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Abstract: Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned
balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The
activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with
various niche cell types and extracellular substrates. In addition to receiving molecular signals from
growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding
physical structure via mechanotransduction, interaction with the ECM, and interactions with other
cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of
LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs
in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling
pathways that influence LSC function. Future development of LSCD therapies should consider all
these niche factors to achieve improved long-term restoration of the LSC population.

Keywords: cornea; limbal stem cells; signaling; mechanotransduction; extracellular matrix; stem
cell niche

1. Introduction

Light first enters the eye through the cornea, the outermost transparent layer, which is
important both as an environmental barrier and in the refraction of light. Proportionally,
65–75% of the angular modifications of light occurs through the cornea, so the cornea
is crucial for properly orienting and focusing images onto the retina [1]. The cornea is
a complex multilayered tissue with each layer suited for distinct functions [2,3]. The
outer layer of the corneal is lined by stratified epithelium that is constantly shed through
blinking or rubbing of the eyes. Just as the epidermis of the skin and intestinal lining are
renewed through stem cell asymmetric division, migration, and proliferation, the corneal
epithelium is renewed by a specific stem cell lineage residing in the limbus, the region
lining the circumference of the cornea and adjacent to the sclera [4]. Limbal epithelial
stem/progenitor cells (LSCs), which primarily reside in the niche provided by the crypt-like
structures including limbal crypts, limbal lacunae, and Palisades of Vogt in human tissue,
are quiescent stem cells that can be activated to divide symmetrically and asymmetrically,
producing a proliferative progenitor cell that will give rise to mature corneal epithelial
cells [5,6]. The homeostasis of the corneal epithelium is modeled using the X-Y-Z hypothesis,
which states that LSCs differentiate into transient amplifying cells (TACs), which migrate
centripetally to become fully differentiated corneal epithelium, which are then shed from
the corneal surface [6]. In the mouse and other mammalian systems, stem/progenitor cells
reside in the basal epithelial layer across the whole cornea, while in humans the central
cornea lacks a stem/progenitor cell population [7–9].

The niche provides not only a protective environment, but also the necessary factors
to maintain stem properties of LSCs and initiate differentiation pathways in response to
external cues [10]. Epithelial regeneration is carefully regulated through various molecular
pathways, which are activated and inhibited through autocrine and paracrine signals, and
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cues from the extracellular matrix and mechanical stimuli [3,11–17]. The inability to replace
the lost cells could result in the loss of transparency of the cornea, impaired wound healing,
and possible loss/deterioration of vision [18,19].

Dysfunction or destruction of the LSCs or their niche results in a pathological condition
known as limbal stem cell deficiency (LSCD) [20]. LSCD causes pain, inflammation, and
vision loss in patients due to the invasion of conjunctival epithelial cells into the corneal
epithelium because of the inability of LSCs to replenish corneal epithelial cells. Treatment
of LSCD requires restoration of the LSC population and its niche. The majority of LSCD
cases are either unilateral or sub-total bilateral LSCD, as residual LSCs could be found
in eyes with clinical features of total LSCD [21]. In these patients, transplantation of
autologous LSCs, either by cultivated LSCs or direct tissue transplantation, is a viable and
preferred option [22,23]. While LSCs from the patient’s healthy tissue cultivated ex vivo
on human amniotic membrane (HAM) is emerging as an effective, donor tissue-free, and
xenobiotic-free alternative to traditional surgical treatments of LSCD, the success of an LSC
transplant is highly dependent on the percentage and amount of undifferentiated LSCs
in culture [24–26]. Therefore, it is imperative to understand niche factors involved in the
regulation of LSCs in order to improve the outcome of current LSCD treatment as well as
develop new therapy.

This review will discuss the current findings on the integration of molecular and
mechanical signaling factors that regulate LSC quiescence, self-renewal, differentiation,
migration, and proliferation in vivo and in vitro. While recent reviews have been focused
on the limbal niche structure [27,28], diseases involving LSC function [29], and advances
in LSC bioengineering and LSCD diagnosis [22], here we present an in-depth analysis of
molecular regulation and the influence of surrounding physical properties governing the
fate of LSCs.

