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Abstract: The effects of topological constraints on penetration structures of semi-flexible ring polymers
in a melt are investigated using molecular dynamics simulations, considering simultaneously the
effects of the chain stiffness. Three topology types of rings are considered: 01-knot (the unknotted),
31-knot and 61-knot ring polymers, respectively. With the improved algorithm to detect and quantify
the inter-ring penetration (or inter-ring threading), the degree of ring threading does not increase
monotonously with the chain stiffness, existing a peak value at the intermediate stiffness. It indicates
that rings interpenetrate most at intermediate stiffness where there is a balance between coil expansion
(favoring penetrations) and stiffness (inhibiting penetrations). Meanwhile, the inter-ring penetration
would be suppressed with the knot complexity of the rings. The analysis of effective potential between
the rings provides a better understanding for this non-monotonous behavior in inter-ring penetration.

Keywords: molecular dynamics simulations; semi-flexible ring polymers; topological constraints;
penetration; chain stiffness

1. Introduction

A ring polymer is formed by the simple process of joining the ends of a linear polymer chain,
corresponding to the so called 01-knot or trivial knot, that is, an unknotted ring polymer. For the
semi-flexible rings in the range of the crossover from the rod-like limit to the random coil one,
the conformations show a strong anisotropic character relying on the stiffness. As is well known,
DNA often exhibits a knotted ring conformation in bacteria and phages [1]. Now, synthetic ring
polymers display very complex knotted configurations, such as 31-knot, 41-knot, 51-knot, 61-knot and
so forth in Conway’s notation (e.g., Nk-knot denotes the kth type of knotted ring with N crossings) [2].
The presence of knots in a ring polymer can be viewed as a self-entanglement phenomenon [3].
The topological constraints of rings has a dramatic effect on the physical properties with respect to
their linear counterparts due to the change in the conformational degrees of freedom [4,5]. The most
prominent examples are their different scaling behaviors [6–10] and rheological properties [11,12].
First, it has been demonstrated that the size of isolated rings scales with the polymerization degree (N)
as Dg~NVF, where Dg is the diameter of gyration and VF ≈ 0.588 is the Flory exponent, respectively.
However, the size of linear chain scales as Dg~N0.5 [7]. Second, no free ends implies that rings do
not relax via common reptation which is primarily responsible for linear chains [13]. Unlike the
linear chains, the ring polymer melts exhibit self-similar dynamics, thereby yielding a power-law
stress relaxation instead of the rubber-like plateau of linear melts [14]. Additionally, the topological
constraints dramatically reduces its attainable states in the phase space, resulting in a repulsive effective
interaction between two ring chains, while it vanishes between two linear chains or a linear chain and
a ring chain [15–17].
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Absent in systems of linear chains, inter-ring penetration (or inter-ring threading) is a unique feature
of ring polymers but the effects of threading is still controversial until now. Earlier studies [18,19] neglect
the threading and assume rings to adopt a double-folded annealed branched structure. This so-called
annealed tree model [20,21] shows a great agreement with simulations whether on static or dynamic
properties so far. However, studies by Michieletto et al. [22,23] and Lee et al. [24,25] believe in the
profound effects of the ring threading, responsible for the observed “topologically-driven glassy”
behavior. To address this controversy, it is extremely necessary to have a comprehensive understanding
of penetration structures of semi-flexible rings. It is quite essential for theoretical simulation and also
for experiment of bio-packing [26,27], such as observed in circular DNA of bacteriophage viruses.

In this work, we focus on the penetration structures of three knot types of rings, that is,
the 01-knot, the 31-knot and the 61-knot rings [2]. We define the degree of penetration and monitor the
internal structure of penetrated rings in detail by changing the complexity of the knot, the bending
energy of rings and the number density of system. Meanwhile, we also derive the effective potential
between penetrated rings to support our findings about the effects of the topological constraints and
chain stiffness on inter-ring penetration. Our results can provide a deeper understanding about the
penetration structure of rings, especially for the case of semi-flexible rings.

