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Abstract: Vanishing point (VP) provides extremely useful information related to roads in driving
scenes for advanced driver assistance systems (ADAS) and autonomous vehicles. Existing VP
detection methods for driving scenes still have not achieved sufficiently high accuracy and robustness
to apply for real-world driving scenes. This paper proposes a robust motion-based road VP detection
method to compensate for the deficiencies. For such purposes, three main processing steps often
used in the existing road VP detection methods are carefully examined. Based on the analysis,
stable motion detection, stationary point-based motion vector selection, and angle-based RANSAC
(RANdom SAmple Consensus) voting are proposed. A ground-truth driving dataset including
various objects and illuminations is used to verify the robustness and real-time capability of the
proposed method. The experimental results show that the proposed method outperforms the existing
motion-based and edge-based road VP detection methods for various illumination conditioned
driving scenes.

Keywords: VP detection; optical flow; autonomous vehicles; ADAS; FOE; RANSAC

1. Introduction

If a set of lines that are parallel in the 3D object space is projected onto a 2D image
plane of a camera under perspective view, their images will form a set of lines that intersect
at a point. The intersection point is called a vanishing point (VP) [1]. Generally, the number
of VPs in an image depends on the number of sets of parallel lines in the 3D object space
that are projected on the image. Among a lot of VPs presented in every frame of the driving
videos, the most special VP is the intersection point of lanes or road boundaries. Hereafter,
the VP is called R-VP (road VP) [2] in the rest of this paper.

R-VPs provide important information regarding driving scenes for ADAS (advanced
driver assistance systems) and autonomous vehicles. For example, camera rotations [3],
depth distance estimations, an instantaneous moving direction of a host vehicle, drivable
areas of roads, etc., can be determined by using R-VPs.

Recently, deep learning (DL) has achieved a lot of impressive successes. Particularly,
CNN (convolutional neural networks) has obtained great results in image classification,
image recognition, etc. Some studies have applied DL to R-VP detection. CNN is used to
train R-VP detectors in [4–6]. Regression ResNet-34 is used as an R-VP detector in [7]. A
combination of CNN and heatmap regression is applied to R-VP detection, where features
get from a modified version of HRNet [8]. These DL-based R-VP detectors detect R-VPs
for limited driving situations. Moreover, the supervised learning method in general is the
data-driven learning method that needs a huge size of training datasets with the exact
labels in real-world driving scenes. As can be seen in [4–8], the number of images in the
training datasets is limited. It is still difficult to realize a sophisticated DL-based R-VP
detection that is suitable for driving scenes in practice.
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Currently, geometrical feature-based R-VP detection methods for driving scenes are
still being studied and utilized. Recently, the number of geometrical feature-based methods
for R-VP detection increased significantly. These recent existing methods can be classified
into four groups based on types of geometrical features used in the methods, such as
line segment-based [9–29], edge-based [30–33], motion-based [34–37], and texture-based
methods [38–52].

Most geometrical feature-based R-VP detection methods include three main processing
steps: Step (1) Line segments are extracted from various features in driving images. Step (2)
The line segments that tend to converge at R-VP locations are selected. Step (3) Intersections
of the selected line segments are used to vote R-VPs through a voting process.

Optical flows of image points are generated by the movement of an observer that is
a camera of a host vehicle in the R-VP detection problem. The convergence point of the
optical flows of stationary image points is called the focus of expansion (FOE) of the host
vehicle [53]. The great advantage of the FOE is that the FOE forms from the self-movements
of the host vehicle. In other words, the FOE formation of a host vehicle does not depend on
geometrical feature extractions from lanes, road boundaries, and other lines. Furthermore,
if a host vehicle moves in parallel with road boundaries and the roads are almost flat,
its FOE will coincide with R-VP [2]. That is why FOEs of host vehicles can be used to
detect efficiently R-VPs for both structured roads and unstructured roads in the existing
motion-based R-VP detection methods. This paper carefully examines the main processing
steps of the existing motion-based R-VP detection methods. Some disadvantages in these
processing steps are analyzed and considered to design our proposed method. In this paper,
a new motion-based R-VP detection method is proposed to overcome the shortcomings of
the existing motion-based methods.