2. Signaling Cascades in the LSC Niche and in the Regulation of LSCs

Cultivated LSCs are a valuable tool for studying LSC regulation and potential LSCD
treatments. Methods of cultivating LSCs aim to mimic the in vivo niche conditions by
providing ECM and necessary growth factors. A comparison of the in vivo LSC niche and
common in vitro methods of maintaining LSCs in culture is shown in Figure 1. LSCs are
in contact with the extracellular matrix (ECM) that makes up the basement membrane,
mesenchymal cells in the adjacent stroma, and other cell types in the epithelial layer such
as melanocytes (Figure 1A). The niche also houses nerves [15,30,31], blood vessels [32,33],
and innate immune cells [34–36], and the roles that these different cell types play in the
niche is a topic of ongoing research. The limbal stroma potentially contains a population
of telocytes in the mouse [37], but further research is needed to confirm this population
in the human limbus, distinguish these telocytes from other stromal cells, and determine
their function in maintaining the human limbal niche. The niche is also comprised of
soluble signaling factors, extracellular vesicles, growth factors, and microRNAs that also
contribute to the regulation of LSCs. ECM coating such as fibronectin, collagen, or laminin
is commonly used in cell culture vessels with or without hydrogels to mimic the structure
and properties of the basement membrane (Figure 1B). A layer of feeder cells is often added
to provide growth factors to the cultivated LSCs in several configurations: completely
separated from the LSCs (Figure 1B), closely adjacent to the LSCs but on the opposite side
of a transwell membrane (Figure 1C), or directly co-cultured with the LSCs (Figure 1D).
Limbal explants containing LSCs, basement membrane, and adjacent stroma cultivated on
HAM (Figure 1E) also preserve cell–cell and cell–matrix interactions for the LSCs. Feeder
cells or a surrogate matrix such as HAM are often required in the absence of these niche
factors to achieve a good expansion efficiency. Cell culture media components, feeder cells,
HAM, and even the LSCs themselves contribute both soluble growth and signaling factors
and ECM support to the expanding sheet of LSCs.
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and/or hydrogel-coated cell culture insert. Growth factors are provided to the LSCs through a feeder cell layer and the 
growth medium. (C) In the 3D culture model, LSCs and the 3T3 feeder layer are grown on opposite sides of a transwell 
membrane. (D) LSCs are cultivated directly on top of the feeder cell layer, which provides both structural support and 
growth factors. (E) A limbal explant is seeded on a human amniotic membrane, and LSCs proliferate and migrate from 
the explant. 
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Figure 1. Overview of the structure of the in vivo compared to the in vitro limbal stem cell (LSC) niche. (A) In the in vivo
niche, LSCs reside primarily in the basal limbal epithelium in the crypts or Palisades of Vogt. Quiescent LSCs (purple
nuclei) can be activated to divide asymmetrically into proliferative progenitor cells (green nuclei), or divide symmetrically
to maintain the stem cell pool. LSC regulation is maintained by soluble and membrane-bound signaling factors, and
microRNAs. The limbal niche harbors melanocytes, nerves, blood vessels, and stromal cells that contribute to the support
of the LSCs. (B–E) Four commonly used methods of in vitro LSC culture. (B) LSCs receive structural support from an
ECM-and/or hydrogel-coated cell culture insert. Growth factors are provided to the LSCs through a feeder cell layer and
the growth medium. (C) In the 3D culture model, LSCs and the 3T3 feeder layer are grown on opposite sides of a transwell
membrane. (D) LSCs are cultivated directly on top of the feeder cell layer, which provides both structural support and
growth factors. (E) A limbal explant is seeded on a human amniotic membrane, and LSCs proliferate and migrate from
the explant.

While ex vivo cultivated LSCs are a promising treatment for LSCD, removing quiescent
LSCs from their native environment to culture places a significant stress on the LSCs. In
the absence or dysregulation of the proper molecular signals, growth factors, and/or
mechanical cues, LSCs lose their stemness, rendering them unsuitable for transplant unless
proper niche factors are provided to preserve their stemness. Therefore, understanding
the molecular regulation of LSCs by niche factors is crucial for bioengineering an ex vivo
environment for the LSCs that preserves the LSC phenotype in culture. This section of the
review synthesizes data on the role of Wnt, TGFβ/BMP, Notch, and Shh pathways in the
regulation of LSCs and corneal epithelial differentiation in vitro and in vivo.

2.1. Canonical and Non-Canonical Wnt Signaling Improve LSC Proliferation and Maintenance

Wnt signaling influences the ability of stem cells to renew, differentiate, commit to cell
fate decisions, and proliferate [38–40]. In the absence of Wnt ligands, the transcription factor
β-catenin is associated with its destruction complex in the cytoplasm where it is targeted
for proteosomal degradation or associated with cadherin–catenin adhesion complexes
at the plasma membrane [41–44]. The binding of secreted Wnt ligands to Frizzled (Fzd)
receptors activates three main pathways: the canonical Wnt/β-catenin pathway, the non-
canonical Wnt/Ca2+ pathway, and the non-canonical Wnt/planar cell polarity pathway. In
the canonical pathway, Wnt oligomerization with Fzd and its co-receptor LRP5/6 results
in the inactivation of the β-catenin destruction complex, which allows translocation of
β-catenin from the cytoplasm to the nucleus, where it activates T-cell factor/lymphoid
enhancer factor (TCF/LEF) target genes [45,46].
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The non-canonical Wnt pathways are generally considered β-catenin independent
because they do not involve β-catenin. The Wnt/Ca2+ pathway activates calmodulin
kinase II (CamKII) and induces calcium release from the endoplasmic reticulum [47]. A few
Wnt ligands have been shown to cause both release of Ca2+ into the cytoplasm and nuclear
translocation of β-catenin [48]. The Wnt/PCP pathway involves alternate co-receptors,
ROR or RYK, and activates c-Jun N-terminal kinase (JNK) and RhoA, which downstream
leads to restructuring of the cytoskeleton according to polarity signals [49–51].

