188, TTC38/PKDRE], TMPRSSI11E, SPTLCI1P4/
AL591893.1, CCBL2). Moreover, 10 loci contain genes linked to
diseases, including 4 of the newly identified loci; namely, NUP188
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Fig. 2 Manhattan plot for the discovered loci. The red line indicates the
Bonferroni threshold (2.2 x10710) and the blue line indicates the genome
wide significance threshold (5 x1078). The newly identified/novel
replicated loci are typed in red, and the non-replicated loci are in blue.
Unnamed loci at the borderline (2.2 x107'9) are associations with ratios
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has a role in heterotaxy??, SEMA4B in hypoxia and lung cancer?*,

CCBL2 in neurodegenerative diseases, and TMPRSSIIE in
squamous cell carcinomas®®. Finally, genes in 4 loci have been
previously studied for effect on drugs.

Fine-mapping identifies functional variant associations. The
availability of WES data in this study population allowed us to
investigate if specific loci could be explained by functional (pro-
tein-altering) variants. Among the 21 loci, 11 (51%) harbored
SNPs that were protein-altering or splice variants (Table 2,
Supplementary Data 3). Two of these are among the novel or
newly identified loci: the splice variant ¢.3662-4A>G
(rs2302811) in NUP188 (PHYHDI1/NUPI188 locus), association
with X-22145 (2'-O-methyluridine) and the missense variant p.
Alal2Val (rs117135869) in TTC38 (TTC38/PKDRE] locus) asso-
ciation with X-22162/X-24513, and the remaining nine are in
previously reported mQTLs (Table 2). More importantly is the
missense p.Cys121Gly (rs3756669) in UGT3A1 (Fig. 5a) which
was found to be associated with undetected levels of X-24348
(these appear as missing values in the raw unprocessed metabolite
levels) in the subjects which are homozygotes for the mutation,
thus a potential loss of function in a pathway possibly related to
the metabolite production®® (see Discussion). Additionally, the
association of the missense variant p.Gly209Ser (rs1799958) in
ACADS (Fig. 5b) to ethylmalonate levels (concurrently repor-
ted'®) is of clinical implication due to the association of the
mutated allele with mild SCAD deficiency (MIM: 606885.0007).

Rare variants associated with metabolites in Qataris. In addi-
tion to common-variant mQTL discovery, we hypothesized that
with a modest sample size, one may find rare functional variants
influencing metabolite levels in homozygous state shared by more
than one individual due to high levels of consanguinity. We
selected high-quality protein-altering rare variants (MAF < 5%; n
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=21,933 SNPs, see Methods). First, we performed gene-based
burden testing for all genes harboring at least one of these rare
variants (1= 9823 genes; Bonferroni p <6.16 x 10™); and second,
we tested single variant associations for SNPs with at least two
homozygotes for the rare variant (n=2660 SNPs in 2119 genes;
Bonferroni p < 2.27 x 1078). In this analysis, we focused on rare,
homozygous variants shared by two or more individuals, whose
metabolite values were at either tail of the distribution (highest or
lowest). After stringent QC and filtering, we discovered two genes
with rare variants influencing metabolite levels through gene-
burden analysis. In contrast to burden testing, we identified 10
variants significantly influencing metabolite levels through single-
variant testing (Table 3, Fig. 6, Supplementary Fig. 5).

Discussion

We describe the first large-scale (n =996 individuals) metabolite
association study in a Middle Eastern population, combining deep
WES data with an updated metabolomics platform. Altogether, we
discover and replicate 21 common variant mQTLs. Amongst
those, seven are novel or newly identified loci (associations that
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Fig. 4 Boxplots for the loci NAT2, FADS2, and UGT3A1. Boxplots showing metabolite/ratio levels and number of samples for each genotype group and
comparing ratios to single metabolites for NAT2 (a, b), FADS2 (¢, d), and UGT3AT (e, f) loci, where the percent of variance explained by the ratio is 3.9-,
1.99-, and 1.94-fold greater, respectively, than that explained by the single metabolite