The novel contributions of this paper are outlined below.

1. Stable motion vector detection is proposed to detect the stable vectors from several
consecutive frames.

2. Stationary point-based motion vector selection is proposed to keep useful motion
vectors and to reduce unhelpful ones for the R-VP detection.

3. Angle-based RANSAC voting is proposed to reduce efficiently the contributions of
the outliers.

4. The proposed R-VP detection method that consists of stable motion detection, sta-
tionary point-based motion vector selection, and angle-based RANSAC (RANdom
SAmple Consensus) voting achieves high accuracy and robustness for real-world
driving scenes.

The next section discusses related research work. Section 3 explains the proposed
method in detail. Section 4 shows experimental results. We conclude in Section 5.

2. Related Work
2.1. Main Processing Steps of The Existing R-VP Detection Methods

Most existing R-VP detection methods consist mainly of three steps. In Step 1, the
line segment-based methods extract line segments from lane markers and road boundaries.
The edge-based methods and texture-based methods extract pieces that are similar to very
short straight lines and convert them into line segments in a variety of ways. Motion-based
methods estimate line segments from motion vectors in driving scenes using pairs of two
consecutive frames. In Step 2, the estimated line segments that tend to converge at the R-VP
location are selected by using various constraints. In Step 3, intersection points generated
by the lines selected from step 2 are voted to find R-VP. Because the number of intersection
points is usually very high, voting algorithms are always used. The most commonly used
voting method is the RANSAC-based method.

The accuracy of each method above depends heavily on the type of geometrical
features that the method uses. Although the line segment-based methods have achieved
high accuracies, they are well-suited only for structured roads. It is known that the edge-
based methods, texture-based methods, and motion-based methods can detect R-VPs for
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both structured roads and unstructured roads. However, texture-based methods cannot
be applied to real-time R-VP detection applications because of their high complexity. The
edge-based methods are highly sensitive to illuminations due to the character of edge
detectors. Eventually, the motion-based methods seem to be the most suitable method to
detect R-VPs for both structured roads and unstructured roads because they do not depend
on extracting features from the lanes, edges, and texture of the driving scenes. However,
the existing motion-based R-VP detection methods for driving scenes still have some
limitations as shown in the next sub-section. Therefore, this paper attempts to enhance the
performance of the methods.

In general, various kinds of line segments are estimated from input driving video
frames. The line segments that tend to converge at R-VP locations are selected by using
various constraints. Because the road surface is not completely flat, the translation of
the host vehicles is not completely pure, which causes a small fluctuation of the R-VPs.
To compensate for the fluctuation, possible intersection points are firstly found and an
intersection point with the highest vote is detected as R-VP by using voting methods
such as MLE (maximal likelihood estimator) voting [9], probabilistic voting [10], line-soft-
voting [12], cell-based voting [16], and RANSAC-based voting [18,21,22,24]. The next
sub-sections summarize the three main processing steps of existing motion-based R-VP
detection described in Figure 1.
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Figure 1. The main processing of existing motion-based road vanishing points (R-VP) detection methods.

2.2. Motion Vector Detection and Selection

In the motion-based R-VP detection methods [34–37], motion vectors are used as line
segments. Most existing motion-based methods detect a fixed number of corner points
in a frame by using corner detectors such as the Shi-Tomasi corner detector [54]. These
detected corner points are tracked in the next frame using the Lucas-Kanade method [55].
The corner detection and tracking process are repeated for every pair of two consecutive
frames. The corresponding points between two frames form motion vectors. As the sets of
detected corner points between frames are often unstable, the estimated motion vectors
lead to errors of the R-VP detection. Furthermore, the lengths of the estimated motion
vectors are usually short because corner points are tracked only between two consecutive
frames. These unstable and short motion vectors make it difficult to detect the FOE of host
vehicles with high accuracy.

