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ABSTRACT

Metagenomics is the study of genomic DNA recov-
ered from a microbial community. Both assembly-
based and mapping-based methods have been
used to analyze metagenomic data. When appro-
priate gene catalogs are available, mapping-based
methods are preferred over assembly based ap-
proaches, especially for analyzing the data at the
functional level. In this study, we introduce CA-
MAMED as a composition-aware mapping-based
metagenomic data analysis pipeline. This pipeline
can analyze metagenomic samples at both taxo-
nomic and functional profiling levels. Using this
pipeline, metagenome sequences can be mapped
to non-redundant gene catalogs and the gene fre-
quency in the samples are obtained. Due to the
highly compositional nature of metagenomic data,
the cumulative sum-scaling method is used at both
taxa and gene levels for compositional data analysis
in our pipeline. Additionally, by mapping the genes
to the KEGG database, annotations related to each
gene can be extracted at different functional levels
such as KEGG ortholog groups, enzyme commission
numbers and reactions. Furthermore, the pipeline
enables the user to identify potential biomarkers
in case-control metagenomic samples by investigat-
ing functional differences. The source code for this
software is available from https://github.com/mhnb/
camamed. Also, the ready to use Docker images are
available at https://hub.docker.com.

INTRODUCTION

Metagenomics is an interdisciplinary research field which
lies in the intersection of molecular genomics, microbial
ecology and data analysis. The main subject of this field is
metagenome, which refers to as the total genomic content of
microorganisms present in a certain environment. Metage-
nomics is based on microbial culture-independent methods,
including high-throughput genome-sequencing techniques.
In this way, DNA from the inhabiting microorganisms (i.e.
the microbiome) are extracted from a certain environment,
e.g. intestine, and are studied using various computational
techniques (1).

There are two main approaches for analyzing metage-
nomic data: (i) taxonomic profiling, which describes the
phylogenetic diversity of microorganisms in samples; and
(ii) functional profiling, which includes computational
strategies for mapping genomic sequences to ‘functional’
groups, to gain an insight on the functional capacities of
microbiota in samples (2).

Comprehensive functional analysis of microbiome can
significantly improve our understanding of biochemical ca-
pabilities of the microbial community (3). A possible strat-
egy for functional profiling of microbiome is to assemble
reads to larger contigs, and then, predict the gene content
for functional profiling (4). For poorly unexplored micro-
biomes, assembly based strategies are inevitable, despite the
fact that most conventional assemblies are of relatively low
accuracy (5). In contrast, for those environments that have
already been studied extensively, like the human gut, good
microbiome gene catalogs have previously been compiled
(6). In such cases, mapping-based analysis can be used for
functional analysis of metagenomes.

In shotgun metagenomics studies, the collection of mi-
croorganisms is studied through direct DNA sequencing
without any culture and isolation. By comparing the fre-
quency of genes mapped to the gene catalog, functional dif-
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ferences between samples can be studied. Thus, gene abun-
dance data are affected by high levels of systematic variabil-
ity, which can greatly reduce statistical power and increase
false positives (7). There are many reasons for the systematic
variation in metagenome data that can affect the observed
abundance of genes and microorganisms. One of the impor-
tant reasons is the difference in the depth of sequencing so
that each sample has a different number of sequencing reads
(8). Other reasons for systematic variability include incon-
sistencies in sampling methods, DNA extraction, variation
in the quality of sequencing runs, errors in read mapping
and incomplete reference gene catalogs (9). In addition, the
systematic variability can be due to differences in the av-
erage genome size of microorganisms, species richness and
GC-content related to reads, which can affect the observed
gene abundance (7,10).

Next-Generation Sequencing (NGS) data are also inher-
ently compositional. Compositional means that the relative
abundance of each nucleotide fragments is dependent to
the abundance of other fragments. This property is related
to the sequencing equipment and underlying methodology,
and the resulted sequences are affected by the bias involved
in amplification and subsequent nucleotide sampling (11).
Hence, the composition is a result of this ambiguity in mea-
surements that are an unclear part of the whole (e.g. metage-
nomic count data generated by NGS sequencing). The com-
positional data analysis (CoDA) refers to handling and re-
solving this bias (12).