Many Wnt ligands, receptors, and regulators are differentially expressed in either
the cornea or limbus [52–54]. The Wnt ligands Wnt2, Wnt6, Wnt11, and Wnt16b are
preferentially expressed in the limbus where LSCs reside [53,55]. Inhibitors of canonical
Wnt signaling such as WIF1, DKK1, and SFRP5 are also upregulated in the limbus relative
to the cornea. The nuclear localization of β-catenin was also mostly detected in basal
limbal cells, whereas membrane localization was found on all corneal and limbal epithelial
cells [53]. TCF4, a transcription factor that interacts with β-catenin in the nucleus, is also
expressed on the basal layer of the limbal epithelium, colocalizing with the stemness
markers p63 and ABCG2 [56,57]. MicroRNAs (miRs) such as miR-10b, miR-150-5p, miR-21-
5p, miR-1910-5p, miR-10a-5p, and miR-103/107 family are differentially expressed in the
basal limbal epithelium and target components of Wnt signaling [58–60].

The role of canonical Wnt signaling in LSC maintenance and differentiation has been
investigated using explant culture and single LSCs cultivated on a feeder cell layer of
mouse 3T3 fibroblasts. Using a single-cell culture system, lithium chloride, an activator
of the Wnt canonical pathway, improves proliferation of LSCs and colony-forming ef-
ficiency [53]. The use of a Wnt mimic, MFH-ND, was shown to improve the stem cell
phenotype in cultivated LSCs [61]. Moreover, if canonical signaling alone is inhibited
using the LRP5/6 inhibitor IC15, LSC proliferation is reduced accompanied by a loss of the
stem/progenitor cell population [62]. Inhibition of canonical Wnt signaling with XAV939
also increased the percentage of cells expressing the differentiation marker K12 and de-
creased the colony-forming efficiency of LSCs cultivated on human limbal niche cells [63].
Knockdown of TCF4 using siRNA decreases proliferation and surviving expression in
human corneal epithelial cells grown from limbal explants, suggesting that a canonical
Wnt/β-catenin/TCF4/4urviving pathway is involved in cultivated LSC proliferation [64].
Similarly, activation of Wnt with the DKK inhibitor IIIC3 also improves the LSC stem
cell phenotype. Conversely, high concentrations of IIIC3 decrease LSC colony-forming
efficiency and proliferation, and low concentrations of IIIC3 increase the percentage of cells
expressing K12 [62]. Possible explanations for these data include (1) IIIC3 may bind to and
inhibit LRP5/6 at high concentrations due to structural similarity with DKK, or (2) DKK is
involved in LSC maintenance independent of its role in inhibiting Wnt signaling. Together,
these studies suggest that canonical Wnt signaling regulates the proliferation of human
LSCs [62].

The role of non-canonical Wnt/PCP and Wnt/Ca2+ pathways in LSC regulation is
largely unknown but may involve Fzd7. Fzd7 is found preferentially expressed in the
basal layer of the limbal epithelium [55] and is capable of mediating both canonical Wnt/β-
catenin and non-canonical Wnt/PCP signaling in human cancers [65,66], Xenopus foregut
development [67], and rat hippocampal dendrite formation [68]. In a subset of basal limbal
epithelial cells, Fzd7 colocalized with syndecan-4 and fibronectin [55]. The Fzd7/syndecan-
4/fibronectin complex has been shown to induce symmetric division of muscle satellite
stem cells when bound with Wnt7a [69]. One study in rabbit LSCs suggests that the
Fzd7/syndecan-4/fibronectin complex may bind to Wnt11 and increase proliferation via
non-canonical Rho/ROCK [70]. Knockdown of the Wnt receptor Fzd7 in cultivated LSCs
results in decreased colony-forming efficiency and mRNA expression of stemness markers
such as ABCG2 and ∆Np63, suggesting that Fzd7 is involved in the maintenance of the LSC
stem cell phenotype [55]. These studies suggest that non-canonical signaling also plays an
important role in LSC regulation and controlled canonical Wnt activation is necessary to
maintain healthy LSCs. While the canonical and non-canonical Wnt pathways both appear
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to affect LSC proliferation and colony-forming ability, currently available data suggest that
the Wnt pathways increase proliferation through distinct mechanisms. Namely, canonical
Wnt causes LSC proliferation via β-catenin/TCF4/survivin pathway, while non-canonical
Wnt may induce proliferation via Fzd7/syndecan-4/fibronectin/ROCK.