2. Simulation Model and Method

2.1. Model

A bead-spring model by Kremer and Grest [28] is used to model the non-concatenated ring
polymer, each consisting of N spherical monomers with a monomer diameter of σ and a mass of m.
Bonded monomers interact via the finitely extensible nonlinear elastic (FENE) potential [29]

UFENE(r) = −
KR2

0

2
ln

1− (
r

R0

)2, (1)

where r is the distance between two neighboring monomers. K = 30kBT/σ2 is a spring constant and
R0 = 1.5σ is a finite extensibility to avoid chain crossing, where kB is the Boltzmann constant and T is
the temperature. The chain stiffness is introduced by means of a bending potential between adjacent
bonds given by

Ubending(θ) = Kb(1− cos(θ− θ0)), (2)

where θ is the angle between two consecutive bonds with θ0 = (N-2)*π/N and Kb represents the
bending energy. For any two monomers, they also interact through a shift and cutoff Lennard-Jones
(LJ) potential

ULJ(r) =


4ε

[(
σ
r

)12
−

(
σ
r

)6
+

1
4

]
r < rC

0 r > rC

, (3)

where rc is the cut off distance and fixed at 21/6σ and ε is chosen to be ε = 1kBT.

2.2. Molecule Dynamics Simulation

We perform molecule dynamics (MD) simulations by using the large-scale atomic/molecular massively
parallel simulator (LAMMPS) [30]. Reduced units (ε = 1, σ = 1, m = 1 and τ0 = (mσ2/kBT)1/2 = 1 are
chosen to be the units of energy, length, mass and time, respectively) and the timestep is τ = 0.001τ0.
The simulation box size is fixed at 50σ × 50σ × 50σ and the periodic boundary conditions are performed
in NVT ensemble (canonical ensemble). All ring polymers are placed randomly in our simulation box
initially. The corresponding dynamics does not allow for chain crossings to make sure that the topology
is preserved. To get a high concentration of rings, we set a scaling factor big enough. Thousands of
steps are used to obtain the local equilibrated conformation after each step of scaling, making sure that
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the scaling does not affect the topology of rings. After that, an additional equilibration run (up to 9 ×
108 steps) is performed to get the steady penetration structures of rings.

In our simulation, three topology types or knotted rings are considered: 01-knot (the unknotted or
trivial knot), 31-knot (the trefoil knot) and 61-knot ring polymers, named in Conway’s notation [2].
The typical snapshots for latter two knots are shown in Figure 1. Here the bending energy Kb ranges
from Kb = 0 to Kb = 100 in the units of ε, corresponding to flexible, semi-flexible and stiff ring polymers,
respectively. Intermediate Kb values correspond the semi-flexible rings. The number density is defined
as ρ = M*N/L3, where M is the number of rings and N is the number of monomers per ring. Firstly,
ρ = 0.1 with N = 128 is considered, that is, M = 98. Then the number density ρ varies in the range of
0.05~0.4 with N = 128, that is, M = 49~392.
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The effective potential of mean force (PMF) between a pair of rings can be calculated directly from
NVT simulations given by References [31–34]

βVe f f (r) = − lnρ′(r), (4)

where β = (kBT)−1 and ρ′(r) is the probability distribution of the centers-of-mass of rings. Since the
range of interaction is finite (of the order of Dg, the average diameter of gyration), we do not need
to calculate those distances which are longer than Dg. While for the short distance (r < Dg), due to
the topology repulsion, there are large energy barriers which prevent an effective exploration of the
configurational space within the available computer time. To overcome this, we use the umbrella
sampling [35,36] to calculate ρ′(r) where the biased potential is a simple harmonic spring

Vbias(r) =
k j

2

(
r− r j

)2
, (5)

where k j = 4.0ε/σ2 and r j stands for the free length of the spring at different windows. We perform
the simulations starting from r j = 0 and increase it up to a maximum value which is much larger

than Dg for different rings to get the biased distributions ρ′(b)j (r). To eliminate the influence of the
harmonic potential on total probability distribution ρ′(r), we have to employ the weighted histogram
analysis method (WHAM) [33–37] to combine the biased distributions ρ′(b)j (r) at each window.