Figure 2a shows motion vectors (indicated as red lines) estimated by the existing
motion-based R-VP detection methods. The white dots are the heads of the motion vectors.
The remaining endpoints are tails. The direction from a tail to a head and the length of a
motion vector represent movement information of a corner point. These motion vectors
provide a lot of useful information for a wide variety of computer vision applications.
However, in the point of view of the R-VP detection problem, these motion vectors still
cause some errors for R-VP detection. In detail, most existing motion-based R-VP detection
methods assume that longer motion vectors are more convergent to R-VP locations [34–37].
However, it can be seen in Figure 2a that the short vectors also coincide on the lanes and
road boundaries. The short vectors also contribute well to the R-VP detection. These less
distinguishable motion vectors do not provide useful information for selecting vectors
that are useful for the R-VP detection problem. It is necessary to enhance motion vector
detection that facilitates R-VP detection.
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Figure 2. Examples of motion vectors detected from (a) two consecutive frames by the existing method and (b) several
consecutive frames by the proposed stable motion detection method.

The existing motion-based methods attempt to select useful vectors. Motion vectors
that are long and not belonging to a certain area where other moving objects exist are
selected [34–37]. In the methods, they eliminate the vectors in the area of on-coming and
in-parallel driving vehicles. However, we observe that the motion vector selection also
eliminates useful vectors for R-VP detection. It is helpful to keep the motion vectors coming
from stationary objects.

2.3. Voting Method

In motion-based methods, motion vectors are used as line segments. Because the
number of intersections of the line segments is often very high and these lines converge at
a small location instead of a single point, a voting process is needed. The RANSAC-based
voting has been used commonly for low computational complexity. A minimum number
of line segments are randomly selected to generate an estimated R-VP as a hypothesis
R-VP. The hypothesis R-VP is voted by the remaining motion vectors. In the existing
methods, perpendicular distances between the hypothesis R-VP and every line segment
are calculated and used as a metric to vote the hypothesis R-VP. The voting process is
applied iteratively for other hypotheses. A hypothesis R-VP that gets the highest vote
is detected as R-VP. The distance-based metric does not guarantee to assign the higher
scores to the useful vectors (inliers) that tend to highly converge at the R-VP locations. As
shown in Section 3.3, the two motion vectors (indicated by the red arrows) have the same
perpendicular distance from the hypothesis R-VP (indicated by the blue dot), even though
they converge in completely different directions. In this paper, an efficient RANSAC-based
voting method is proposed to exclude most of the outliers from the voting process.

3. Proposed Method

The proposed method also has the same main processing steps as shown in Figure 1.
However, the three processing steps are proposed to improve the robustness and real-time
ability of the R-VP detection. The flowchart of the proposed R-VP detection method is
shown in Figure 3. The following sub-sections describe three processing steps in detail.

3.1. Stable Motion Vector Detection

In contrast to most existing motion-based R-VP detection methods that obtain motion
vectors from two consecutive frames, our motion vector detection estimates stable motion
vectors over several consecutive frames. From a given first frame ft0 at a time t0, corner
points are detected by using the Shi-Tomasi corner detector [54]. All corner points form
an initial set, denoted as Pt0 = {pt0(1), pt0(2), . . . , pt0(nt0)}, where nt0 is the number of
corner points. Every point in the initial set is tracked over the successive frames ft0+k
(k = 1, 2, 3, . . .) by using the Kanade-Lucas optical flow method [55]. Any point in the
initial set that is not tracked in the current frame ft0+k is deleted from the set Pt0 . Otherwise,
the successive tracked points are updated into the tracked set P′t0+k. Even though the set is
denoted as P′t0+k, only one set is used and updated for a different time t0 + k. The initial



Sensors 2021, 21, 2133 5 of 15

point pt0(i) ∈ Pt0 and its corresponding tracked point p′t0+k(i) ∈ P′t0+k have the same index
i and indicate the pixel-wise coordinates.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15 
 

 

tial set that is not tracked in the current frame 𝑓𝑡0+𝑘 is deleted from the set 𝑃𝑡0
. Other-

wise, the successive tracked points are updated into the tracked set 𝑃𝑡0+𝑘
′ . Even though 

the set is denoted as 𝑃𝑡0+𝑘
′ , only one set is used and updated for a different time 𝑡0 + 𝑘. 