It is important to note that individual Wnt ligands can activate different pathways
depending on their concentration [71–74]; Wnt ligands are active primarily close by to
where they were secreted [75], and even Wnt ligands that typically activate non-canonical
signaling can synergize to activate canonical Wnt/β-catenin signaling [76]. A balance
between canonical and non-canonical Wnt signaling likely exists in LSCs, as shown by
Wnt6 modulating both canonical and non-canonical Wnt signaling [22,71], and this balance
is affected by LSC–niche interactions. The microRNA family miR103/107 targets NEDD9
for degradation to mediate E-cadherin localization to adherens junctions, p90RSK2 to
arrest cells in the G0/G1 phase of the cell cycle, PTPRM to decrease gap junctions, and
Wnt3a to increase proliferation in primary human LSCs cultivated on Collagen IV-coated
plates [60]. Surprisingly, although Wnt3a is a commonly used recombinant Wnt ligand
to activate the canonical Wnt pathway, Wnt3a addition decreases the ability of cultivated
human LSCs to form holoclones [60]. The same study showed that miR103/107 inhibition
using antagomirs leads to increased secreted Wnt3a, increased phosphorylated JNK (a
non-canonical Wnt/PCP marker), decreased protein expression of YAP1, which is involved
in proliferation, and decreased Sox9, a transcriptional target of the non-canonical Wnt/Ca2+

pathway [60]. Sox9 knockdown in passage 1 primary human limbal epithelial cells in-
creases β-catenin and Wnt4 mRNA while decreasing GSK3-β mRNA. This suggests that
Sox9 downstream of non-canonical Wnt/Ca2+ signaling antagonizes canonical Wnt/β-
catenin [77]. Additionally, the HC-HA/PTX peptide present on the HAM promotes human
LSC quiescence via activating the non-canonical Wnt/PCP and BMP signaling pathways in
the limbal stromal fibroblasts that support the cultivated LSCs [78]. Therefore, the overall
phenotypic outcome of the balance between canonical and non-canonical Wnt signaling on
LSCs involves Wnt ligand concentration, cell–cell interactions, cell–basement membrane
signaling, and cell cycle regulators.

2.2. Notch Signaling Regulates LSC Asymmetric Division and Stratification

The family of Notch receptors are heterodimeric transmembrane proteins, activated
by direct cell–cell interaction with Delta-Serrate-Lag (DSL) type canonical ligands [79].
Through activation of target genes such as hair and enhancer of split (HES) and oth-
ers, Notch signaling controls regulation of stem cell maintenance and tissue homeostasis
(cell proliferation, differentiation, and survival) in diverse tissues and cell types [80,81].
Typically, Notch is activated by an immobilized ligand on a neighboring cell [82]. After acti-
vation, the Notch receptor is cleaved into the Notch intracellular domain (NICD) and Notch
extracellular domain (NECD). The NICD undergoes post-translational modifications and
translocates to the nucleus where it activates target gene transcription [80,83]. Conversely,
the NECD is endocytosed into the ligand-expressing cell, where it is degraded [84].

Similar to Wnt, Notch signaling is also involved in cell fate maintenance of the corneal
epithelium [85]. Notch ligands and receptors have been shown to be widely distributed
across the epithelial layers in the cornea and limbus [14,62,86–88]. The sporadic presence
of NICD, HES1, and HEY1 expression in limbal tissue suggests that Notch activation
may occur intermittently when corneal regeneration is required [62]. Knockout of Hes1
in mice, a Notch signaling target gene, resulted in disruption of corneal development
due to decreased cell proliferation and abnormal cell differentiation of LSCs [89]. Notch
inhibition in LSCs increased the expression of the epithelial cell differentiation marker
keratin (K)3, whereas Notch activation had an opposite effect [86]. Knockout of Notch1 in
the mouse skin and corneal epithelium by tamoxifen-induced K5-cre Notch1lox/lox causes
corneal hyperplasia and aberrant corneal epithelial proliferation marked by increased Ki67
staining [90].
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Using small molecule inhibitors of Notch, one study highlighted the particular sig-
nificance of Notch activation in LSC regulation [62]. Blocking Notch using two separate
Notch inhibitors that target different aspects of the pathway resulted in an increase in LSC
phenotype and a decrease in differentiated epithelial cells. This has been observed in both
human and rat LSCs in vitro [91–93]. Activating Notch using immobilized Jag-1 ligand in
cultivated human LSCs causes downregulation of the progenitor cell marker p63α, loss of
asymmetric division, and decreased epithelial stratification [94]. Another study demon-
strates that limbal niche cells prevent differentiation and over-proliferation of rat LSCs via
inhibition of Notch signaling [95]. Furthermore, Notch signaling mechanisms contain many
nuances that may shift the outcome of the signaling depending on the ligand position, mod-
ification, and the tissue or cell type. For example, soluble Jag-1 prevented TGFβ1-induced
epithelial-to-mesenchymal transition in cultivated rabbit LSCs [96]. Soluble Jag-1 has been
shown to be inhibitory on Notch signaling in NIH-3T3 cells [97] and 3T3-L1 preadipocyte
cells [98], while immobilized Jag-1 activates Notch signaling. Moreover, the phenotypic
outcome of Notch signaling also depends on crosstalk with other pathways and signaling
molecules such as NF-κB and PPARγ interaction [99], YAP/TAZ [100], and Wnt [101–103],
which have been demonstrated in other systems. While the role of Notch in LSC regulation
is still a largely unknown research area, the studies reviewed here suggest that inhibiting
Notch signaling promotes LSC maintenance in human LSCs.