In order to achieve that, we need derive ρ′(r) in terms of unbiased densities ρ′(u)j (r) at each simulation
window [34,35]

ρ′(r) =
N′∑
j=1

p j(r)ρ′
(u)
j (r), (6)
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with
ρ′

(u)
j (r) = eβ(V j(r)− f j)ρ′

(b)
j (r), (7)

where V j is the biased potential and f j is free energy parameter arising from the addition of the biased
potential. The normalization condition requires the sum of p j(r) is equal to 1 and they are chosen so as
to minimize the statistical error. Then we can get

ρ′(r) =
N′∑
j=1

c j(r)ρ′
(b)
j (r), (8)

with coefficient

c j(r) = 1/
N′∑
j′

e−β(V j′ (r)− f j′ ). (9)

Up to now, we already get the total probability distribution ρ′(r) except that f j are unknown.
In fact, f j can be obtained self-consistently by

e− fk =
N′∑
i=1

ni∑
j=1

e−βVk(ri,l)∑N′
j=1 n je−β(V j(ri,l)− f j)

, (10)

where n j is the number of sampled conformations at jth window. ri,l is the reaction coordinate value
for conformation snap l in the simulation window i.

2.3. KMT Algorithm

To define whether a chain is penetrated by others, that is, a definition of threading, we introduce
the improved KMT algorithm firstly suggested by Koniaris and Muthukumar [38], developed
independently by Taylor [39] and referred as KTM reduction by Virnau [40]. As shown in Figure 2,
assuming that the ring A is penetrated by another ring B. The KMT algorithm divides the ring A into a
series of consecutive triangles of adjacent monomers, such as 123, 345 and 567. The cross denotes the
intersection point of which ring A is penetrated by ring B in the case of reduction shown in Figure 2.
After the first reduction, monomers 4 and 6 are removed since neither triangle 345 nor 567 is intersected
by any part of ring B, while monomer 5 is retained. Through enough iterations of reduction, ring A
is reduced into a simple triangle 123. The surface of the ring A is composed of triangle 123, while
other triangles are removed at each reduction (e.g., 345 and 567 at the first reduction). Among all the
possible surfaces by different routines of reduction, we can find the minimal surface [25,41] and the
corresponding final triangle (e.g., the case of Figure 2b) to define the threading. With the definition
of threading produced by a pair of rings, we call them one passive ring (A) and one active ring (B)
respectively. The ring A is passively threaded by ring B, which is actively threading the ring A [21].
In the following, all of the average statistics goes through all rings.
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Figure 2. (a) Illustration of the KMT algorithm [38–40]. Ring A is passively threaded by ring B, which
is omitted for simplicity with only one dot marking a cross bond. Monomers 1~7 are part of the ring A.
After the first reduction, monomers 4 and 6 are removed as triangle 345 and 567 are not intersected by
Ring B. (b) If the ring A is threaded by ring B, ring A can be reduced finally into a triangle after many
KMT reductions.

3. Results and Discussion

We firstly focus on the degree of ring threading with different knot types and chain stiffness.
An average threading number Pth is defined as the number of rings penetrated by a single chain.
Here three knot types are considered: 01-knot, 31-knot and 61-knot rings respectively. The Pth varied
by bending energy Kb for three knot types is displayed in Figure 3. It can be seen that Pth drops
rapidly from 01-knot to 31-knot and even to 61-knot rings, due to the decrease of the free space
that can be penetrated by other rings due to the internal topology. For the given ring topology
structure, for example, 01-knot ring, as Kb increases, Pth increases rapidly first and then decreases
slightly, exhibiting a maximum value Pth-max corresponding to an intermediate stiffness. A similar Kb

dependence of Pth is presented for other two knots. For flexible rings, the knot has little influence on
Pth as rings shrink into crumpled globular conformations, highly unfavorable for penetration. With the
increase of bending energy Kb, rings can expand and adopt open-up configurations that facilitate
inter-ring penetration, in great agreement with the results by Bernabei et.al [42]. However, the intrinsic
mechanism on this non-monotonous dependence on bending energy Kb should be further explored
in the following. As well known, the persistence length lp is an important parameter to describe the
conformation of semiflexible polymer. The ratio of lp/L depends on the bending energy (Kb), chain length
(N) and the chain topological structure is given in Figure S1 (see Figure S1 in Supporting Information).
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Figure 3. Average threading number Pth shows a non-monotonous dependence on bending energy
Kb for 01-knot, 31-knot and 61-knot ring polymers. The peak appears at the intermediate stiffness
corresponding to the semi-flexible case. Inset: Average threading number Pth as a function of lp/L,
where lp denotes the persistence length and L is the contour length of the chain.