have been concurrently discovered'® and completely new ones, as
indicated in Table 2), and 10 represent fine-mapping of previously
reported loci to new metabolite ratios that associate more sig-
nificantly than previously discovered single metabolites. Impor-
tantly, by having deep exome data, we fine-map a total of 11 loci
to candidate protein-altering variants, with biological implications
described below. Further, in the rare variant spectrum, we present
12 novel mQTL associations, all not previously reported.
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Being able to replicate 35% of the 80 replicable loci reported in
the largest mMGWAS study to date!! with one tenth the sample
size may be attributable to the high levels of consanguinity in our
population, which allows for sufficient numbers of alternate allele
homozygotes to be present for metabolic associations. Loci
replicated among different ethnicities are likely to belong to
pathways common to human metabolism (7 out of the 10 most
significant loci reported in!'—PYROXD2, ACADS, NATS,
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FADS2, SLCO1BI1, SULT2AI1, and UGT1AI—being among the
top associations in our study).

Several of the newly discovered associations may reveal putative
biological links between SNPs and metabolites. One such example
is the association of rs34109652 in TMPRSSIIE with X-11491
(tentatively identified by Metabolon as the bile acid deoxycholic
acid glucuronide). This particular SNP had been reported as an
eQTL for UGT2B15 (GTEx version 4.1, Build #201), a gene at
which CpG methylation was also significantly associated with X-
11491 levels?’, consistent with the gene’s putative function of
conjugating bile acids (GenAtlas(http://genatlas.medecine.univ-
paris5.fr/fiche.php?n=6643)). Another biological association is that
of the missense variant rs117135869 (p.Alal2Val) in TTC38
(TTC38/PKDRE]J locus) associating significantly to X-22162, and
more significantly, to the ratio of this metabolite to X-24513.
TTC38 (Tetratricopeptide Repeat Domain 38) expression is
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significantly positively correlated with age?®, and levels of both
metabolites are also significantly associated with age by regression
analysis in our cohort (see Methods). Additionally, X-24513 is
significantly partially correlated with C-mannosyltryptophan (also
known as C-glycosyltryptophan) (see Methods), which was
reported to be associated with aging?®. More interestingly, the
fact that this locus encompasses PKDRE] (Polycystic Kidney
Disease and Receptor for Egg Jelly related protein) gene (regional
association plot—Supplementary Fig. 3), a homolog of PKD
genes associating with kidney disease’’, and that X-24513
might be similar in characteristics to C-mannosyltryptophan,
reportedly elevated in chronic kidney disease®!, highlights the
importance of investigating the biological implication of
this association in relation to both kidney diseases and ageing.
Finally, the association of rs7530513 in the aminotransferase
CCBL2 (Cysteine-S-conjugate beta-lyase 2, also known as KYAT3
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(Kynurenine—oxoglutarate transaminase 3) with imidazole lactate
is another biologically relevant association; CCBL2 enzyme
[EC2.6.1.7] has a transaminase activity towards histidine
(Uniprot®?) and it has been reported that histidine transaminase
[EC2.6.1.38], takes L-histidine and 2-oxyglutarate as substrates
and produces imidazole pyruvate that is later converted to imi-
dazole lactate®®. However, we are unable to confirm that the same
histidine transaminase is the one involved in both processes.

A main advantage of using WES data in an association
analysis is the enhanced resolution at associated loci that could
reveal protein-altering variants affecting metabolite levels.
We were able to identify such sentinel SNPs for over half of all
loci (11 of 21), possibly revealing functional relationships
between genes harboring these variants and their associated
metabolites. One such example is the fine-mapping of a pre-
viously identified signal in the 3'UTR of ACADS to a missense
mutation (rs1799958, p.Gly209Ser) in exon 6 (Fig. 5b). This
mutation (MIM 606885.0007) has been reported independently
as causing mild SCAD deficiency, with the mutant allele predicted
to have 85% of wild-type activity>®. Further, the population-
frequency of this variant (MAF ~25% in GnomAD, 37.8% in
Qataris) is consistent with it having been the mild functional
mutation in previously reported association signals between this
locus and levels of both ethylmalonate and butyrylcarnitine,
metabolites whose levels are known to be perturbed in SCAD
deficiency™.