Metagenomic count data also faces more severe chal-
lenges compared to the other NGS data. One of these chal-
lenges is the highly variable number of sequenced reads or
sequencing depth in different samples. The second chal-
lenge is the very high percentage of zeros in metagenomic
count data referred to as zero-inflation (roughly between 50
and 90%) (13). Also, metagenomic data are very high di-
mensional in comparison with the other NGS data (e.g. in a
sample of the gut microbiome gene catalog, there are ∼10 M
gene sequences or features (6)). On the other hand, due to
the low frequency of DNA sampling, the very rare taxa are
not recorded, which is called technical zeros. Also, some
taxa may not be captured through their missing population,
known as structural zeros. Another challenges are the size
of the study and large variance in taxa distributions (over-
dispersion) (14).

Normalization processes can identify and eliminate sys-
tematic variability and compositional bias, so it is an essen-
tial step in data preprocessing and analysis. Many normal-
ization methods have been proposed for high-dimensional
count data, but for most of them, their performance has
not been evaluated on metagenomic data (7). Various ap-
proaches have been proposed yet to address the challenges
involving the compositional data. For example, to solve the
problem of uneven sequencing depth, two approaches are
introduced. First, rescaling the read counts in different sam-
ples to achieve a fixed value for their library size, and sec-
ond, re-sampling reads to achieve the number of fixed reads
for all samples (2). Also, many CoDA methods use trans-
formation instead of normalization. These methods map
the data to real space using log-ratio transformation, which
makes it possible to use conventional statistical methods for
further analysis. These methods try to use a reference such

as the geometric mean of the subset feature for data trans-
formation (15).

As explained, one of the major challenges in metage-
nomic compositional data is sparsity or zero-inflation,
which becomes more acute for gene-centric count data.
Several packages and tools have been developed to han-
dle this problem and improve the accuracy of comparative
gene abundance studies. Some packages have been devel-
oped specifically to deal with the zeros in the metagenomic
data. The metagenomeSeq uses a zero-inflated log-normal
model for gene abundance data (16,17). This method as-
sumes that the zero-inflation is sample-specific and depends
on the depth of sequencing (18). Ratio approach for iden-
tifying differential abundance (RAIDA) used a statistical
model that first converts counts into relative frequencies,
which are described by a log-normal distribution. RAIDA
assumes that most features are not differentially abundant
which makes it suitable to analyze metagenomic data at the
taxa and gene levels. Also, this tool was developed to com-
parative analysis of metagenomic data samples in two dif-
ferent conditions, which can be generalized to more than
two conditions (19). Also, there are several zero-inflated
statistical models for metagenomic data, including zero-
inflated negative-binomial and zero-inflated beta regression
models (20,21).

However, other packages and tools for CoDA are pro-
vided, including ANCOM (22), ZIBSeq (21), CPL (23),
DESeq2 (24) and edgeR (25). These methods exploit differ-
ent statistical methods and try to handle the compositional
bias and zero-inflation in the high-throughput sequencing
data. It is important to note that most of the packages de-
scribed above, including DESeq2 and edgeR, were origi-
nally developed for RNA-seq data analysis. Some of the
most widely used CoDA packages and their properties are
organized in Table 1.

In addition, a large number of normalization methods
have been proposed for compositional data. Some of these
methods are provided for RNA-seq data (26), some for op-
erational taxonomic units (OTUs) data generated by am-
plicon sequencing (27) and some for metagenome data. But
comparative studies of these methods show that there is a
large dependency between performance and data charac-
teristics. For example, the methods that have better perfor-
mance for RNA-seq data will not necessarily be suitable for
metagenome data (7). Some of these normalization meth-
ods are described below. Total sum scaling (TSS) is a stan-
dard normalization method for count data that is obtained
by dividing the individual counts by the total counts in the
sample such that the sum of the normalized values is 1 (28).
TSS with a fixed scaling factor may harm OTU counts due
to technological sequencing biases. Cumulative sum scal-
ing (CSS) (16) re-scales samples based on the low-frequency
(relatively constant and independent) quartiles, and does
not eliminate the effect of high-frequency samples. Addi-
tionally, CSS as a highly cited log-normal model, has been
used at taxa/gene level for metagenomic CoDA in many
studies (2,18,29,30). Trimmed mean of M-values (TMM)
estimates scale factors between samples for use in statisti-
cal analysis to identify differential expression. TMM nor-
malization assumes that most genes are not differentially
expressed between samples (31). Another family of meth-
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ods for normalizing compositional data is based on the log-
ratio transformation. The mutual dependence between fea-
tures in a composition implies that the analysis of individual
features is performed to a reference baseline that transforms
each sample into a new space and the statistical analysis will
be done in this new space. Based on the choice of reference,
different log-ratio based methods were developed. The cen-
tered log-ratio (CLR), additive log-ratio (ALR) and relative
log expression (RLE) transformations use different strate-
gies for selecting the reference (11,32). Table 1 details some
of the packages, related normalization methods, properties
and their advantages for CoDA.

