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ABSTRACT

Here we show that regions upstream of first trans-
cribed genes have oligonucleotide signatures that
distinguish them from regions upstream of genes
in the middle of operons. Databases of experimen-
tally confirmed transcription units do not exist for
most genomes. Thus, to expand the analyses into
genomes with no experimentally confirmed data, we
used genes conserved adjacent in evolutionarily
distant genomes as representatives of genes inside
operons. Likewise, we used divergently transcribed
genes as representative examples of first tran-
scribed genes. In model organisms, the trinu-
cleotide signatures of regions upstream of these
representative genes allow for operon predictions
with accuracies close to those obtained with known
operon data (0.8). Signature-based operon predic-
tions have more similar phylogenetic profiles and
higher proportions of genes in the same pathways
than predicted transcription unit boundaries (TUBs).
These results confirm that we are separating genes
with related functions, as expected for operons,
from genes not necessarily related, as expected for
genes in different transcription units. We also test
the quality of the predictions using microarray data
in six genomes and show that the signature-
predicted operons tend to have high correlations
of expression. Oligonucleotide signatures should
expand the number of tools available to identify
operons even in poorly characterized genomes.

INTRODUCTION

In Escherichia coli, regions upstream of first transcribed
genes contain higher densities of sigma-70 promoter-like

signals than both coding regions and intergenic regions
downstream of convergently-transcribed genes (1). Thus, dif-
ferences in promoter-like signals of upstream regions might
help predict operons (2,3), stretches of genes in the same-
strand transcribed into a single messenger RNA. Sigma-70
is not the only sigma factor in Prokaryotes and examples
of promoters for other sigma factors are scarce. Still, a
consequence of the high concentration of sigma-70 or other
promoter-like signals within promoter regions (PRs) might
be a bias in oligonucleotide signatures. Oligonucleotide sig-
natures might also be different at regions upstream of genes
inside operons (see Figure 1). Furthermore, differences in
oligonucleotide signatures might result from other character-
istics of PRs, such as increased curvature (4–12), higher
stacking energies (higher stacking energies mean the regions
are easier to melt) (11,13), and higher AT content (9,11,14).
Signatures for upstream regions are available as soon as the
genome annotation is ready. Thus, signatures might constitute
an alternative method for overall operon predictions across
Prokaryotes.

In this work we show that densities of sigma-70 promoter-
like signals distinguish co-directional transcription unit
boundaries (TUBs) from operon junctions (OJs) in the
genomes of E.coli and Bacillus subtilis. Then we show that
oligonucleotide signatures have improved accuracies in

Figure 1. Adjacent genes and upstream regions. (a) The arrows represent a
directon, a stretch of adjacent genes in the same-strand with no intervening
gene in the opposite strand. The gray arrows represent operon ‘cde’. Pairs of
genes within operons (WO pairs) would be pairs ‘cd’ and ‘de’. OJs would be
the regions upstream of genes ‘d’ and ‘e’. Pairs ‘bc’ and ‘ef’ would be same-
strand TUBs. PRs would be those upstream of genes ‘c’ and ‘f’. (b) Genes ‘g’
and ‘h’ are divergently transcribed. The regions upstream of genes ‘g’ and ‘h’
are PRs of divergently transcribed genes (dPRs).
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operon predictions over those obtained with promoter-like
signals. We expand the work to genomes with no experi-
mentally characterized operons using regions upstream of
divergently transcribed genes, forcefully TUBs, and regions
between highly conserved co-directional genes, most probably
in operons (15–17) as training sets to learn oligonucleotide sig-
natures. We evaluate the genome-wide predictions obtained
by this approach using diverse functional genomics data and
demonstrate the capability of this method to produce high-
quality operon predictions across genomes. (See Figure 1).

MATERIALS AND METHODS

Promoter-signal densities

We calculated the density of promoter-signals using a
strategy published elsewhere (1). Briefly, with CONSENSUS
(18) we obtained weight matrices for both the �10 and the
�35 boxes of the Sigma-70 promoters of E.coli K12 reported
in RegulonDB (19,20). With these matrices, we used PAT-
SER (18) to calculate the average scores and SDs of the
set of known promoters. Then, we scanned the �200 to
�10 regions upstream of all gene starts in both E.coli and
B.subtilis accepting promoter-signals formed of �10 and
�35 boxes with scores equal or higher than the average
minus 2.5 standard deviations of the boxes in known promot-
ers. We obtained promoter-signal density as number of sig-
nals divided by number of bases (the data is available at
http://tikal.ccg.unam.mx/sarath/sig_predictions/).