The initial point 𝑝𝑡0
(𝑖) ∈ 𝑃𝑡0

 and its corresponding tracked point 𝑝𝑡0+𝑘
′ (𝑖) ∈ 𝑃𝑡0+𝑘

′  have 

the same index 𝑖 and indicate the pixel-wise coordinates. 

 

Figure 3. Flowchart of the proposed R-VP detection method. 

Detail procedures to detect stable motion vectors are as follows. If the corner points 

are not tracked in the current frame 𝑓𝑡0+𝑘 or have a very short displacement (smaller 

than a predefined distance 𝑇𝐷 ) between the previous frame 𝑓𝑡0+𝑘−1  and the current 

frame 𝑓𝑡0+𝑘, the points in the initial set are deleted. The number of remaining corner 

points at the frame 𝑓𝑡0+𝑘 decreases to 𝑛𝑡0+𝑘(≤ 𝑛𝑡0+𝑘−1), then the initial set and tracked 

set are now updated as 𝑃𝑡0
= {𝑝𝑡0

(1), 𝑝𝑡0
(2), … , 𝑝𝑡0

(𝑛𝑡0+𝑘)}  and 𝑃𝑡0+𝑘
′ =

{𝑝𝑡0+𝑘
′ (1),  𝑝𝑡0+𝑘

′ (2), … , 𝑝𝑡0+𝑘
′ (𝑛𝑡0+𝑘)}, respectively. The lifetime of tracked points depends 

on how fast or slow the movement of the host vehicle is. The corner point tracking pro-

Figure 3. Flowchart of the proposed R-VP detection method.

Detail procedures to detect stable motion vectors are as follows. If the corner points
are not tracked in the current frame ft0+k or have a very short displacement (smaller than a
predefined distance TD) between the previous frame ft0+k−1 and the current frame ft0+k,
the points in the initial set are deleted. The number of remaining corner points at the frame
ft0+k decreases to nt0+k

(
≤ nt0+k−1

)
, then the initial set and tracked set are now updated as

Pt0 =
{

pt0(1), pt0(2), . . . , pt0

(
nt0+k

)}
and P′t0+k =

{
p′t0+k(1), p′t0+k(2), . . . , p′t0+k

(
nt0+k

)}
,

respectively. The lifetime of tracked points depends on how fast or slow the movement of
the host vehicle is. The corner point tracking process performs iteratively until the number
of the remaining points nt0+k is less than a pre-defined threshold number TN . Whenever
the number of remaining points is less than TN , new corner points are detected in the actual
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frame and appended to the initial set. The new detected corner points and remaining old
ones keep a sufficient number of points to estimate stable motion vectors.

The motion vector set Vt0+k =
{

vt0+k(1), vt0+k(2), . . . , vt0+k
(
nt0+k

)}
is obtained from

every remaining point in the tracked set and its corresponding point in the initial set.
The length of each motion vector ‖vt0+k(i)‖ is the distance between a point pt0(i) and its
corresponding point p′t0+k(i) at the current frame ft0+k. Figure 2b shows that the estimated
motion vectors of the proposed method are much longer than the ones taken from two
consecutive frames. Compared to Figure 2a, most redundant and short motion vectors are
eliminated in Figure 2b. As long motion vectors appear over many successive frames, they
are considered to be stable motion vectors. Besides, many long motion vectors coincide
with lanes and road boundaries. The stable motion vectors are very helpful to improve the
performance of R-VP detection.