For functional analysis of metagenomic data, it is nec-
essary to use a pipeline that considers the compositional
nature of metagenomic data. In the present paper, we in-
troduce CAMAMED, a mapping-based software pipeline
to perform taxonomic and functional analysis of metage-
nomic data. Therefore, the proper normalization method
is very important for metagenomic data analysis. Con-
sidering the properties previously described for this data
(e.g. sparsity, high-dimensionality, rarefaction, undersam-
pling and vast differences in sequencing depths, etc.), the
metagenomeSeq and CSS as its normalization method is
one of the most widely used methods in metagenomic stud-
ies (2,17,18,33). However, one of the most important draw-
backs reported for metagenomeSeq in different studies is
the high false-positive rate for differential abundance analy-
sis when the sample size is small (34,35). CAMAMED uses
the metagenomeSeq due to its high capability of handling
compositional bias in sparse metagenomic data in taxa,
gene, KO, EC number and reaction levels. CAMAMED is
implemented using Python3 and Shell programming based
on the Linux operating system. It is designed for non-
professional users and is relatively easy to execute. Also,
for easier use of CAMAMED, two Docker images have
been constructed that enables users to run the CAMAMED
pipeline without involving in installation details and depen-
dencies. These images are available at www.hub.docker.com.

MATERIALS AND METHODS

Metagenomic dataset

In this study, we used 80 metagenomic shotgun-sequenced
fecal samples. This dataset (named originally ‘cohort1’) in-
cludes samples from 24 healthy (control), 27 colorectal ade-
noma and 29 colorectal carcinoma individuals. The sam-
ples had been sequenced using the Illumina platform and
paired-end sequencing methods (36). Also, to obtain the
abundance of genes in the samples, we used a previously-
reported gene catalog with 9.88 × 106 non-redundant gene
sequences. This catalog, called the integrated gene catalog
(IGC), contains the nucleotide and protein gene sequences
of the human gut microbiome (6). For more information on
the ‘Materials and Methods’, see Supplementary File 1.

Pipeline overview

CAMAMED is an automatic and easy-to-use computa-
tional pipeline for taxonomic and functional profiling of
metagenomic data. Figure 1 shows the overall workflow of
this pipeline.

http://www.hub.docker.com
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Figure 1. Overall workflow for the CAMAMED pipeline.

Pre-processes. CAMAMED can get the input data in
FASTQ, FASTA or SRA file formats, in both paired-end
and single-end modes. If the sequence format is SRA, it
will be converted to FASTQ or FASTA format using the
SRA Toolkit v2.8.2 (http://ncbi.github.io/sra-tools). Then,
the quality control of the sequence dataset is performed us-
ing FastQC v0.11.5 (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc). The statistical characteristics of sam-
ples are extracted using SeqKit v0.10.1 (37).

Mapping processes. To find the bacterial frequency of the
samples at different taxonomic levels, we use MetaPhlAn
v2.0. MetaPhlAn (Metagenomic Phylogenetic Analysis) is
a computational tool for profiling the composition of mi-
crobial communities from metagenomic shotgun sequenc-
ing data (38). CAMAMED uses a mapping-based strategy
for metagenome data processing. To obtain the best map-
ping results, an appropriate gene catalog should be pro-
vided (see Ref. (6) as an example). If an in-house gene cat-
alog is created, one can use CD-HIT v4.7 to remove po-
tential duplicate sequences from the gene catalog. CD-HIT
is a widely used program for clustering and comparing pro-
tein or nucleotide sequences (39). At this step, metagenomic

read sequences are mapped to the gene catalog using MO-
SAIK v2.2.3 software. This software uses the hash-based
algorithm to map nucleotide sequences very quickly to the
nucleotide gene catalog (40).

KEGG annotations. After mapping reads to the gene cat-
alog, one can compute the genes frequencies in each sam-
ple. For functional profiling, we use the KEGG database,
which includes a comprehensive list of genes and genomes,
together with their biochemical annotations (41). To extract
the KEGG orthology (KO) groups associated with each of
the genes, KEGG Automatic Annotation Server (KAAS,
Ver. 2.1) (42) can be used. By using this tool, nucleotide
and amino acid sequences can be mapped to KEGG and
the associated KOs are retrieved. Alternatively, one may
use GhostKOALA Ver. 2.2 (43), which maps amino acid
sequences to KEGG. After extracting the KOs associated
with each gene, for each KO, we obtain the enzyme com-
mission (EC) numbers and reaction IDs. CAMAMED cur-
rently includes the KO-EC-reaction relations associated
with KEGG. It is always possible for the user to retrieve the
latest update of these data from KEGG, but this might be a
time-consuming task. Then, for each sample, CAMAMED

http://ncbi.github.io/sra-tools
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Table 2. The results of the Kruskal–Wallis test for significance level P-value ≤ 0.01 at species, gene, KO group, EC number and reaction levels