Upstream regions (Figure 1)

Known OJs are regions �200 to �10 bp from the start codon
of genes inside experimentally verified operons. Known PRs
consist of regions upstream of first transcribed genes (also
�200 to �10). To find both of these kinds of regions we
used the current dataset of transcription units of E.coli K12
(21) found in RegulonDB (19,20), and a dataset of experi-
mentally verified transcription units of B.subtilis (http://odb.
kuicr.kyoto-u.ac.jp/). With these data we found adjacent co-
directional TUB pairs, consisting of the last gene in one tran-
scription unit and the first in the next (the latter would be a
first transcribed gene by definition), and we also found adja-
cent pairs of genes in operons (WO pairs), as described
previously (22,23).

Conserved operon junctions (cOJs) are regions upstream
of genes predicted to be inside operons by their conservation
of adjacency in evolutionarily distant genomes as described
elsewhere (17). We used predictions obtained at a confidence
value of 0.95 (17). Regions upstream of divergently tran-
scribed genes were representatives of regions upstream of
first transcribed genes. To avoid overrepresentation we used
the upstream regions of only one of the genes chosen randomly
when the separation between the genes was <300 bp. If the
space between the divergent genes was >300 bp we used
the upstream regions of both genes as promoter regions (dPR).

Operon predictions based on intergenic distances

We predicted operons by intergenic distances using a
method described previously (22,23). The method is based
on log-likelihoods (dist-LLHs) calculated at different

distance intervals measured in base pairs (23), and it has
been shown to be successful in most Prokaryotes (22).

Oligonucleotide signatures

We built oligonucleotide signatures for each region upstream
of all annotated genes in the set of about 330 Prokaryotic
genomes available at the NCBI Reference Sequence (RefSeq)
Database (24,25) (rsync://rsync.ncbi.nih.gov/genomes/
Bacteria/) on April 2006. For individual signatures, we
counted the occurrence of each possible, overlapping, oligo-
nucleotide along the �200 to �10 regions of each gene. The
size of regions were chosen on the basis of preliminary tests
showing that the sequence from �10 to 0 made the OJs and
PRs signatures look more alike, probably due to the presence
of the ribosome-binding site (data not shown). The overall
signatures are defined as the average occurrences of each
oligonucleotide within each dataset (e.g all OJs or all PRs).
We calculated dinucleotide and trinucleotide signatures.
Longer oligonucleotides make the statistics problematic.
For instance, if we were to use tetranucleotides, there would
be 44 ¼ 256 possible combinations. A region 190 bp in length
would contain 190 � 4 ¼ 186 overlapping tetranucleotides,
much less than the number of possible combinations.

The distance of the signature of each upstream region to
the overall OJ-signature or to the overall PR-signature was
estimated using c2, which is a common method to test if a
sample belongs to a given population.

X2 ¼
Xk

i¼1

ðOi�EiÞ2

Ei
‚

where Oi and Ei are the observed and expected oligonu-
cleotides frequencies, respectively. Ei is the frequency of
the oligonucleotide in the overall signatures. The number of
oligonucleotide types in the signature is k (64 for trinu-
cleotide signatures). Since the OJ and PR oligonucleotide sig-
natures have the same degrees of freedom, the X2 of each of
them can be directly compared. Thus, we can calculate the
log-likelihood of a co-directional pair to belong to the OJ
sample as follows.

Signature LLH ¼ log10
X2

PR

X2
OJ

‚

where X2
PR and X2

OJ correspond to the c2 values calculated
with respect to the oligonucleotide signatures of PRs and of
OJs, respectively.

Phylogenetic profile analyses

The phylogenetic profiles used here consist of vectors where
each item represents either the presence (number 1) or the
absence (number 0) of an ortholog to the gene in a given gen-
ome (26). To compare the phylogenetic profiles of any pair of
genes we calculated mutual information (MI) in bits. The MI
for two vectors I and J is defined as (27):

X

i¼½0‚ 1�;j¼½0:1�
Pij * log2

Pij

Pi *Pj
‚

where Pij is the proportion of a given pair ij in the alignment
of vectors I and J, Pi is the proportion of the value i in vector
I and Pj the proportion of j in vector J.
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To build the phylogenetic profiles we found orthologs in
a non-redundant dataset of genomes built as explained
elsewhere (17,22). Our working definition of orthology con-
sisted of reciprocal-best hits and fusions as described else-
where (22).