2.3. Transforming Growth Factor β/Bone Morphogenic Protein (TGFβ/BMP) Signaling
Counteracts Wnt Signaling

Transforming growth factor β (TGFβ) superfamily ligands, including bone mor-
phogenic proteins (BMPs), activate canonical TGFβ signaling by binding to type II recep-
tors in the plasma membrane, which phosphorylate and activate type I receptors [104] and
subsequently leads to the phosphorylation of Smad-2/3 or Smad 1/5/8. Phosphorylated
Smad-2/3 or Smad 1/5/8 bind to Smad4, and the entire complex is translocated to the
nucleus and initiates the transcription of downstream genes. Early studies of human and
rat corneas found that TGFβ receptors were more highly expressed in the basal limbal
epithelium relative to the more superficial limbal epithelium and the central corneal epithe-
lium [45,105,106]. Immunolocalization of TGFβ1 [107], TGFβ2 [107,108], TGFβ receptor I,
and TGFβ receptor II [105] have been detected in the human limbus. BMP4 is upregulated
in the human limbus relative to the cornea [54].

With the current knowledge of 12 BMPs, specific ligands were found to be upregulated
differentially in human LSCs compared to those in the limbal mesenchymal cells, which are
components of limbal niche cells in the stroma, in culture [63]. BMP4 and phosphorylated
Smad 1/5/8 are upregulated in LSCs cultivated with limbal niche cells on 3D Matrigel
compared to limbal niche cells or LSCs cultivated separately on 3D Matrigel [63]. Upon
the reunion of limbal mesenchymal cells and limbal epithelial cells in culture, both Wnt
signaling and BMP signaling were activated in LSCs. In the same study, inhibition of BMP
signaling using noggin led to nuclear translocation of β-catenin in the LSCs, demonstrating
activation of canonical Wnt/β-catenin signaling. Downstream, BMP inhibition simultane-
ously led to increased colony-forming efficiency and percentage of K12-expressing cells.
This suggests that the canonical Wnt pathway is counteracted by BMP in limbal niche cells,
and the balance between canonical Wnt and BMP results in LSC proliferation [63].

HAM, a substrate used to support the maintenance of cultivated LSCs to be trans-
planted as treatment for LSCD, supplies TGFβ among many other growth factors to the
cultivated LSCs [109]. While the role of each individual growth factor provided by HAM
has not been parsed, the cocktail of cytokines and growth factors provided by HAM
cooperate to enable LSC proliferation and survival and support an anti-inflammatory
microenvironment [110–112]. One possible mechanism of TGFβ1 provided in HAM is that
TGFβ1 induces the production of MMP-9 in human LSCs [113], and MMP-9 facilitates
ECM remodeling to promote epithelial outgrowth from the limbal explant [114], which
might be one of its many regulatory roles in the expansion of LSCs.
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While Smad-dependent TGFβ signaling may have a positive role in maintaining
LSCs, it has also been demonstrated to induce epithelial–mesenchymal transition (EMT)
in mouse and cultivated rabbit LSCs when TGFβ1 is supplemented to the culture [96,98].
In the rabbit LSC culture, TGFβ1-induced EMT is counteracted by Smad7 [96]. EMT was
also accompanied by upregulated canonical Wnt/β-catenin signaling, loss of E-cadherin
expression on the membrane, and a decrease in cell density [98]. This suggests that
low levels of TGFβ or TGFβ signaling in balance with other signaling pathways and
mechanotransductive cues (which will be explored further in the next section) support LSC
quiescence but may cause EMT if this balance is disrupted.

2.4. Shh Could Promote Cell Cycle Progression and Prevents Terminal Differentiation in LSCs

Sonic hedgehog (Shh) signaling has been thoroughly characterized in embryonic
development, and is involved in the proliferation and differentiation of dental epithelial
cells [115], hair follicle development [116], and gastric epithelial development [117]. Shh
itself is a protein that undergoes a post-translational autocatalytic cleavage into a secreted
N-terminal domain and a C-terminal domain involved in intramolecular processing. Shh
binds to the Patched (Ptc) family of transmembrane receptors, which then activate the
transmembrane protein Smoothened (Smo). Following Ptc/Smo activation, the Gli family
of transcription factors is translocated to the nucleus to transcribe Shh-dependent genes.
Shh/Ptc/Smo activation likely causes epithelial cell proliferation through upregulating
cyclin D1 to promote cell cycle progression [118]. Shh expression has been shown to be
upregulated in the basal limbal epithelium. The Gli3 transcription factor is typically found
in the naïve basal and superficial limbal epithelium [118].