Another important finding is at the UGT3AI locus, where, in
contrast to previous studies that reported an association of the
intergenic SNP rs10491431 with steroid levels, we uncovered an
association of the missense mutation rs3756669 (p.Cys121Gly) in
UGT3A1 with the unknown metabolite X-24348 and more
strongly with the ratio of X-24348 to pregn-steroid-monosulfate
(Figs. 4 and 5). This unknown has shown significant partial
correlation to two other metabolites that also significantly cor-
relate with steroids (Supplementary Fig. 4a, see Methods). The
missense mutation therefore possibly interferes with native gene
function related to the production of this metabolite, since all
minor homozygotes for this SNP had missing values of X-24348

(Supplementary Fig. 2) (p-value=5.94x107'2 for random
occurrence of missing values, see Methods), suggesting the
amino-acid substitution leads to loss of function of the gene. This
hypothesis is supported by previous functional evidence
demonstrating that this mutation leads to diminished UGT3A1
glucuronidation activity?®, especially of bile acids and estradiol.
Metabolon has also recently studied this unknown and found that
it might be a form of N-acetylglucosamine modification of a
pregnandiol, yet cannot be confirmed at the time being. Together,
the data suggest the unknown metabolite may itself be a con-
jugated steroid, which requires this conjugation to appear at
detectable levels in the blood. Notably, the mutation appears to
have population-specific allele distribution, having been observed
in up to 40% of Asians, 15% of Europeans, but only 3% of
Africans®*—a distribution which is maintained in our study
cohort (overall Qatari MAF 12.8%), being present in Q1 and Q2
Qataris (Bedouin and Persian/South Asian), but not in Q3, who
are of African descent’®.

In addition to identifying functional SNPs, the use of the
updated metabolomics platform (DiscoveryHD4) enabled the
refinement of previously reported loci to new metabolites or
metabolite ratios in the same or in different biological pathway
from those originally reported!!. For example, NAT2 encodes an
arylamine transferase that controls the conversion of para-
xanthine to 5-acetylamino-6-amino-3-methyluracil®’, and its
locus has previously been reported to be associated with 1-
methylxanthine. In this study, we discovered a stronger associa-
tion with the ratios 5-acetylamino-6-amino-3-methyluracil/1-
methylxanthine and 5-acetylamino-6-amino-3-methyluracil/
paraxanthine, which are consistent with the known activity of the
NAT2 enzyme in caffeine metabolism (see network of metabolites
linked to NAT2, and KEGG pathway in Supplementary Fig. 4b,
¢). Being the top most significant association in this population in
comparison to the top most ones previously reported!™!>, it
might have several biological implications for the studied popu-
lation. It is thus worthy to note that the two missense SNPs at this
locus are identified in OMIM as associated with the rate of
acetylation, presenting a possible mechanism for affecting drug

Table 3 12 novel functional rare variant mQTLs

Gene-based burden test

SNP name rsID Gene Metabolite EA/OA C-MAF p-value

(c#chr p#position)

c4p57221348 rs3796543 AASDH Thyroxine C/T

c4p57248716 rs34228795 AASDH Thyroxine C/G 0.036 41x1070°
c4p57250285 rs34543011 AASDH Thyroxine Cc/T

c12p56075599 rs199581976 METTL7B Androsterone sulfate T/C

c12p56075915 rs75289684 METTL7B Androsterone sulfate A/C 0.035 4.78 x10709
c12p56077768 rs115687886 METTL7B Androsterone sulfate T/C