RESULTS

We used four main kinds of upstream regions (�200 to �10
from start codon, see also Figure 1): (i) known OJs are
regions upstream of genes inside experimentally verified
operons; (ii) known PRs consist of regions upstream of first
transcribed genes; (iii) cOJs are regions upstream of genes
predicted to be inside operons by their conservation of adja-
cency in evolutionarily distant genomes (17); (iv) regions
upstream of divergently transcribed genes (dPRs) are repre-
sentatives of regions upstream of first transcribed genes.
Oligonucleotide signatures consist of the counts of overlap-
ping oligonucleotides along these regions. See Materials
and Methods for further details. We applied the signatures
of these different kinds of regions to predict whether a given
pair of adjacent genes in the same-strand (co-directional
pair), is in an operon (WO pair) or at a TUB pair. To measure
the quality of any predictions we calculated sensitivity [true
positives/(true positives + false negatives)], specificity [true
negatives/(true negatives + false positives)] and accuracy
(here the average of sensitivity and specificity). In all cases,
we cross validated the predictions using a leave-one-out
procedure.

Densities of sigma-70 promoter-like signals distinguish
known PRs from OJs

To test promoter-signals in the distinction of PRs and OJs we
calculated log-likelihoods to be an OJ at 0.01 intervals of
promoter-signals per base pair using the formula log10(fOJ/
fPR), where fOJ is the fraction of OJs with such promoter-
signal density (see Materials and Methods) and fPR is be
the fraction of PRs with the same promoter-signal density
(Figure 2). We were able to distinguish OJs from PRs
with maximum accuracies of 0.70 in E.coli and of 0.65 in
B.subtilis. Sigma-70 promoters are not the only kind of pro-
moter in any of these organisms. E.coli K12 has 6 more anno-
tated sigma factors, while B.subtilis has 15. The difference
in number of sigma factors might be partly responsible for
the lower success rate in B.subtilis. Alternatively, the results
might reflect how prevalent are sigma-70 promoters in these
two bacteria, or at least the particular prevalence of sigma-70
promoters within the datasets of known transcription units.

Signatures of cOJs and dPRs distinguish experimentally
known OJs and PRs with high accuracy

To test signatures in the distinction of experimentally known
WO pairs and TUB pairs we calculated log-likelihoods (sig-
LLH) for each gene to be in the same operon with the previ-
ous (upstream) gene as described in Materials and Methods.
The maximum prediction accuracies were 0.78 for E.coli
K12 and 0.72 for B.subtilis (Figure 3). The values are very
close to those obtained using the overall signatures of
known OJs and PRs as training datasets (0.78 and 0.76,
respectively). Thus, despite co-directional PRs might have

different requirements than divergent PRs, like the presence
of terminator signals, divergent PRs produce signatures
useful for discriminating co-directional PRs. Conserved OJs
also seem to be a good sample representing known OJs and
thus equivalent datasets might help discriminate OJs from
co-directional PRs in other genomes.

To test whether it was necessary to use trinucleotide signa-
tures we also checked the statistical values of predictions
obtained using dinucleotide signatures. Dinucleotide signa-
tures are very common in genomic analyses (28). The
maximum accuracies attained using dinucleotide-derived
sig-LLHs were 0.76 for E.coli K12 and 0.71 for B.subtilis.
Both numbers are below the results obtained with trinu-
cleotides. Thus, at least in these model organisms, trinu-
cleotide signatures might contain more information than
dinucleotide signatures, making them more suitable for the
task of distinguishing PRs from OJs (see also next section).

Proper separation of cOJs and dPRs vary
across Prokaryotes

The sig-LLH threshold giving the highest accuracy using
experimentally confirmed OJs and PRs is 0.00 sig-LLH in
both E.coli K12 and B.subtilis, the same value that gives
the highest accuracy of separation of the training data itself
(cOJs and dPRs). Thus, the threshold for best discrimination

(a)

(b)

Figure 2. Density of sigma-70 promoter-like signals in PRs and OJs. Signals
consist on predicted sigma-70 promoters, which have been found to abound in
PRs (1).
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of the training data might help decide a proper threshold for
operon predictions in other Prokaryotes. In most cases the
threshold giving the highest accuracy was 0.00 sig-LLH.
The maximum accuracies of separation of training data
range from 0.66 in Prochlorococcus marinus MIT 9313 to
0.97 in Mesoplasma florum L1. The maximum accuracies
of separation of training data in E.coli K12 and B.subtilis
are 0.88 and 0.87, respectively. Sixty-seven of the set of
219 non-redundant genomes had accuracies of separation of
training data >0.87 (see website for accuracies obtained in
each of the complete genomes analyzed).