Test Level
Total number of

entities
Number of significant entities

(P-value ≤ 0.01)
Percentage of significantly

changed entities

Percentage of
significantly-changed entities

after P-value adjustment

Species 374 10 2.67 0.53
Gene 3 354 281 64 402 1.92 0.44
KO group 16 482 491 2.98 0.25
EC number 3377 86 2.55 0.21
Reaction 3183 78 2.45 0.19

extracts the frequency of each gene, KO, EC number and
reaction.

Data normalization. After extracting the frequencies of
genes, these data should be corrected for the compositional
bias. Before this step, we remove the genes to which less
than five reads in all of the samples have been mapped (44).
We then, divide the frequency of each gene to the length of
the gene, in order to compute a normalized abundance of
the genes with different length to calculate KO, EC number
and reaction frequencies. Then, we use the metagenomeSeq
package with CSS method for compositional correction and
normalization (16). We also use this method to correct com-
positional bias in species-level in taxonomic data. Now, to
calculate the normalized frequencies of KO, EC number, re-
action, we use the sum of normalized frequency for their
subset genes.

In the following a brief explanation of the CSS method is
provided. Suppose raw data is represented as a count matrix
M (m, n) where m and n represent the number of features
and samples, respectively. The raw data in the count matrix
with cij represents the number of times that feature i was ob-
served in sample j. Also, the sum of counts for sample j is
calculated as s j = ∑

i
ci j . A usual method for normalizing

feature value is c̃i j = ci j /s j , which is called total-sum nor-
malization and has its own important drawbacks (improper
handling of compositional bias). To avoid these drawbacks,
CSS considers the lth quantile of sample j to be ql

j , mean-
ing that sample j has l features with counts less than ql

j .
For l = �0.95 ∗ m�. ql

j represents the 95th percentile of the
count distribution for sample j. Also, sl

j = ∑

i |ci j ≤ql
j

ci j is the

sum of feature counts up to lth quantile in sample j (16).
CSS selects l̂ ≤ m to calculate the normalization scal-

ing factor in each sample and defines normalized counts as
c̃i j = (ci j/ sl̂

j ) (N), where N is the normalization constant
that is selected equally for all samples. It is recommended to
select N as the median of scaling factors sl̂

j of all samples.
The counts for samples with a scaling factor close to N can
be considered as reference samples, and the counts for other
samples can be calculated relative to the reference samples
(16). Selecting an appropriate quantile based on l̂ is critical
to the normalization of data, and its value is project-specific
and is chosen based on data driven methods that use exper-
imental details such as sample preparation and sequencing
(16,26). Also, CSS-normalized sample abundance can be
well approximated with zero-inflated log-normal model in
studies with a large number of samples. Therefore, logarith-

mic transformation is used on normalized count data. This
transformation controls the diversity of features measured
in the samples (16).

Statistical analyses. A possible application of
metagenome analysis is when a comparative study is
performed, to detect those ‘biomarkers’ which are under-
represented in case versus control samples. Using the
non-parametric Kruskal-Wallis H test, one can identify
the components that are changed significantly in different
sample groups. Kruskal–Wallis test is used for comparing
the value of a variable in two or more groups. The one-way
analysis of variance (ANOVA) test can also be used in this
pipeline assuming the data distribution is normal. We then
use the Benjamini–Hochberg (BH) method to correct for
false discovery rates.

By this stage, we have normalized data for the frequency
of taxa, genes, KOs, EC numbers and reactions. We also
specify the group labels to which each sample belongs. All
the code and tools used in CAMAMED are collected in two
Docker images that the user can easily run CAMAMED
without having to worry about the installation details.

RESULTS

Test case: colorectal adenoma and carcinoma

To test the applicability of CAMAMED, we used 80
metagenomic shotgun-sequenced fecal samples obtained
from 24 healthy (control), 27 colorectal adenoma and 29
colorectal carcinoma individuals (36). The results of the
mapping analysis can depend on the reference gene cata-
log used. We used IGC, a previously-reported gene catalog
of the human gut (6), to evaluate CAMAMED.