The hypothesis that Shh is involved in activating LSCs to proliferate is supported in
cultivated human and rabbit LSCs. Activation of Shh using Smoothened agonist (SAG)
increased mRNA and protein expression of Sox9. Sox9 knockdown in passage 1 primary
human limbal epithelial cells has been shown to paradoxically increase ∆NP63, ABCG2,
K12, and K3 mRNA levels, while decreasing proliferating cell nuclear antigen (PCNA), K14,
and K15 mRNA levels. This suggests Sox9 simultaneously represses stem cell- and termi-
nally differentiated cell-related genes, instead favoring genes involved in the proliferation
of progenitor cells such as the transient amplifying cells of the limbus [77]. Shh inhibition
decreased colony-forming efficiency in cultivated rabbit LSCs [119]. The pigment epithelial
growth factor-derived peptide 44-mer was shown to mediate LSC proliferation and main-
tenance via the Shh pathway, as 44-mer-treated rabbit LSCs had increased nuclear Gli1 and
Gli3, and inhibition of Shh using HPI4 prevented 44-mer-induced LSC proliferation [119].
Therefore, Shh signaling is likely involved in the progression of LSCs to the proliferative
transient amplifying state but prevents cells from becoming terminally differentiated.

3. Mechanotransduction via ECM Components in the Regulation of LSCs

Many types of stem cells experience mechanotransduction, which is the intracellular
chemical response to external mechanical stimuli [120]. Corneal and limbal epithelial
cells experience mechanical stimuli such as rubbing of the eyes, contact lens wear, and
fluid dynamics from the tear film [121]. In culture, corneal epithelial cells are able to
conform to the topography of the surface on which they are grown [122–124], and the
components of the culture media can influence the ability of the corneal epithelial cells
to conform to their substrate [125]. In addition, the response of LSCs to growth factors is
influenced by their surrounding substrates [121,126]. The ECM on which LSCs grow has a
considerable influence on the proliferative potential of stem cells [55,127,128]. LSCs react to
their substrates via hemidesmosomes that anchor the LSCs to the basement membrane [129]
and junctional complexes that link LSCs to other cells in their niche [22,130]. However, the
concentrations of hemidesmosomes [129] and gap junctions are lower in the basal limbal
epithelium than in the basal corneal epithelium, suggesting that mechanotransduction in
LSCs might be different than in corneal epithelial cells [111]. This section of the review
will discuss how various plasma membrane proteins expressed by the LSCs respond
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to biomechanical changes to transmit molecular signals into the cells, and how ECM
components regulate LSCs.

3.1. Stiffness Affects Differentiation of LSCs through BMP and YAP Signaling

Recent data evaluating the biomechanical properties of the in vivo human LSC niche
present valuable insights into the regulation of LSCs. The overall stiffness of the limbal
epithelium, ECM, and basement membrane are lower than the central cornea, corneal
basement membrane and Bowman’s layer, and differentiated CECs, respectively, as demon-
strated by atomic force microscopy [131,132]. A high-resolution survey of the mechanical
properties of the naïve human cornea acquired using Brillouin spectromicroscopy [133]
demonstrated that the superficial epithelium of the limbus has a similar stiffness to the
whole corneal epithelium. However, within the limbal epithelium, the middle wing layer
and basal layer were significantly softer than the superficial layer. Interestingly, stiffness
of the limbal stroma is not uniform, containing regions of high and low stiffness, whereas
the central corneal stroma has uniform stiffness. Additionally, the region of soft basal
epithelium corresponded to the location of cells expressing LSC markers such as ABCG2,
CK15, nuclear β-catenin, laminin-γ3, integrin-α9, and ∆Np63 [133]. Primary human LSCs
expressing high levels of ∆Np63 and ABCG2 are significantly softer than human LSCs
cultivated for four weeks that express lower levels of ∆Np63 and ABCG2, as measured by
AFM [132].

LSC depletion and stiffening of the limbus as a result of chemical injury causes
LSCD [134], and an LSC population can be restored in these injured corneas when the
stroma is softened using collagenase in culture [133] and in animal studies [135]. Human
and bovine LSCs cultured on stiffer collagen gels differentiate and express higher levels of
nuclear YAP and BMP4, while LSCs cultured on softer counterparts retain the progenitor
cell marker phenotype and express proliferative markers such nuclear ∆Np63 and β-
catenin [133,136,137]. In vivo, cytoplasmic YAP expression is upregulated in the human
limbus relative to the cornea [138]. As discussed above, BMP4 activation improves LSC
maintenance, so it appears that the downstream effect of BMP4 on LSCs depends on
crosstalk with other signaling factors including YAP [133].