In detail, we turn to detect the internal structure of penetrated rings to illustrate the expansion of
the rings. The probability density distributions P(r) of the centers of mass between two penetrated
rings for three knot types are shown in Figure 4. The size of the rings is changed with the topology thus
we rescale the distance r by Dg, which is more comparable to discuss about the threading structures.
For flexible rings (Kb = 5) shown in Figure 4a, the peak appears at a far distance range of r = 0.5~0.75Dg,
which means a weak penetration depth owing to the shrinkage of flexible rings. For semi-flexible rings
(Kb = 25) and stiff rings (Kb = 80) shown in Figure 4b,c, the peaks shift to a short distance, especially
for the 01-knot rings (r*

≈ 0.20 for Kb = 25). The results also confirm the fact the chain stiffness can help
rings swell and free up more space for other rings, favorable for inter-rings penetration. For different
knot types, the more complex the topological constraints, the farther the peak position and the lower
the penetration depth, which is quite consistence with the results of Figure 3.

For a better view, the typical penetration structures of 01-knot rings with different bending energies
Kb are investigated in Figure 5. The blue ring presents the active ring B and the red is the passive one A,
while the white ring is not penetrated by the blue ring. Flexible rings barely penetrate each other due
to the crumpled and filled structures shown in Figure 5a. For semi-flexible rings in Figure 5b, it is the
deepest penetration between rings, which are involved in several rings. The further increase of bending
energy Kb leads to an improve of the flatness of the polymer contours in Figure 5c. The planar rigid
rings tend to be arranged parallel to each other, thus weakening the penetration depth with respect to
their semi-flexible counterparts, showing a strong anisotropic character, which is strengthened by the
increase of the stiffness.
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Figure 5. Illustration of typical threading structures of 01-knot rings with different bending energies.
(a) Kb = 5, flexible rings adopt coiled conformation. (b) Kb = 25, the semi-flexible rings pierce others
forming a deep penetration. (c) Kb = 80, rigid rings get parallel with each other resulting in a
slight threading.

As discussed above, the effects of increasing stiffness have two aspects. One is the expansion of the
internal space of rings. The other is the anisotropic character which seems to weaken the penetration.
We will focus on the anisotropic character in the following. Our finding shows that the competition of
these two effects results in the non-monotonous dependence of Pth on stiffness. Only focus on the case
of 01-knot rings, the probability distributions P(θ) of threading angle for different bending energies
Kb are shown in Figure 6a. As we have mentioned in the KMT algorithm, one ring can be reduced
into a triangle penetrated by another ring satisfying the minimal surface principle. Therefore, the
threading angle θ is defined as the angle between a line and a triangular plane (ABC) based on the
KMT algorithm, as shown in the Figure 6b. For the flexible rings, the black line exhibits an approximate
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Gaussian distribution with a mean angle of ~45◦. It indicates the conformation of flexible rings is
isotropic like a collapsed ball, as displayed in Figure 5a, leading to a full angle distribution. Flexible
rings penetrate each other slightly due to the strong intramolecular barriers [42–44]. With the increase
of bending energy Kb, not only the peak value of P(θ) increases but also the position of the peak shifts
to a smaller angle. As well known, the shapes of rings change from prolate, crumpled structures
to planar, rigid rings caused by the increase of chain stiffness, which can dramatically destroy the
isotropic of the rings. Rigid rings (Kb = 80) tend to be parallel with each other as a result of the topology
potential [42–44], leading to a quite small threading angle and even close to 0◦. In a word, there is a
typical transition from isotropic character to anisotropic character as chain stiffness increases.
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Figure 6. (a) Probability distributions P(θ) of threading angle for 01-knot rings with different bending
energies Kb shows an obvious transition from isotropic character to anisotropic character. (b) The upper
panel shows the typical snapshot for two penetrated rings and the lower panel is the simplified case to
show the definition of the threading angle as a triangle intersected a line based on the KMT algorithm.