To further test whether trinucleotide signatures provide
better predictions than dinucleotide signatures we also cal-
culated the accuracy of separation of training data using dinu-
cleotide signatures. In 207 of 219 (0.95) non-redundant
genomes the trinucleotide signatures show higher accuracies
of separation of training data. The differences in accuracy
(trinucleotide–dinucleotide) range from �0.008 to 0.18,
with a mean of 0.03 and a median of 0.02. This result indi-
cates, again, that trinucleotide signatures provide more infor-
mation than dinucleotide signatures for differentiation of
PRs from operon juctions.

We performed statistical analyses with several variables
in an attempt to find out if any of them affects the maximum
accuracies attained. The variables tested were: (i) number of
sigma factors. Since our inspiration came from promoter-
signal densities, we thought that the presence of several

sigma factors might reduce the discrimination power because
PRs recognized by different sigma factors might have dif-
ferent oligonucleotide signatures. We counted sigma factors
based on Gene Ontology (GO) annotations in HAMAP
(29,30) (ftp://ca.expasy.org/databases/complete_proteomes).
To be considered a sigma factor the protein had to be asso-
ciated to GO:0003700: Transcription factor (TF) activity,
and either of GO:0016987: sigma factor activity; and
GO:0003899: DNA-directed RNA polymerase activity.
(ii) Number of TFs. The number and/or the proportion of
TFs should also have an effect on the variability of oligonu-
cleotide signatures because of the presence of binding sites
for TFs at PRs. We also found TFs using GO annotation in
HAMAP. The proteins had to be annotated as pertaining to
GO:0003677: DNA-binding, and any of the following:
GO:0003700: transcription factor activity; GO:0000156:
two-component response regulator activity; GO:0030528:
transcription regulator activity; GO:0016563: transcriptional
activator activity and GO:0016564: transcriptional repressor
activity. We also included TFs as predicted by Perez-Rueda
et al. (31). (iii) Genome size and number of genes. There is
evidence that as the genome size increases so does the regu-
latory complexity [see for instance (32–35)]. Thus this factor
is related to (i) and (ii) above. (iv) Size of training samples.
Despite we eliminated any genome when any of the samples
(cOJs and dPRs) was less than 50, small training samples
might still bias the oligonucleotide signatures and result in
poor predictions. (v) Finally, genome overannotation (the
annotation of genes that do not exist). We used the ‘SwissProt
match’ method of Skovgaard et al. (36) to account for over-
annotation. The effect should be that signatures would be
contaminated with the wrong information.

We used the ‘R’ package (37) (http://www.R-project.org/)
to compute the correlations between accuracy and each vari-
able. The two most important variables were overannotation
and the size of the dPR sample (Table 1). We were expecting
the number of sigma factors and of other transcription factors
to have the largest effect, because complex regulation might
result in more variable signatures at upstream regions. How-
ever, these were less correlated to accuracy than other vari-
ables (Table 1). Large genomes are expected to have more
complex regulation. Accordingly, the third and fourth most
important variables were genome size and number of genes
(Table 1). The failure of the number of TF to represent
the complexity of regulation might be due to: (a) the lack
of knowledge of sigma and other transcription factors in
organisms other than model organisms; (b) to the possibility

(a)

(b)

Figure 3. Statistics of signature-based predictions. The maximum accuracy
for E.coli K12 was 0.78 and that for B.subtilis was 0.72.

Table 1. Correlations of several variables versus accuracy of separation of

training data

Variable Correlation Significance

Overannotation �0.32 9.06e�07
Number of dPR �0.30 7.736e�06
Genome size �0.25 0.0002
Number of genes �0.23 0.0006
Number of cOJ �0.14 0.0430
Sigma factors �0.04 0.5484
Transcription factors �0.01 0.8697

dPRs in training set; cOJs in training set; TFs (including sigma factors).
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that even if the number of TFs and sigma factors is higher,
the proportion of genes regulated by them might be very
small and (c) to the presence of forms of regulation other
than DNA-binding regulatory proteins, like ribo-switches
and attenuation.

A multiple regression analysis, with accuracy as the depen-
dent variable and all the variables in Table 1 as independent
variables, results in an R-square of 0.26 (P ¼ 7.662e�11).
R-square is a measure of the amount of variation in accuracy
that is explained by the variables in the model. Thus, the
variables in Table 1 only explain 0.26 of the total variation in
accuracy. The accuracies for each genome can be found at the
web page: http://tikal.ccg.unam.mx/sarath/sig_predictions/.