Single-variant analysis

SNP name rsID Gene Metabolite EA/OA EAF N Beta (s.e) p-value
(c#tchr p#position)

c12p11506114* - PRBI Mannose T/G 0013 576 -132(0.192) 5.99x10712
c15p89398112 rs150988100 ACAN X-12844 (glucuronidated steroid) A/G 0.006 581 -2.05(0.323) 1.88x107°
c2p26760624 rs56332208  OTOF Retinol (Vitamin A) T/C 0.0153 586 -1.18(0.19) 4.83x10710
c15p89398112 rs150988100 ACAN X-09789 A/G 0.0059 592 -2.25(0.373) 1.56x1079°
c18p48256030 - MAPK4  X-21365 (N-trimethyl 5-aminovalerate) C/G 00161 589 -127(0.22)  6.84x107%°
c20p18295959 rs377301648  ZNFI33 3-methyl-2-oxovalerate C/T 0.0160 592 -1.15(0.2) 9.36x 10797
c11p18158958 rs61733595 MRGPRX3  Tryptophan T/C 0.0084 592 -1.43(0.25) 1.01x10708
c12p55688833 rs372117452  OR6C6 Androsterone sulfate G/A 0.012 590 -1.37(0.24) 1.09 x 10798
c12p56086993 rs144983062 ITGA7 Androsterone sulfate C/T 0.023 590 -1.02(0.18) 1.25x 10798
c18p48256030 - MAPK4  Tryptophan G/C 0.016 592 -111(0.19) 1.32x10708
EA effective allele, OA observed allele, EAF effective allele frequency, CMAF cumulative minor allele frequency

All SNPs have a call rate of 100% except for the SNP marked (*), which has a call rate of 97%
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(vitamin A) (F)

metabolism?%; specifically, slow acetylation was reported for
individuals harboring either of the two missense SNPs rs1799930
and rs1801280 (MIM: 612182.0001 and 612182.0002). Addi-
tionally, we discovered associations between SLCI7AI and the
ratio hexanoylglutamine/X-16087. Previously, rs1185567 in
SLC17A3 was reported to be associated with steroid levels!!.
However, since the SLC17 family are vesicular glutamate

NATURE COMMUNICATIONS | (2018)9:333

transporters>’, our association signal, linking the missense variant
p.Thr2691le (rs1165196) to a ratio containing hexanoylglutamine
may reflect a direct biological relationship. We also discovered
mQTLs associating known loci to metabolites in pathways dif-
ferent from those previously reported. Once such example is the
association between the missense variant rs2147896 (p.
Met461Thr) in PYROXD2 with levels of N-methylpipecolate. This
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gene had previously been linked to levels of urinary trimethyla-
mine'® and dimethylamine®, yet interestingly not found sig-
nificantly associated with any of the mentioned metabolites in
previous large scale studies'!°. Finally, our study expands the
associations of several loci with newly identified metabolites or
ratios as in the NAT2 locus and FADS2 locus among others
(Supplementary Data 5). One example that supports the func-
tional importance of the discovered loci is the SLCOI1BI locus. Its
sentinel SNP, rs4149056, was previously associated with the ratio
isoleucine/X-11529'!, and other unknowns, and found in our
study to be associated with the bile acids glycochenodeox-
ycholate-glucuronide(1) (which was also recently found to be the
retired form of X-11529 by Metabolon), and glycocholenate sul-
fate. That supports the functionality of SLCO1B1 as a bile acid
transporter, suggesting that the mutation p.Vall74Ala alters the
gene’s native function”®.