Corresponding to the three knot types, the probability distributions P(θ) of threading angle for
different bending energies are shown in Figure 7. For the flexible case, there is little difference among
01-knot, 31-knot and 61-knot rings, because all of them interact as an isotropic ball, corresponding
to a full angle distribution. With the increase of bending energy Kb, the difference among the three
knot types is highlighted, especially for rigid rings (Kb = 80) shown in Figure 7c. The peaks of P(θ)
are suppressed and shifted to a broad angle as the knot complexity of the rings increases, which
actually strengthens the isotropic of rings. As a result, the more rigid of the rings, the stronger of the
topology constraints.

The probability distributions of P(θ) indicate that anisotropic plays an important role on the
penetration structure. To explain the effect of anisotropic character on threading degree, we subdivide
the threading angle θ (0◦~90◦) into three angle ranges: small angle (0◦~30◦), medium angle (30◦~60◦)
and large angles (60◦~90◦). Corresponding to the black line in Figure 3, the threading level Pth of
01-knot rings vs bending energy Kb for three angle ranges are plotted separately in Figure 8. In general,
the proportion of small angle threading (black line) increases monotonously along with Kb. It indicates
that the increase of chain stiffness strengthens the anisotropic penetration. Therefore, the stronger
the rigidity, the more penetration of the small angle will be. For medium angles (red line) and large
angles (blue line), as Kb increases, Pth both increase first because of the expansion of the free space,
then decrease dramatically owing to the anisotropic character. Especially for the case of large angles
(60◦~90◦), the proportion of penetration dropped sharply or even close to 0, which fits well with the
fact that rigid rings tend to be parallel with each other.
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Figure 7. Probability distributions P(θ) of threading angle for different bending energies (a) flexible
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Figure 8. Average threading number Pth of 01-knot rings within different angel ranges as a function of
bending energy Kb shows a strong anisotropic character. For rigid rings, the penetration of medium
and big angles are suppressed due to the parallel structures.
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We look into the influence of topological constraints on different threading angles as well.
As shown in Figure 9, the threading level of 01-knot, 31-knot and 61-knot rings present a similar
dependence on Kb for three angle ranges. In detail, the more complex the topological constraints,
the smaller the change in threading level Pth, owing to the decrease of the free space for penetration.
What’s more, the complex topology also weakens the anisotropic character, resulting in the domain of
the medium threading angles, which is also obvious in Figure 7 as well. Look closely at Figure 9a,
there is a little decrease for 01-knot rings at a high bending energy (after Kb = 80). Rigid rings penetrate
others nearly in parallel, where a ring can penetrate only a small amount of other rings, as visually
presented in Figure 5c. This is responsible for a slight decline in threading level corresponding to the
small threading angle.
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Figure 9. Average threading number Pth within angles of 0◦~30◦ (a), 30◦~60◦ (b) and 60◦~90◦ (c) as a
function of bending energy Kb for three knot types. The anisotropic character and expansion effects are
both suppressed by the complex topology.

The effective potential of mean force (PMF) between a pair of rings Veff for three knot types [45],
obtained by umbrella sampling MD, is calculated in Figure 10. For all cases, Veff has decayed to zero
as r ≈ Dg. From Figure 10a–c, it can be seen that the amplitude of the effective potential at short
distances increases with the complexity of the knot, that is, the effective potential of 01-knot rings is
lower than 31-knot or 61-knot rings. Combined with the results of Figure 4, take Kb = 25 for example,
the threading peaks of 01-knot rings approximately occur at a distance of 0.2Dg, while 0.4Dg and
0.6Dg for 31-knot rings and for 61-knot rings, respectively. Corresponding to the PMF in Figure 10b,
at r = 0.2Dg, the potential of 01-knot rings is much lower, while at r = 0.4Dg or r = 0.6Dg, 31-knot
and 61-knot rings are lower than 01-knot rings. It also confirms that 01-knot rings penetrate with
each other at a much shorter distance, while rings with complex knots occur at a longer distance.
Correspondingly, the effective interaction preferentially occurs at a short distance providing more free
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space available for inter-ring penetration and causing a deep penetration. Therefore, the threading
level of 01-knot rings is much higher than rings with complex knots, shown in Figure 3. Additionally,
the PMF of only 01-knot rings for different bending energies Kb is presented in Figure 10d. The effective
potential decreases first and then increases with the increase of bending energy, exactly explaining
non-monotonous dependence of the threading level Pth on chain stiffness. Narros, et. al., also proposed
that the penetration conformation for 01-knot rings is quite common for r < 0.25Dg, resulting in the
cost in free energy which can be approximately estimated by a Flory theory [3].
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Figure 10. Potential of mean force (PMF) of three knot types (a–c) and 01-knot rings shows the strong
repulsion due to the topology constraints at short distances, resulting in the shift of the peak of P(r)
in Figure 3 (d) PMF for different bending energies Kb present a similar non-monotonous dependence
on Kb.