Signature-predicted operons in any Prokaryote qualify
as functionally related by phylogenetic profile analyses

We used phylogenetic profile analyses to test whether we are
separating functionally related pairs of genes (genes in oper-
ons) from less related genes (genes at TUBs) across all gen-
omes. Phylogenetic profiles constitute a genomic context tool
used to predict functional interactions among gene products
(26). We calculated the MI, measured in bits, of the phyloge-
netic profiles for all same-strand pairs of genes (see Materials
and Methods). The expectation for functionally related pairs
of genes is that they will exhibit a higher average MI than
other pairs of genes. Thus, we compared the MI of pairs of
genes predicted to be in the same operon (predicted WO
pairs) against the MI of pairs of co-directionally transcribed
genes at predicted TUBs. We found that the average MI for
predicted WO pairs is higher than that for predicted TUB
pairs in all genomes. The ratio of these averages (average
MI of predicted WO pairs divided by the average MI of pre-
dicted TUB pairs) seems to increase with the maximum accu-
racy attained (Figure 4a). This result indicates that we are
effectively separating functionally related genes from less
related genes in any of the genomes analyzed. The minimum
ratio was 1.20 in Tropheryma whipplei TW08/27 and the
maximum was 7.80 in Mycoplasma penetrans. The ratios in
E.coli K12 and in B.subtilis were 4.43 and 3.05, respectively.

Signature-predicted operons contain higher
proportions of genes in the same metabolic maps
than predicted TUBs

In order to further test whether signature-based operon pre-
dictions separate functionally related genes from less related
genes we downloaded the current KEGG metabolic map data-
set (38,39). These metabolic maps are often used to show
how predictions of functionally related genes result in higher
proportions of genes whose products are in the same meta-
bolic map [see for instance (27,40)]. We found that the pro-
portions of same-KEGG pairs in predicted WO pairs are
higher than those in predicted TUB pairs in 93% of the gen-
omes. As in the phylogenetic profile analysis above, the ratio
of same-KEGG WO pairs to same-KEGG TUB pairs tends to
increase with the accuracy (Figure 4b). The minimum ratio
was 0.58 in Methanospirillum hungatei JF-1, and the maxi-
mum was 7.66 in Methanococcus maripaludis S2. The ratios
for predictions in E.coli K12 and in B.subtilis were 2.35 and
1.60, respectively.

Signature-predicted operons have high
correlations of expression

Another source for confirmation on the quality of predictions
comes from the analysis of correlation of expression of each
pair of genes in microarrays. We used the data for six gen-
omes published elsewhere (41). The signature-based predic-
tions produce gene pairs whose correlation of expression
follows that of highly conserved genes (cWO pairs)
(Figure 5). The cases of E.coli K12, and B.subtilis are
clear. Both genomes display a good contrast in correlation
of expression between predicted WO pairs and pairs of
genes in opposite strands. Other cases are not as clear. All
the datasets of Helicobacter pylori J99 seem to have the
same tendencies towards correlated expression. Such behav-
ior might be due to this organism being a parasite with a
reduced genome. It is plausible that in this kind of organism
the reduced genome contains a higher proportion of function-
ally related genes, and/or of genes that require little regula-
tion due to a simpler lifestyle, thus resulting in high
correlations of expression. Chlamydia trachomatis, another
organism with a reduced genome, has a similar, though not
as evident, tendency.

The cyanobacterium Synechocystis PCC6803 has been a
challenge for operon predictions before (22), mainly due to

(a)

(b)

Figure 4. Quality of signature-based predictions. This figure shows ratios of
average MI (a) and of proportions of same-KEGG map pairs of genes, with
predicted pairs of genes in the same operon (WO pairs) in the numerator and
predicted TUB pairs in the denominator. The expectation is that WO pairs
will have higher MI than genes at TUB pairs, and that the proportions of
genes in the same pathway will be higher among WO pairs than among TUB
pairs. Thus, the ratios should be higher than 1 (dotted lines).
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gene annotation problems and unusually high spacing
between genes. In this organism the signature-based WO
pairs exhibit higher correlations of expression than genes in
opposite strands, but not as high as those of conserved
pairs. The correlations somewhat follow those of our
distance-based predictions (Figure 5), and those of the
distance-based predictions presented by Price et al. (41). If
conserved gene-pairs truly represent operons in this organ-
ism, then neither method has been very accurate to predict
operons in this genome. Accordingly, the accuracy of dis-
crimination of training data in this organism was the second
to lowest at 0.68. An alternative explanation to genome anno-
tation problems might be that operons in this organism
abound in secondary signals between genes. If so, operons

in Synechocystis will not be easy to predict by means other
than precise finding of promoters, termination of transcription
and other signals.