3.2. Stationary Point-Based Motion Vector Selection

In general, there are three different types of motion vectors in the driving scenes when
a camera of a host vehicle moves. The first is motion vectors that are generated from
the approaching of stationary objects such as lanes, road boundaries, trees, traffic signs,
buildings, etc. Two other motion vectors occur from other moving objects. The second type
of vector is generated from other accelerating, overtaking, and land changing vehicles. The
third one occurs from on-coming or decelerating vehicles. Figure 4a shows an example of
the three types of motion vectors. In this Figure, the numbers 1, 2, and 3 indicate motion
vectors from the stationary background, an accelerating vehicle, and a decelerating vehicle,
respectively. Type 2 and type 3 motion vectors are numerous and might generate many
incorrect R-VPs. Moreover, if the number of moving objects increases, their appearances
will affect strongly the accuracy of R-VP detection. To achieve high performance of the
R-VP detection, it is important to reduce the motion vectors type 2 and type 3 as much as
possible, maintaining type 1.
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Figure 4. (a) Three types of motion vectors in a driving scene, where motion vectors types 1, 2, and 3 come from the
stationary background, accelerating, and decelerating vehicles, respectively. The motion vectors (b) when applying motion
vector type 2 reduction sub-step and (c) when applying both motion vector type 2 and 3 reduction sub-steps.

In the following sub-sections, the proposed stationary point-based motion vector
selection method is introduced to reduce two different types of motion vectors respectively,
based on the experimental observations.

3.2.1. Reduction of Motion Vector Type 2

It is observed that a current tracked point p′t0+k(i) belonging to motion vector type 2
is closer to the image center when k increases. Then, the motion vector set Vt0+k at the time
t0 + k is updated to maintain motion vectors of which the head points p′t0+k(i) get farther
away from the image center pc as follows;

Vt0+k =
{

vt0+k(i) | ‖p′t0+k(i)− pc‖ > ‖(pt0(i)− pc)‖, vt0+k(i) ∈ Vt0+k

}
(1)

The above constraint does not guarantee to eliminate all motion vector type 2. It is
observed that the motion vector with a completely different direction has equal or very
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similar ‖pt0(i) − pc‖ and ‖p′t0+k(i) − pc‖. For this case, an extended actual head point
denoted as p′ext_t0+k(i) is calculated using Equation (2) and applied to Equation (1) to
eliminate efficiently the motion vector type 2.

p′ext_t0+k(i) = p′t0+k(i) + l
vt0+k(i)
‖vt0+k(i)‖

(2)

where p′t0+k(i) is extended l pixels along the direction of the corresponding motion vector
vt0+k(i). Figure 4b shows an example of motion vector type 2 reduction where the left side
white vehicle-related motion vectors are almost eliminated.

3.2.2. Reduction of Motion Vector Type 3

The motion vector type 3 comes from on-coming or decelerating vehicles. As both
motion vector types 1 and 3 have similar directions and lengths, it is difficult to distinguish
type 3 from type 1. For such reasons, the region where the type 3 motion occurs frequently
is excluded in [34]. The angle between every motion vector and image horizon is used to
exclude the region. Motion vectors having an angle in the interval

[
00, 300] are excluded

in [34]. Our motion vector type 3 reduction uses the angle criterion, but a smaller angle
interval is applied to prevent from excluding type 1. Motion vectors with angles in the
interval

[
00, 100] are excluded from the current vector set. A vector length-based reduction

is proposed to reduce the remaining type 3, based on the experimental observation that
type 3 tends to be shorter than type 1. A certain percentage of the longest motion vectors
are kept in the current vector set Vt0+k and others are excluded. In summary, the vectors
that have small angles with image horizon or short lengths are eliminated from the current
vector set. Figure 4c shows that the right-side truck-related motion vectors are reduced.