In addition to common mQTLs, we discovered a total of 12
rare mQTLs—10 by single-variant analysis and 2 by gene-burden
analysis—with interesting biological implications (Table 3 and
Supplementary Fig. 5). First, the ACAN gene encodes a major
component of the extracellular matrix, lending important bio-
mechanical properties of cartilage, which explains its role in
diseases such as osteoarthritis (MIM: 155760). We discovered an
association of a missense variant p.Ala766Thr (rs150988100) in
ACAN with a steroid (X-12844, tentatively identified by Meta-
bolon as glucuronidated steroid); it is well-established that cir-
culating steroid levels are linked to inflammation in joints and
diseases such as arthritis**~2. Additional investigations would be
needed to uncover the relation between the variant and the
metabolite since one of the two subjects having this mutation
have musculoskeletal problems. Similarly, the association of
rs377301648 in ZNF133 with a 3-methyl-2-oxovalerate, a meta-
bolite in the branched-chain amino-acid pathway might be due to
the role of the gene in osteoblast differentiation*> and the pre-
viously reported involvement of 3-methyl-2-oxovalerate in
osteoarthritis**. Additionally, association of the c12p11506114
mutation in PRB1 with mannose (Fig. 6) might be due to the
involvement of this glycosylated, proline-rich protein in the
salivary secretion pathway®®, (Michael W King, PhDI©
1996-2016 themedicalbiochemistrypage.org)*°.

Another interesting rare variant association is that between
rs56332208 in OTOF with retinol (vitamin A). This might be a
disease-relevant link because retinoic acid mediates the regen-
eration of specialized mechano-sensory hair cells in the inner ear
that capture auditory and balance sensory inputs, and which die
after acoustic trauma, ototoxic drugs or aging diseases, leading to
progressive hearing loss?”. Previous studies have also described
mutations in OTOF causing recessive neurosensory non-
syndromic deafness in patient cohorts from many different eth-
nicities via the gene’s role in exocytosis of inner and outer hair
cells*®*=>2. Thus, our study may provide a mechanistic link
between this gene and hair cell development via modulation of
retinol levels. Finally, burden-testing revealed mQTLs in AASDH
and METTL7B associated with decreased levels of thyroxine and
androsterone sulfate respectively. The AASDH gene plays an
active role in the pipecolate pathway in which thyroxine is a by-
product®. Thus, these mutations may impact protein function
leading to significant reduction of thyroid hormone and meta-
bolism. Regarding the METTL7B mQTL, one of the three
mutations in this gene (rs115687886) is a nonsense mutation,
suggesting the other two are also loss-of-function mutations as
they influence the metabolite in the same direction. Increases in
METTL7B expression had been previously observed in patients
with acute respiratory distress syndrome, involving tissue injury
and inflammation®*, whereas adrenal androgens as androsterone
sulfate have been observed to decrease in stress and

10 | (2018)9:333

inflammation®~2, The fact that one of the two subjects with the
rs199581976 mutation had recurrent chest infections and pneu-
monia and the other subject had bronchial asthma, recurrent
pneumonia, and right lung lower lobe collapse, supports the
functionality of the gene, and thus provides another possible link
between a rare variant and disease via metabolite-level
modulation.

To summarize, our study revealed 21 mQTLs in Qataris,
among which 7 are unknown to studies that used older meta-
bolomics platforms, 10 are metabolically fine-mapped with new
metabolite ratios, and 11 in which the sentinel SNP was at or in
complete LD with protein-altering variants. We also discovered
12 novel functional rare variant mQTLs that are likely specific to
this ethnic population. We believe that it is important to replicate
rare variant associations, yet the low frequency of these variants
and absence of similar cohorts makes it challenging. This study
demonstrates the efficiency of using WES for mQTL discovery,
which could be more convenient compared to the more expensive
WGS, while providing deep coverage of protein coding variants,
for fine-mapping of common mQTLs and being suitable for rare
variant mQTL discovery. The use of WES is strongly supported
by the ability to replicate a fair fraction of the mQTLs in Cau-
casians (19% of all loci and 35% of replicable loci). Finally, this
study is the largest and the first of its kind in a Middle Eastern
population, where we show that studies in consanguineous
populations offer a large insight with modest sample sizes and
have the potential to reveal loci linked to disease and pharma-
cological/drug targets important to precision medicine in this
region of the world.