Signatures provide information complementary
to intergenic distances

Since the first publication of a successful method to predict
operons (23), most authors have found that the most informa-
tive feature is the distance between genes (41–48). The
current maximum prediction accuracies using dist-LLHs as
evaluated against experimentally known WO pairs and
TUB pairs are 0.83 in E.coli K12 and 0.87 in B.subtilis,
both higher than the accuracies obtained using sig-LLHs.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Correlation of expression in microarray data. Abbreviations as in Figure 4. Conserved pairs represent true WO pairs, while divergent pairs represent
how true TUB should behave. Note that the tendencies for predicted WO pairs tend to follow those in conserved pairs, and that the quality seems to be at least as
good as that for distance-based predictions produced as described elsewhere (22,23).
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The purpose of this report is to show that other features
remain to be explored, and to measure what can be attained
using oligonucleotide signatures in particular. One salient
feature of signature-based predictions is that samples for
training the method do not have to be as large as the training
data necessary to calculate dist-LLHs at different intergenic
distance intervals. This is especially important if the distances
between genes in the same operon and/or the distances
between same-strand TUBs in a genome of interest do not
follow those of model organisms.

One more goal to explore other features for operon pre-
dictions is to increase the accuracies over those produced pre-
viously. In this regard, adding sig-LLHs to dist-LLHs
produces maximum accuracies of 0.84 in E.coli K12 and
0.88 in B.subtilis (0.01 above dist-LLHs alone). Fitting to a
linear model to combine the log-likelihoods, following
Price et al. (41), result in the very same maximum accuracies.

CONCLUDING REMARKS

We have shown that trinucleotide signatures can help distin-
guish regions upstream of genes inside operons from those
upstream of first transcribed genes, thus allowing for operon
predictions. We have also shown that such signatures can be
derived from pairs of adjacent same-strand genes conserved
in evolutionarily distant genomes as examples of genes in
operons, and from divergently transcribed genes as examples
of genes at TUBs. This makes overall signature-based operon
predictions possible for most Prokaryotic genomes.

Further data and predictions for each genome can be found
at http://tikal.ccg.unam.mx/sarath/sig_predictions/.
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authors thank Ernesto Pérez-Rueda for providing predicted
transcription factors for all genomes, and Morgan N. Price for
providing the microarray data. SCJ has been supported by
grants given to Julio Collado-Vides. Funding to pay the Open
Access publication charges for this article was provided by
Wilfrid Laurier University.

Conflict of interest statement. None declared.

REFERENCES

1. Huerta,A.M. and Collado-Vides,J. (2003) Sigma70 promoters in
Escherichia coli: specific transcription in dense regions of overlapping
promoter-like signals. J. Mol. Biol., 333, 261–278.

2. Jacob,F., Perrin,D., Sanchez,C. and Monod,J. (1960) [Operon: a group
of genes with the expression coordinated by an operator.]. C R Hebd.
Seances Acad. Sci., 250, 1727–1729.

3. Jacob,F., Perrin,D., Sanchez,C., Monod,J. and Edelstein,S. (2005) [The
operon: a group of genes with expression coordinated by an operator.
C.R.Acad. Sci. Paris 250 (1960) 1727–1729]. C. R. Biol., 328,
514–520.

4. Plaskon,R.R. and Wartell,R.M. (1987) Sequence distributions
associated with DNA curvature are found upstream of strong
E. coli promoters. Nucleic Acids Res., 15, 785–796.

5. Espinosa-Urgel,M. and Tormo,A. (1993) Sigma s-dependent promoters
in Escherichia coli are located in DNA regions with intrinsic curvature.
Nucleic Acids Res., 21, 3667–3670.

6. Carmona,M. and Magasanik,B. (1996) Activation of transcription at
sigma 54-dependent promoters on linear templates requires intrinsic or
induced bending of the DNA. J. Mol. Biol., 261, 348–356.

7. Gabrielian,A.E., Landsman,D. and Bolshoy,A. (1999) Curved DNA in
promoter sequences. In Silico Biol., 1, 183–196.

8. Bolshoy,A. and Nevo,E. (2000) Ecologic genomics of DNA: upstream
bending in prokaryotic promoters. Genome Res., 10, 1185–1193.