3.3. Angle-Based RANSAC Voting Method

In this section, we propose an angle-based RANSAC voting method to overcome
the disadvantage of the existing perpendicular distance-based metrics as mentioned in
Section 2.3 (Figure 5a). As shown in Figure 5b, the intersection point (indicated by the blue
dot) calculated from randomly selected two vectors (indicated by black lines) in the set
Vt0+k is hypothesis R-VP pH . The angle θ(i) between two vectors vt0+k(i) and ut0+k(i) is
calculated as given in Equation (3) and used for voting. ut0+k(i) is a vector pointing in the
direction from point p′t0+k(i) to the hypothesis pH .

θ(i) = arccos
(

ut0+k(i) · vt0+k(i)
‖ut0+k(i)‖ ‖vt0+k(i)‖

)
(3)

As the angle θ(i) is smaller when the vector vt0+k(i) orients closer to the hypothesis,
it can be used as a good metric for voting. As shown in Figure 5b, given two vectors
vt0+k(i) and vt0+k(j) (indicated by the red arrows) have different angles θ(i) and θ(j),
unlike the perpendicular distance metric described in Section 2.3 and Figure 5a. Even
when two motion vectors move further along their respective directions, the vector vt0+k(i)
orienting closer to the hypothesis has still a smaller angle than another vt0+k(j). This is the
reason why the angle-based metric is helpful to achieve higher performance of the R-VP
detection compared to the perpendicular distance-based one. The angle metric is used in
the proposed angle-based RANSAC voting method.

A score function is designed by using the exponential function so that a vector with a
smaller angle contributes more to the voting. The score S(i) is calculated on every motion
vector vt0+k(i) ∈ Vt0+k for the given hypothesis. A motion vector is regarded as an inlier if
it has an angle θ(i) that is smaller than the predefined Tθ .

S(i) =

{
e−|θ(i)| θ(i) < Tθ

0 otherwise
(4)
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4. Experiments

For the simulations, the proposed R-VP detection is tested on Jiqing Expressway
dataset [56] that includes various driving conditions such as straight roads, slightly curved
roads, shadows, illuminations, occlusions, moving objects, etc. The dataset is composed of
32 video clips with FHD (1920 × 1080) dimensions. Each video clip has 5393 frames, then
the total number of frames is 172,576 frames (=32 clips × 5393 frames). The coordinates of
points on the lanes are fully provided in the dataset. Intersection points of the lanes are
calculated and used as ground-truth R-VPs.

Two existing R-VP detection methods are also tested for comparison with the proposed
method. The motion-based method [34] is implemented as faithfully as possible, which
consists mainly of two successive frames-based motion vector detection, region-based
motion vector selection, and the perpendicular distance metric-based RANSAC voting.
Maximum 500 motion vectors are detected from every two successive frames and used for
the voting. The edge-based R-VP method [30] using Canny edge detector and probabilistic
Hough Transform is also implemented as faithfully as possible. For the proposed method,
500 corner points are detected in the initial frame (nt0 = 500) and tracked. Whenever the
number of the tracked points falls under TN = 400, new 500 corner points will be detected
and appended to the initial set. In the stable motion vector detection step, a tracked point
is kept when its displacement between two successive frames is bigger than TD = 2. The
parameter Tθ = 450 is used to distinguish inliers and outliers.



Sensors 2021, 21, 2133 9 of 15

The performances are evaluated by using the normalized Euclidean distance between
the detected R-VP’s coordinate (xE, yE) and the ground truth one (xG, yG). The normalized
error dist is given by [34].

dist =

√
(xE − xG)

2 + (yE − yG)
2

D
(5)

Here D is the length of the diagonal of the image. The error dist ranges over [0, 1).
When dist is closer to zero, the position of the detected R-VP is closer to that of ground-truth
R-VP.