Methods

Study cohort. Human subjects were recruited and written informed consent was
obtained at Hamad Medical Corporation (HMC) and HMC Primary Health Care
Centers in Doha, Qatar and approved by the Institutional Review Boards of Hamad
Medical Corporation and Weill Cornell Medicine in Qatar. Briefly, a total of

614 subjects were recruited for exome sequencing, and another 382 subjects for
array genotyping. Subjects were included on the basis of being 3-generation Qataris
(four grandparents born in Qatar) and being healthy or diabetics, above the age of
30 years. Sample demographic characteristics are given in Table 1.

Exome sequencing. DNA of 614 subjects was extracted from blood using the
QIAamp DNA Blood Maxi Kit (Qiagen Sciences Inc, Germantown, MD) and
subjected to exome sequencing on the Illumina HiSeq 2000 platform using stan-
dard methods. Each subject was sequenced to a minimum mean depth of 70X.
Genotypes were generated using the GATK Best Practices workflow>> (Whole
exome data for a set of recently received 64 samples were merged with those of the
550 samples after calling variants using GATK on each and finding that the
majority of SNPs detected in both sets overlap. We limited the analysis to variants
in both sets by setting a genotype call rate of 298% for common variant analysis
and 90% for rare variant analysis). Detailed preparation methods and genotypes are
available in®. The DNA of 382 subjects was extracted and subjected to array
genotyping using Illumina Omni 2.5M array kits.

Imputation and filtering. Exome and array data were imputed after being filtered
(MAF 2 0.05, pywe > 1078, genotype call rate 298%) based on phased 108 Qatari
whole genomes as a reference panel, using shapeit®” and Impute2 software
packages®®>®. Throughout all the manuscript and supplementary data sets/infor-
mation, two unique notations of “c’#“p”# and #:# for indicating a chromosome,
position pair (for example c1p100 and 1:100) are used to distinguish original
exome SNPs and imputed exome SNPs, respectively. A total of 22 million SNPs
were imputed into 614 Qatari Exomes. For common-variant association analysis,
1,650,892 SNPs were used, after removing SNPs with imputation quality R? < 0.5,
MAF < 0.05, genotype call rate <98%, and pHWE <107°. For rare variant analysis,
the methods are described separately below. To define a Bonferroni threshold for
finding significant associations, we used the pruned set of SNPs at LD 0.8 (using
plink command indep-pairwise 50 5 0.8) that resulted in a total of 272,061 SNPs.
Replication was performed in array-genotyped data from a separate set of

382 samples, where imputation using the same 108 Qatari genomes produced a
total of 11 million high-quality SNPs.

Metabolomics data. Serum samples were prepared for metabolomics analysis as
follows: 200 pl of serum were aliquoted, barcoded and transported on dry ice to
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Metabolon Inc. for analysis. Some samples were found hemolyzed, and the degree
of hemolysis was recorded for each sample (according to a hemolysis chart as given
by Metabolon Inc.), for correcting for its effect on metabolomics measurements.
The Metabolon DiscoveryHD4 platform was used (details are given in Supple-
mentary Note 1). This platform utilized a Waters ACQUITY ultra-performance
liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolu-
tion/accurate mass spectrometer interfaced with a heated electrospray ionization
(HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. A
total of 1303 metabolites were measured on that platform. Outlier metabolite
measurements (3 standard deviations larger than the mean) were replaced by a
missing value to avoid biasing the results. Metabolites with more than 20% missing
values were removed from the data. A total of 826 metabolites (including 249
unknown metabolites) survived as high quality and observed in >80% of all
individuals. Metabolite measurements were log-scaled and z-score normalized.
Since samples were collected over different periods of time, and there was no
adopted fasting criterion, we addressed that issue by investigating whether there are
batch effects in the PCA of metabolic data, and did not find any grouping for any
of the 614 exome samples or the 382 array samples. Several unknown metabolites
were investigated by the aid of Metabolon, and which revealed their identities (see
below).