9. Ussery,D., Larsen,T.S., Wilkes,K.T., Friis,C., Worning,P., Krogh,A.
and Brunak,S. (2001) Genome organisation and chromatin structure in
Escherichia coli. Biochimie, 83, 201–212.

10. Jauregui,R., Abreu-Goodger,C., Moreno-Hagelsieb,G.,
Collado-Vides,J. and Merino,E. (2003) Conservation of DNA curvature
signals in regulatory regions of prokaryotic genes. Nucleic Acids Res.,
31, 6770–6777.

11. Ussery,D.W., Tindbaek,N. and Hallin,P.F. (2004) Genome update:
promoter profiles. Microbiology, 150, 2791–2793.

12. Olivares-Zavaleta,N., Jauregui,R. and Merino,E. (2006) Genome
analysis of Escherichia coli promoter sequences evidences that DNA
static curvature plays a more important role in gene transcription than
has previously been anticipated. Genomics, 87, 329–337.

13. Pedersen,A.G., Jensen,L.J., Brunak,S., Staerfeldt,H.H. and
Ussery,D.W. (2000) A DNA structural atlas for Escherichia coli.
J. Mol. Biol., 299, 907–930.

14. Mitchison,G. (2005) The regional rule for bacterial base composition.
Trends Genet., 21, 440–443.

15. Moreno-Hagelsieb,G., Trevino,V., Perez-Rueda,E., Smith,T.F. and
Collado-Vides,J. (2001) Transcription unit conservation in the three
domains of life: a perspective from Escherichia coli. Trends Genet.,
17, 175–177.

16. Ermolaeva,M.D., White,O. and Salzberg,S.L. (2001) Prediction of
operons in microbial genomes. Nucleic Acids Res., 29, 1216–1221.

17. Janga,S.C. and Moreno-Hagelsieb,G. (2004) Conservation of adjacency
as evidence of paralogous operons. Nucleic Acids Res., 32, 5392–5397.

18. Hertz,G.Z. and Stormo,G.D. (1999) Identifying DNA and protein
patterns with statistically significant alignments of multiple sequences.
Bioinformatics, 15, 563–577.

19. Huerta,A.M., Salgado,H., Thieffry,D. and Collado-Vides,J. (1998)
RegulonDB: a database on transcriptional regulation in Escherichia
coli. Nucleic Acids Res., 26, 55–59.

20. Salgado,H., Gama-Castro,S., Peralta-Gil,M., Diaz-Peredo,E.,
Sanchez-Solano,F., Santos-Zavaleta,A., Martinez-Flores,I.,
Jimenez-Jacinto,V., Bonavides-Martinez,C., Segura-Salazar,J. et al.
(2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional
regulatory network, operon organization, and growth conditions.
Nucleic Acids Res., 34, D394–D397.

21. Blattner,F.R., Plunkett,G.,3rd, Bloch,C.A., Perna,N.T., Burland,V.,
Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F.
et al. (1997) The complete genome sequence of Escherichia coli
K-12. Science, 277, 1453–1474.

22. Moreno-Hagelsieb,G. and Collado-Vides,J. (2002) A powerful
non-homology method for the prediction of operons in prokaryotes.
Bioinformatics, 18, S329–S336.

23. Salgado,H., Moreno-Hagelsieb,G., Smith,T.F. and Collado-Vides,J.
(2000) Operons in Escherichia coli: genomic analyses and predictions.
Proc. Natl Acad. Sci. USA, 97, 6652–6657.

24. Maglott,D.R., Katz,K.S., Sicotte,H. and Pruitt,K.D. (2000) NCBI’s
LocusLink and RefSeq. Nucleic Acids Res., 28, 126–128.

25. Pruitt,K.D., Tatusova,T. and Maglott,D.R. (2005) NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res., 33, D501–D504.

26. Pellegrini,M., Marcotte,E.M., Thompson,M.J., Eisenberg,D. and
Yeates,T.O. (1999) Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci.
USA, 96, 4285–4288.

27. Huynen,M., Snel,B., Lathe,W.,3rd and Bork,P. (2000) Predicting
protein function by genomic context: quantitative evaluation and
qualitative inferences. Genome Res., 10, 1204–1210.

28. Karlin,S., Campbell,A.M. and Mrazek,J. (1998) Comparative DNA
analysis across diverse genomes. Annu. Rev. Genet., 32, 185–225.