Table 1 shows the accuracy of the proposed method and the other two methods, where
the average of the normalized error with its standard deviation is shown. The processing
time in milliseconds is also presented for the comparison of computational complexity.
To evaluate the validity of the stationary point-based motion vector selection step, the
proposed method is tested in four different cases; One is the case of not using motion vector
type 2 reduction and type 3 reduction. Two others are the cases of applying either type 2 or
type 3 reduction. The last one is applying both reductions.

Table 1. Performance comparisons of the proposed, the motion-based [33] and the edge-based [29]
methods in terms of the average distance between the detected and ground truth R-VPs, its standard
deviation, and processing time.

Methods RANSAC
Iterations

Average
of Error

Standard
Deviationof Error

Average of Time
Processing (ms)

Edge-based method 900 0.0191347 0.2454778 611.20

Motion-based method 900 0.0148898 0.2088319 147.92

The
proposed
method

Reduction
of type 2

Reduction
of type 3

6 6 900 0.0075473 0.0101119 446.42

4 6 900 0.0049879 0.0080097 410.22

6 4 900 0.0051795 0.0091563 339.21

4 4 900 0.0038549 0.0073061 287.07

4 4 45 0.0042509 0.0073760 62.57

As shown in Table 1, the proposed motion-based R-VP detection, which applies both
motion vector type 2 reduction and type 3 reduction, has the highest accuracy (the smallest
average error) and the smallest standard deviation. The proposed method has outstanding
processing time. The proposed method achieves the average of error 0.0038549 (8.48 pixels
in distance) and the standard deviation of 0.0073061 (16.08 pixels in distance). The achieved
values are 3.86 and 28.58 times smaller than those of the existing motion-based method,
respectively. In particular, the proposed method with a smaller RANSAC iteration number
of 45 is the fastest (62.57 ms), maintaining high accuracy similar to the case of iteration
number 900. Even in the case of not using the motion vector selection step, the proposed
method shows higher accuracy than the two existing methods in terms of both average
error and standard deviation. This means that the proposed angle-based RANSAC voting
works very well. Simulation results show that the proposed stationary point-based motion
vector selection is also efficient to improve the R-VP detection performance. In particular,
motion vector type 2 reduction contributes to the improvements slightly more than type 3
reduction. Figure 6 shows the distribution of the normalized errors for the proposed and
two existing methods. The normalized errors of the proposed method distribute closer to
zero, compared to the others. The performances of the proposed method are also evaluated
under three different illumination environments as in Table 2. The video dataset is divided
into bright days (17 video clips), slightly dark days (5 video clips), and in-tunnel (10 video
clips). The performances are evaluated separately. As shown in the table, the average
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error and the standard deviation are very similar in three different illuminations. This
demonstrates the robustness of the proposed method.
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Table 2. The performances of the proposed method with reduction of type 2 and type 3 under
three different illumination conditions of driving scenes such as bright days, slightly dark days, and
in-tunnels.

Bright Days Slightly Dark Days In Tunnels

Average
of Error

Standard
Deviation

Average
of Error

Standard
Deviation

Average
of Error

Standard
Deviation

The proposed method with
RANSAC iteration 900 0.0041823 0.0072681 0.0041252 0.0073249 0.0032571 0.0073250

The proposed method with
RANSAC iteration 45 0.0045382 0.0073146 0.0046241 0.0074313 0.0035902 0.0073825

To evaluate the performances according to the feature extractions, the proposed R-VP
detections using SIFT (scale-invariant feature transform) and SURF (speeded-up robust
features) features instead of the Shi-Tomasi feature are tested and compared. Table 3 shows
that both SIFT and SURF have higher accuracies compared to the two existing methods,
but the accuracies are lower than those of using the Shi-Tomasi feature. As mentioned
in [54], the Shi-Tomasi feature was mainly designed for tracking, whereas SIFT [57] was
mainly designed for image matching and SURF [58] is just a speeded-up version of SIFT.
Additionally, Table 3 also shows that SIFT and SURF require very high computational costs.
Therefore, SIFT and SURF are not efficient features for motion vector estimation in the
R-VP detection problem.