Identification of unknown metabolites by Metabolon. Identification of tentative
structural features for unknown biochemicals incorporates a detailed analysis of
mass spec data, i.e., gathering information such as the accurate monoisotopic mass,
the elution time and fragmentation pattern of the primary ion, and correlation to
other molecules. The accurate monoisotopic mass is used to identify a likely
structural formula for the unknown biochemical, which is then used to search
against chemical structure databases (e.g., ChemSpider, SciFinder). When a can-
didate structure fits the accurate monoisotopic mass and fragmentation data, an
authentic standard is commercially purchased or synthesized (when possible).
Conformation of a proposed structure is based on a match to three primary cri-
teria, including co-elution with the unknown molecule of interest, and a high
degree match to both the accurate monoisotopic mass and fragmentation pattern.
When a standard is not available to confirm the identity of the unknown bio-
chemical but sufficient data exist to support a high degree of confidence in its
identity, the unknown biochemical may be retired for a named structure that is
differentiated from other named metabolites confirmed with authentic standards
by the addition of an asterisk after the biochemical name. When a high degree of
confidence in the identity of the unknown molecule is not obtained, the molecule
retains its unnamed status as designated by an 'X-' in the molecule name. Refer to
Supplementary Note 2 for the particular identification information on each of the
identified unknown metabolites, and Supplementary Fig. 6 for the comparison of
MS? fragmentation spectrum and Extracted Ion Chromatogram of the candidate
and unknown metabolite that were structurally confirmed by Metabolon.

mGWAS analysis. All associations were performed on imputed exome or imputed
array genotype data. P-values and effect sizes were calculated using functions from
both GenABEL and ProbABEL packages in R (version 3.1.2) that were used for
computing associations between SNPs and metabolite/ratio levels (after being pre-
processed as described in the previous sections) while correcting for age, gender,
BMI, T2D, hemolysis, population stratification (using two PCA components) and
kinship (for family relatedness). The “polygenic” function in GenABEL was used
for correcting metabolite levels for covariates and kinship matrix, and regression
analysis using “mmscore” function was used to find association between the resi-
duals obtained from this function and the SNPs using an additive inheritance
model. Heritability estimates are based on “esth2” values resulting from this
function. Kinship matrix was computed based on the genotype data using the “ibd”
function in GenABEL. The mean inflation factor for all metabolites was 0.98.
Percent of variance is calculated as follows: 12 = y%/(N = 2 + 42), where y% = (f/s.c.)%,
p and s.e. are the f and the standard error of the f, as obtained from the regression
results, and N is the number of samples involved in this association. Regional
association plots were produced using an in-house tool similar to that of (http://
snipa.helmholtz-muenchen.de/snipa/), yet based on LD of subjects in the exome
data used here.

Loci and sentinel SNPs. Association results were divided into 500 Kbp blocks, and
in each of these the sentinel SNP and sentinel metabolite are defined according to
the SNP-metabolite association with the highest significance. Those define the
mQTLs. In the case where a locus had two significant SNPs not in LD (i.e., LD <
0.5) and lying in two different genes, it was broken down into two loci (as in the
case of THEM4 gene and SPTLC1P4/AL591893.1, where those two loci are at LD =
0.3). However, where there are two SNPs not in LD (LD < 0.5) but are in the same
gene, we did not split the locus and we report LD values for those SNPs (in NAT2
and FADS2 genes) in Supplementary Data 5. All functional variants—missense and
splice variants reported are in LD with the sentinel SNP of the locus except for the
NAT?2 locus where the two missense SNPs are not in LD with the sentinel SNP.

Ratios analysis. p-gain was introduced in ref. ! as an “ad-hoc measure to

determine whether a ratio between two metabolite concentrations carries more
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information than the two corresponding metabolite concentrations alone”. It is
calculated as: p-gain = min(p-val(m1), p-val(m2))/p-val(m1/m2), given two meta-
bolites m1 and m2, and the p-values (p-val) of the association of the metabolite/
ratio to the same SNP. The p-gain threshold according to!® assumes a level of
significance of a/B, where a type I error rate of a=0.05 is used, and the critical
value for the p-gain is B/(2-a), i.e. 10-B. Thus for Bonferroni correction of B tests,
the uncorrected critical value of 10 can be multiplied by the number of tests B.
Accordingly, we set the value of 10 x 826 x 18 (10xnumber of metabolitesxnumber
of loci obtained from single metabolites) as an approximate threshold (we took the
maximum of the number of tests of the first and the second methods where the
first method (as mentioned earlier) considers the ratio of the sentinel metabolite
against all the rest of 825 metabolites, tested with SNPs in 100 KB of the sentinel
SNP of this locus in each of the loci discovered by single-metabolite analysis, and
the second method considers the ratio of two metabolites associated with the same
SNP but with opposite beta signs, in this case 13,281 associations were tested).