Bovine LSCs cultured on stiff HAM differentiate more than when they are cultured
on softer HAM as demonstrated by increased K3+ cells in the LSCs cultured on stiff
HAM [139,140]. The HAM has a variety of properties that complicate study of the effect of
mechanical properties of the HAM on the LSCs in culture. In addition to its Wnt regulatory
role, HAM also activates TGFβ signaling. It is important to consider that culturing explants
on HAM alters the ECM organization of both the HAM and the stroma of the explants,
which may be due to the stromal cells and not the cultivated epithelial cells [141]. However,
as discussed above, MMP-2 and MMP-9 are expressed by cultivated LSCs and facilitate
remodeling of HAM ECM to promote growth of the epithelial cell sheet from explants [114].
Therefore, while stiff collagen gels and HAM substrates increase LSC differentiation, it is
important to consider the other factors these substrates present that affect LSC function
separately from substrate stiffness, such as signaling mechanisms of the substrates and the
remodeling effect the cells can have on the substrate itself.

3.2. Integrins and Cadherins in the Membrane Mediate LSC Responses to Their Environment

Integrin receptors have been found to induce cellular responses [11–13,55,142]. α3β1
and α6β4 integrins anchor LSCs to the limbal basement membrane in human tissue [16].
Recently Ma and colleagues have shown that Integrin-linked kinase (ILK) interacts with
integrin β1 and β3 in human LSCs cultivated from limbal explants to facilitate a phos-
phorylation cascade. This cascade is believed to inactivate GSK3-β, thus inhibiting the
degradation of β-catenin. ILK upregulates TCF-4, ∆Np63 transcription, and nuclear local-
ization of β-catenin, indicating both an improvement in the stem/progenitor cell phenotype
and activation of canonical Wnt/β-catenin signaling [143]. Cultures on collagen, laminin,
or Matrigel also induced upregulation of the same factors; however, the increase was much
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more prominent on cross-linked epithelial HAM [143]. ILK has also been shown to mediate
the balance between Wnt, TGFβ, and BMP signaling in quiescent hair follicle stem cells
through ECM remodeling [144]. β1 and β3 integrins comprise focal adhesions, which
mediate the cellular response to environmental cues by signaling to the cell to adjust the
cytoskeleton [145]. Using immortalized human corneal keratinocytes, one study found
that epidermal growth factor (EGF), a common component in LSC cultivation, activates
integrin and EGF receptor crosstalk that leads to downstream activation of focal adhesion
kinase, MAPK, Src, and the activated RhoA antagonist p190RhoGAP [145]. Through this
mechanism, EGF signaling and integrin signaling synergize to modulate cell adhesion
and improve cell motility. This connection between integrin signaling, focal adhesion
signaling, and canonical Wnt signaling is supported in studies that show mechanical strain
and activation of canonical Wnt signaling increase cell proliferation [132,146]. Therefore,
integrin and focal adhesion signaling are a possible upstream cascade of stiffness-induced
YAP nuclear localization and LSC differentiation (Figure 2). Integrin expression is also
involved in Notch signaling, as Hes1 knockout mice have decreased limbal expression
of integrin α6 and β1 [89]. Additional studies are necessary to confirm these signaling
mechanisms in LSCs.
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Figure 2. Summary and hypothesized mechanisms of ECM and membrane proteins involved in LSC regulation. LN:
Laminin. FN: Fibronectin. Green arrows: activation. Red lines: inhibition. Blue arrows: downstream pathways or
phenotype. Purple arrows: translocation. Gray arrows: gene expression. Double-sided arrows: crosstalk. ?: Hypothesized
mechanisms based on experiments in non-corneal cells.

N-cadherin and E-cadherin are other factors mediating the tight cell–cell interactions
between limbal mesenchymal cells, LSCs, and limbal melanocytes [4,16,60]. N-cadherin is
only expressed in the limbus, and the expression is highest in the limbal melanocytes and
the basal limbal epithelium [54,130]. N-cadherin has also been used as a marker of culti-
vated epithelium enriched in LSCs [55]. The association of LSCs with limbal mesenchymal
cells and limbal melanocytes was shown to prevent the differentiation of LSCs through ad-
ditional signaling pathways, such as Notch in rats [95]. N-cadherin may also influence Wnt
signaling in LSCs as a result of mechanotransduction (Figure 2), as N-cadherin has been
shown to mediate nuclear translocation of β-catenin in osteogenic differentiation resulting
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from fluid flow-induced mechanotransduction [44]. Studies in human keratinocytes demon-
strated that β-catenin is associated with the cadherins forming adherens junctions [50].
In addition, Fzd7 was found to promote cadherin recycling to and from the membrane
via Wnt11 signaling during zebrafish gastrulation [147], Xenopus development [148], and
mouse cardiovascular development [149]. These studies demonstrate that N-cadherin is
involved in LSC–niche interaction, which mediates downstream Notch and Wnt signaling
pathways as part of the regulatory machinery.