Table 3. The performances of the proposed method with reduction of type 2 and type 3 using
scale-invariant feature transform (SIFT) and speeded-up robust features (SURF) features.

Methods RANSAC
Iterations

Average of
Error

Standard
Deviationof Error

Average of Time
Processing (ms)

The proposed
method using SIFT

900 0.0091880 0.0100742 1500.37

45 0.0106574 0.0113037 1335.65

The proposed
method using SURF

900 0.0132818 0.0159866 728.19

45 0.0146137 0.0162612 632.57

We also test the proposed method using the perpendicular distance metric-based
RANSAC [59] instead of the proposed angle-based RANSAC. Results in Table 4 show
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that RANSAC using the angle-based metric is better than that of using the perpendicular
distance metric.

Table 4. The performances of the proposed method with reduction of type 2 and type 3 using
perpendicular distance metric-based RANSAC.

Methods RANSAC
Iterations

Average of
Error

Standard
Deviationof Error

Average of Time
Processing (ms)

The proposed method
using distance-based

RANSAC

900 0.0093751 0.0136126 283.61

45 0.0112964 0.0138230 61.82

Some examples of the proposed motion-based R-VP detection are shown in Figure 7,
where ground-truth and detected R-VPs are indicated as green and red dots, respectively.
The motion vectors are also represented by red lines. Examples show that the proposed
method works well in various illumination conditions such as bright and slightly dark
daytime, tunnel, and nighttime. An extra test is performed for a nighttime scene as the
nighttime video is not included in the ground-truth dataset. Note that ground-truth R-VP
is not represented in Figure 7d. We observe that the detected R-VP overlaps visually the
intersection point of the road boundaries. The red and green dots in Figure 7a–c almost
coincide. Two examples of nighttime R-VP detection are shown in Figure 8, where video
frames extracted from “ZJU Day and Night Driving Dataset” [60,61] are used without
ground-truth R-VPs. White lines are road boundaries drawing by hand and the red circle
is detected R-VP. The red circle and the intersection of road boundaries are also almost
coincided. Such coincidences demonstrate the accuracy of the proposed method.
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In general, we observed that the proposed method can detect R-VP efficiently when
host vehicles move in parallel with road boundaries and road surfaces are almost flat as
mentioned in Section 1. The proposed method sometimes fails to detect correctly R-VP in
cases of uneven (or bumpy) and curved roads.

5. Conclusions

In this paper, we proposed a motion-based R-VP detection method. Three main
processing steps often used in the existing R-VP detection methods are carefully examined.
Based on the analysis, we propose stable motion detection, stationary point-based motion
vector selection, and angle-based RANSAC voting, which are successfully applied to
improve the performances of the main three steps.

Through the simulations, we show that the proposed stable motion detection and
angle-based RANSAC voting contribute considerably to the improvement of R-VP detection
performance. In particular, the proposed angle-based RANSAC voting works much better
than conventional perpendicular distance-based voting. The proposed motion-based R-VP
detection that combines all three proposed three-step algorithms outperforms the existing
motion-based and edge-based R-VP detection methods. The simulation results show
that the proposed method is applicable for nighttime, as well as various illumination
conditioned driving scenes. It is also shown that the standard deviation of the detected
R-VP position is the smallest, compared to others. The performances are very similar
in three different illumination conditions. This means the proposed method is robust as
well as accurate compared to the existing R-VP detection methods. From the viewpoint
of computational complexity, the proposed can be realized in real-time. It is possible to
apply selectively the proposed three-step algorithms depending on the system resources.
Even though the proposed method is not evaluated on the unstructured road driving video
because of the lack of the ground truth datasets, it is expected that it works in a stable on
the unstructured road driving.

The proposed R-VP detection method plays an important role to improve the perfor-
mances of various applications such as online camera calibration, detection of drivable
areas, and driving direction of the host vehicle.
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