Fisher exact test for randomness of missing values. This was used to detect
whether the missing metabolite values from certain genotype groups (AA, AB, and
BB) were missing by chance, when studying the effect of a missense on the
metabolite level (after making sure the missingness was not due to removing
outliers in the pre-processing of metabolite levels). The two inputs for the Fisher’s
exact test are: (a) the number of missing values from each genotype group, and (b)
the total number of samples in each genotype group. fisher.test method in R was
used for this calculation. The low p-value indicates a low probability having these
missing values by chance.

Metabolite regression analysis and partial correlations. To find associations
between selected metabolites and other phenotypes as age (as in the case of X-
22162 and X-24513), the metabolite level is regressed against age, gender, BMI,
hemolysis, T2D, and population stratification (for inclusion of ethnicity) for all 996
individuals using Im function in R. Bonferroni p-value is used to report a sig-
nificant association with a phenotype (p < 0.05/826). Partial correlations between
two metabolites are calculated using the GeneNet package in R, and significant
partial correlations are those which pass a Bonferroni p-value of (p <0.05/(826 x
825/2)).

Rare variants analysis. High-quality rare variants were selected from the original
non-imputed exome data, with MAF < 5%, pywe > 107, and genotype call rate
290%. Single-variant analysis was done using GenABEL package in R (as men-
tioned above for common variants), and burden test was done using seqMeta
package in R (as in refs. 6061y For burden tests, we accounted for the number of
genes (1= 9823 genes; Bonferroni p < 6.16 x 10~°), and for single-variant analysis,
we accounted for the number of SNPs where we tested single-variant associations
for SNPs with at least two homozygotes for the rare variant (n=2660 SNPs in 2119
genes; Bonferroni p < 2.27 x 1078). All SNPs in the reported 12 rare variant mQTLs
have a call rate of 100% except for c12p11506114 with a call rate of 97%. A filtering
step was done by visual inspection of genotype-metabolite boxplots of significant
associations to consider only associations where metabolite values of the minor
homozygotes are at the extreme tail of the metabolite distribution (i.e., they should
be the lowest or highest metabolite values for that metabolite).

URLSs of databases used for annotation. GTEx portal (version 2.1, Build #201)
[www.gtexportal.org], OMIM diseases database [www.omim.org], Orphanet dis-
ease database [http://www.orpha.net] CHEMBL targets database [www.ebi.ac.uk/
chembl], PharmaGKB [www.pharmgkb.org], SNIPA [http://snipa.helmholtz-
muenchen.de/snipa/], GenAtlas (http://genatlas.medecine.univ-paris5.fr/fiche.php?
n=6643), and GnomAD: http://gnomad.broadinstitute.org/.

Data availability. All information on metabolites are in Supplementary Data 1,
expanded association results for 21 common variant mQTLs are in Supplementary
Data 5, and the detailed biological annotations/interpretations of associations are in
Supplementary Data 6, list of all associations (p <= 1.4 x 107/) are in Supple-
mentary Data 7. All plots are also available in Supplementary Information and
detailed information on Metabolon’s method for identification of unknowns is
available in the Supplementary Note. Exome data used in this project were selected
from a pool of samples of which more than 1000 samples are deposited in SRA
accessions SRP060765, SRP061943, and SRP061463, accessible online at http://
www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP060765%2CSRP061943%
2CSRP061463&go=go). (SRA accession SRP061943).
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