29. Boeckmann,B., Bairoch,A., Apweiler,R., Blatter,M.C., Estreicher,A.,
Gasteiger,E., Martin,M.J., Michoud,K., O’Donovan,C., Phan,I. et al.

3986 Nucleic Acids Research, 2006, Vol. 34, No. 14

http://tikal.ccg.unam.mx/sarath/sig_predictions/


(2003) The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Res., 31, 365–370.

30. Gattiker,A., Michoud,K., Rivoire,C., Auchincloss,A.H., Coudert,E.,
Lima,T., Kersey,P., Pagni,M., Sigrist,C.J., Lachaize,C. et al. (2003)
Automated annotation of microbial proteomes in SWISS-PROT.
Comput. Biol. Chem., 27, 49–58.

31. Perez-Rueda,E., Collado-Vides,J. and Segovia,L. (2004) Phylogenetic
distribution of DNA-binding transcription factors in bacteria and
archaea. Comput. Biol. Chem., 28, 341–350.

32. Cherry,J.L. (2003) Genome size and operon content. J. Theor. Biol.,
221, 401–410.

33. van Nimwegen,E. (2003) Scaling laws in the functional content of
genomes. Trends Genet., 19, 479–484.

34. Babu,M.M., Luscombe,N.M., Aravind,L., Gerstein,M. and
Teichmann,S.A. (2004) Structure and evolution of transcriptional
regulatory networks. Curr. Opin. Struct. Biol., 14, 283–291.

35. Ranea,J.A., Buchan,D.W., Thornton,J.M. and Orengo,C.A. (2004)
Evolution of protein superfamilies and bacterial genome size.
J. Mol. Biol., 336, 871–887.

36. Skovgaard,M., Jensen,L.J., Brunak,S., Ussery,D. and Krogh,A. (2001)
On the total number of genes and their length distribution in complete
microbial genomes. Trends Genet., 17, 425–428.

37. R_Development_Core_Team (2006) R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing.
Vienna, Austria. ISBN 3-900051-07-0.

38. Ogata,H., Goto,S., Fujibuchi,W. and Kanehisa,M. (1998) Computation
with the KEGG pathway database. Biosystems, 47, 119–128.

39. Kanehisa,M., Goto,S., Kawashima,S., Okuno,Y. and Hattori,M. (2004)
The KEGG resource for deciphering the genome. Nucleic Acids Res.,
32, D277–D280.

40. Snel,B., Lehmann,G., Bork,P. and Huynen,M.A. (2000) STRING:
a web-server to retrieve and display the repeatedly occurring
neighbourhood of a gene. Nucleic Acids Res.,
28, 3442–3444.

41. Price,M.N., Huang,K.H., Alm,E.J. and Arkin,A.P. (2005) A novel
method for accurate operon predictions in all sequenced prokaryotes.
Nucleic Acids Res., 33, 880–892.

42. Craven,M., Page,D., Shavlik,J., Bockhorst,J. and Glasner,J. (2000) A
probabilistic learning approach to whole-genome operon prediction.
Proc. Int. Conf. Intell. Syst. Mol. Biol., 8, 116–127.

43. Bockhorst,J., Qiu,Y., Glasner,J., Liu,M., Blattner,F. and Craven,M.
(2003) Predicting bacterial transcription units using sequence and
expression data. Bioinformatics, 19, I34–I43.

44. Chen,X., Su,Z., Xu,Y. and Jiang,T. (2004) Computational prediction of
operons in Synechococcus sp. WH8102. Genome Inform Ser. Workshop
Genome Inform., 15, 211–222.

45. De Hoon,M.J., Imoto,S., Kobayashi,K., Ogasawara,N. and Miyano,S.
(2004) Predicting the operon structure of Bacillus subtilis using operon
length, intergene distance, and gene expression information.
Pac. Symp. Biocomp., 9, 276–287.

46. Romero,P.R. and Karp,P.D. (2004) Using functional and organizational
information to improve genome-wide computational prediction of
transcription units on pathway-genome databases. Bioinformatics,
20, 709–717.

47. Jacob,E., Sasikumar,R. and Nair,K.N. (2005) A fuzzy guided
genetic algorithm for operon prediction. Bioinformatics,
21, 1403–1407.

48. Westover,B.P., Buhler,J.D., Sonnenburg,J.L. and Gordon,J.I. (2005)
Operon prediction without a training set. Bioinformatics,
21, 880–888.

Nucleic Acids Research, 2006, Vol. 34, No. 14 3987