Figure 11. The peak position shifts to the small bending energy a little when chain length increases
from N = 64 to N = 256. For example, the peak is located at Kb = 25 for N = 256 and at Kb = 20 for
N = 128 or 64. Meanwhile, the longer of the ring, the larger of the free space for penetration resulting
in an increase of Pth for longer rings. Average threading number Pth decreases with knot topology and
has a peak at Kb = 20~25 for a fixed length N = 256 is given in Figure S2 (see Figure S2 in Supporting
Information). As for the density, we focus on the case of 01-knot rings and ρ = M*N/L3, ranging from
0.05 to 0.4 by changing the number of rings M. The threading level Pth vs bending energy Kb for
different number densities ρ are shown in Figure 12. The non-monotonous behavior also becomes more
and more prominent with increasing number density. Meanwhile, as ρ increases, the amplitude Pth

increases greatly, since more rings have more opportunities to contact, which is available for inter-ring
penetration. Then, the effects of number density ρ on the probability distribution P(θ) of threading
angles is also presented in Figure 13. The number density has little effect on flexible rings due to
the isotropic shrinkage shown in Figure 13a. The anisotropic character of rings is highlighted by the



Polymers 2020, 12, 2659 12 of 15

increase of chain stiffness. For semi-flexible rings (Kb = 25) shown in Figure 13b, the peak of P(θ)
slightly shifts to a smaller angle with the increasing of the number density ρ, resulting from the fact
that the anisotropic penetration is strengthened by the excluded volume effect for a large number
density ρ. For rigid rings (Kb = 80) shown in Figure 13c, the chain stiffness absolutely dominates the
anisotropic penetration, unaffected by number density. The corresponding typical structures of rigid
rings are displayed in the inset. The planar rigid rings tend to be arranged parallel to each other with a
quite small threading angle of ~15◦.
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Figure 11. Average threading number Pth increases with the chain length (N) and has a peak at
Kb = 20~25 for 01-knot ring polymers at ρ = 0.1.
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Figure 13. Probability distributions P(θ) of threading angle for different bending energies Kb

corresponding to the case of (a) flexible rings, (b)semi-flexible rings, and (c) rigid rings with different
number densities ρ. The anisotropic character is strengthened by the increase of the density at the
intermediate stiffness due to the excluded volume effect. The inset in (c) shows the rigid rings tend to
be arranged parallel to each other with the increasing of number density ρ.

4. Conclusions

The penetration structures of the semi-flexible ring polymers have been studied by MD simulations.
With the implementation of the improved KMT algorithm, the degree of penetration and the
internal structures have been characterized by the average threading number Pth and probability
distribution P(r) of penetrated rings, respectively. Our results show that the penetration degree of
rings does not increase monotonously with the chain stiffness. It depends on the balance between
coil expansion (favoring penetrations) and stiffness (inhibiting penetrations). As the increase of chain
stiffness, the expansion of ring conformations results in more space for penetration, while a subsequent
decline in penetration results from the anisotropic character of semi-flexible rings. The anisotropic
character of semi-flexible rings, which can be characterized by the probability distribution P(θ)
of threading angle and corresponding average threading number Pth for different angle ranges,
is further confirmed not favoring the penetration. The analysis of effective potential between a pair
of rings provides a better understanding for this non-monotonous behavior in inter-ring penetration.
Furthermore, it is shown that the penetration would be suppressed with the knot complexity of
the rings. Our results reveal the essential roles of topological constraints and chain stiffness on
inter-ring penetration.
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