3.3. The ECM Proteins Laminin, Collagen, Fibronectin, and SPARC Cooperate with Molecular
Signaling Pathways to Regulate LSCs

Various laminins (LNs) are differentially expressed in the limbal basement membrane
or the Bowman’s layer in the central cornea, and more recently LN-based matrices for
culture of LSCs have been explored [150,151]. Coating fibrin gels with LN-521 or LN-511
(specifically the bioactive C-terminal domain of LN-511 (LN-511-E8)) increased human LSC
proliferation, adhesion, and migration through integrins α6β1 and α3β1, while LN-332
on fibrin gel decreased proliferation but increased the expression of the undifferentiated
marker K15 (Figure 2) [151]. Similarly, LN-521, LN-511, and LN-332 have been shown to
interact with integrin α6β1, α3β1, and α6β4, respectively, in the mouse epidermis and in
a biochemical assay of purified human proteins [144,152–154]. Together, the interaction
of LNs with β1 integrins in the limbal niche could be one mechanism of upregulating
Wnt/β-catenin signaling via ILK.

The epithelial basement membrane of the limbus is composed of numerous colla-
gens [11,150], which are becoming more frequently used as a substrate in hydrogels for
culturing LSCs [155,156]. Inducing ECM synthesis using ascorbic acid was shown to in-
crease stemness markers of immortalized mouse LSCs (TKE2 cells) [157]. Importantly,
this effect of ascorbic acid was primarily mediated by increased collagen production, as
inhibiting collagen production decreased the expression of stemness markers (Figure 2). To
address the possibility that ascorbic acid was improving the LSC phenotype through Akt
signaling or antioxidant activity, mouse LSCs were treated with other antioxidants and an
inhibitor of Akt signaling, but no effect on the mouse LSCs was observed in any of these
conditions [158]. The stability and synthesis of collagen in the cornea may involve Wnt
and TGFβ signaling (Figure 2).

Fibronectin (FN) has been shown to enhance human muscle stem cell proliferation
through the non-canonical Wnt/PCP pathway by interacting with Syndecan-4 (Sdc4), a
coreceptor of Frizzled-7 (Fzd7) [69,159,160]. Sdc4, Fzd7, and FN were found to colocalize in
the human limbal basal epithelia [47]. Upon treatment with FN, rabbit LSCs demonstrated
increased Wnt11 and Fzd7 interaction, upregulation of non-canonical Wnt/ROCK PCP
ligands and receptors, and self-renewal of the LSC population (Figure 2). This same experi-
ment also found that knocking out Wnt4 and Wnt11 in the rabbit LSCs led to differentiation
of the LSCs, measured by increased expression of K3 and decreased expression of ABCG2
and ∆NP63α [70]. Importantly, stem cells may also influence their own niche. For example,
activated satellite stem cells in skeletal muscle upregulate endogenous FN expression,
which in turn might enhance Wnt7-Fzd7 signaling [69].

Secreted protein acidic and rich in cysteine (SPARC) is a component of the limbal
basement membrane that colocalizes with ABCG2/p63-expressing LSCs in the human
limbus [150]. When soluble SPARC was added to cultivated rabbit LSCs, expression of
p63α and ABCG2 was found to be increased, while the differentiation marker K3 was
decreased. This study also found that SPARC led to phosphorylation and activation of
JNK and p38 MAPK [161]. Because inhibition of JNK leads to the formation of adherens
junctions in human foreskin keratinocytes [162], SPARC may result in the dissolution
of adherens junctions via JNK activation, and progression through mitosis via MAPK
activation (Figure 2). However, this potential mechanism would need to be investigated in
human LSCs.
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4. Conclusions and Future Directions

LSCs are regulated by carefully tuned balances of various signaling pathways, and
the activation or inhibition of these pathways is frequently dependent on the interactions
of LSCs with various niche cell types and extracellular substrates. In addition to receiving
molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also
respond to their surrounding physical structure via mechanotransduction, interaction with
the ECM, and interactions with other cell types. In the presence of sufficient cell-to-cell
contact, a balance among the signaling pathways including Wnt, Notch, BMP and Shh,
a soft external environment and ECM, the LSCs are capable of self-renewal. When such
balance is lost, the LSCs are prompted to proliferate via either symmetrical or asymmetrical
division. When the rate of proliferation cannot sustain the rate of turnover from external
insults or the alternation of the niche physical environment impairs the survival of LSCs,
depletion of LSCs occurs as seen in LSCD.

Future study of LSC regulation should incorporate an understanding LSCs’ responses
to their external cues. Small molecules that target specific signaling pathways in LSCs could
be made more efficacious in combination with bioengineering approaches incorporating
3D printing, hydrogels, or matrix biology. These could be used to improve the clinical
outcome of LSC transplantation, or as a topical treatment that would obviate the need for
transplantation altogether. Ultimately, future development of LSCD therapies should take
into consideration all of these niche factors to achieve a better long-term success.
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