By applying CAMAMED for mapping the reads to the
gene catalog, we found 3 354 281 genes to which at least one
read was mapped. Table 2 shows the results of the Kruskal–
Wallis test for levels of the species, gene, KO, EC number
and reaction (for a significance level of P-value ≤ 0.01).

The results in Table 2 show that the ratio of significantly
changed genes (that is, 1.92%) is not different from what
is expected by chance (as p was assumed to be significant
at the level of 0.01). This observation suggests that func-
tional analysis cannot be ideally performed at the level of
genes, in contrast to what has been previously proposed
(45). In contrast, the ratio of significantly changed species
is 2.67%, which explains why taxonomic profiling of micro-
biome data is widely used in the literature. However, one
should note that 2.67% of 374 species means only 10 species,
which might not provide us with enough number of features
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trol, adenoma and carcinoma groups.

In case of other functional features, with the same level
of significance (P ≤ 0.01) a greater ratio of KO groups,
EC numbers and reactions might be detected as significant
(2.98, 2.55 and 2.45%, respectively). Also, the last column of
Table 2 shows the percentage of significantly changed enti-
ties after P-value adjustment, using the BH method associ-
ated with the fourth column. Therefore, we recommend the
metagenome functional analysis to be performed at these
levels, rather than the gene level (30). CAMAMED is cur-
rently the only available pipeline for this kind of analysis.
Note that CAMAMED is an integrated pipeline of more
than ten well-known bioinformatics tools that were previ-
ously used in other studies. To ensure the correctness of our
implementation, we also applied CAMAMED on another
datasets (30), and observed that all the results are repro-
ducible.

DISCUSSION

Handling metagenomic data is a time-consuming and elab-
orate task. A number of pipelines are currently available for
facilitating metagenomic analysis. Different aspects of the
available metagenome analysis pipelines were compared in
Table 3. These tools use assembly or mapping-based meth-
ods to process sequences. The level of annotation (taxon,
gene, etc.) reported to the user is a vital aspect when tools
are compared. The level of annotation in these tools is com-
monly taxon or gene, while CAMAMED annotates the
samples at five levels, including taxon, gene, KO, EC number
and reaction. This exclusive feature enables the user to ana-
lyze the samples at the functional level, which is reported to
be more robust compared to taxonomic or genomic changes
(30,46).

In recent years, in most of the metagenomic analyses, tax-
onomic profiles have been used as markers in case-control
groups (49). In the functional analysis of metagenomes, on
the other hand, case-control differences are studied at the
gene level (50). Using the CAMAMED pipeline, not only
one can easily analyze metagenome data at taxonomical
(taxon) and functional (gene) level, but also it is possible to
go further by analyzing the potential functional differences
at other functional levels, that is, KO, EC number and reac-
tion.

Methods for analyzing microbiome data sometimes as-
sume, although implicitly, that sequencing data can be used
equivalently in place of environmental data. However, mi-
crobiome sequencing data is often compositional and may
not represent the original distribution of the samples in the
environment (51). Due to the sparse nature of metagenomic
data, different methods have been proposed for composi-
tional bias correction. To this end, the CSS method is one of
the most popular and powerful methods to handle this chal-
lenge (17,52). To demonstrate the composition-awareness
of CSS and hence CAMAMED, Norouzi-Beirami et al.
used two independent gut metagenome datasets on colorec-
tal cancer (30). In this study, taxa and gene abundance data
were extracted and compositional bias removal was per-
formed independently on the data using the CSS method.
The feature set extracted as a colorectal cancer marker from
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the first dataset has been accurately evaluated on the sec-
ond dataset. However, without applying the CSS, the re-
sults from these datasets were not consistent (30). Fur-
thermore, CAMAMED considers the correction for zero-
inflation and compositional bias in the metagenomic data,
which is, to the best of our knowledge, largely neglected in
other pipelines.

The CAMAMED pipeline performs all the steps in-
volved in the analysis of metagenomic data in a (semi-
)automatic and step-by-step manner. Most of the tools used
in this pipeline do not need to be installed separately by
the user, which liberates the nonprofessional user from be-
ing engaged in potential software installation obstacles. It
is necessary to emphasize that CAMAMED is a mapping-
based pipeline for analyzing metagenomic data at the tax-
onomic and functional level. After running CAMAMED
on metagenomic samples, normalized datasets are extracted
at five levels of taxon, gene, KO, EC number and reaction.
Such output can be then exploited by the user for additional
machine learning and statistical studies.

Also, preparing the Docker images for CAMAMED
make it possible that the user can employ it without involv-
ing in installation details and dependencies. These images
also make using CAMAMED easier and increase the life of
the software.
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