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Oxidative stress is involved in age-related cognitive decline. The dietary antioxidants, carotenoids, tocopherols, and vitamin A
may play a role in the prevention or delay in cognitive decline. In this study, sera were obtained from 78 octogenarians and 220
centenarians from the Georgia Centenarian Study. Brain tissues were obtained from 47 centenarian decedents. Samples were
analyzed for carotenoids, 𝛼-tocopherol, and retinol using HPLC. Analyte concentrations were compared with cognitive tests
designed to evaluate global cognition, dementia, depression and cognitive domains (memory, processing speed, attention, and
executive functioning). Serum lutein, zeaxanthin, and 𝛽-carotene concentrations were most consistently related to better cognition
(𝑃 < 0.05) in the whole population and in the centenarians. Only serum lutein was significantly related to better cognition
in the octogenarians. In brain, lutein and 𝛽-carotene were related to cognition with lutein being consistently associated with a
range of measures. There were fewer significant relationships for 𝛼-tocopherol and a negative relationship between brain retinol
concentrations and delayed recognition. These findings suggest that the status of certain carotenoids in the old may reflect their
cognitive function. The protective effect may not be related to an antioxidant effect given that 𝛼-tocopherol was less related to
cognition than these carotenoids.

1. Introduction

Cognitive decline in the elderly is a significant public health
issue. It has been estimated that the incidence of mild

cognitive impairment (MCI) is approximately 19% in those
younger than 75 years and 29% in those older than 85 years
[1]. Further, 13% of people aged 65 years and older are
afflicted with Alzheimer’s disease. Studies in centenarians
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have reported considerable dementia, ranging from 42 to
100% [2, 3]. The number of individuals so affected is likely
to increase given that the number of people over 65 years
is rising. As with most age-related diseases, the most cost
effective way to combat disease is through prevention. One
possible strategy is nutrition intervention [4].

Fruit and vegetable intake has been associated with
cognitive function [5–7]. For example, in a study of 13,388
women, it was found that total vegetable intake was signif-
icantly associated with reduced cognitive decline [8]. The
strongest association was with greater intake of green leafy
and cruciferous vegetables. Fruits and vegetables are major
dietary sources of carotenoids. Carotenoids are a class of
naturally occurring pigments that are synthesized by plants
and produce the red, orange, and yellow colors of fruits
and vegetables. Carotenoids are comprised of two subclasses:
xanthophylls (lutein, zeaxanthin, and 𝛽-cryptoxanthin) and
carotenes (𝛼-carotene, 𝛽-carotene, and lycopene). In the
Nurses’ Health Study, among nonsupplement users, women
in the highest quartile of plasma carotenoids had better
cognitive performance than those in the lowest quartile [9].
Research has shown that patients with MCI had decreased
plasma levels of antioxidants, including carotenoids [10].
Given that dietary carotenoids function as both antioxidants
and anti-inflammatory agents and that oxidative stress and
inflammation are believed to be involved in the pathogenesis
of cognitive decline [11–20], intake of these dietary compo-
nents may hold promise in cognitive health for the elderly.

The first objective of this study was to evaluate the rela-
tionship between serum concentrations of carotenoids and
cognitive function in subjects from theGeorgianCentenarian
Study, a population-based multidisciplinary study of octoge-
narians and centenarians conducted in Georgia (USA) [21].

Given that an intervention with lutein was reported
to improve cognitive function in the elderly [22] and that
compared to carotenes, xanthophylls are preferentially taken
up into brain tissue [23], a second objective of this research
was to evaluate the cross-sectional relationship between brain
carotenoids and premortem measures of cognitive function
in a subgroup of the centenarian participants. For both serum
and brain tissues,𝛼-tocopherol wasmeasured for comparison
since it crosses the blood brain barrier and has antioxidant
properties. Serum and brain retinol concentrations were
measured because of the provitamin A activity of certain
carotenoids.

This study provides a unique advantage of being able to
assess the relationship between serum and brain carotenoids.
If indeed serum concentrations of individual carotenoids
reflect their levels in the brain and these brain carotenoids
are related to better cognitive performance, serum carotenoid
measures could be a useful tool for evaluating the benefits of
dietary carotenoids to age-related cognitive health.

2. Materials and Methods

2.1. Study Population. TheGeorgia Centenarian Study (GCS)
[21], a population-based multidisciplinary study conducted
in 44 counties in northern Georgia (USA) from 2001 to

2009, was designed to identify and isolate longevity genes,
neuropathology, functional capacity, and adaptational char-
acteristics of centenarians [17]. Living status was classified as
community dwelling or institutionalized where community
dwelling included those living in private residences and insti-
tutionalized included individuals living in a skilled nursing
facility or personal care home. The study involving serum
analyses included 244 centenarians (defined in this study
as age 98 yrs and older) and 80 octogenarians. The study
involving brain tissue analyses included 47 centenarians who
volunteered to donate their brain upon death. Subjects were
recruited from the community, personal care homes, and
skilled nursing facilities. The sample procedures and data
collection methods have been described elsewhere [21].

In the analyses of serum, we excluded 2 octogenarians
and 7 centenarians from whom we were unable to obtain
sufficient serum for analysis. The final number of subjects
with a complete dataset for serum analytes and cognitive
function was 220 subjects in the centenarian group and 78
subjects in the octogenarian group.

Brain tissue was obtained from four regions of the brain:
right cerebellum, right temporal cortex, and right and left
frontal and occipital cortices from the subset of centenarians.
Serum and tissues were stored at −80∘C until analysis.

2.2. Serum and Brain Carotenoids, 𝛼-Tocopherols, and Re-
tinoids Extraction. Serum was as described previously [24].
The brain extraction procedure was adapted from Park et al.
[25] and has been described in detail by our laboratory [26].

2.3. HPLC Analysis for Carotenoid, Tocopherols, and Retinol.
Serum and brain extracts were analyzed by HPLC (Alliance
2695l Waters, Milford, MA, USA) as previously described
[24]. Using this method, cis lutein, all-trans lutein, cis
zeaxanthin, all-trans zeaxanthin, cryptoxanthin, 𝛼-carotene,
13-cis 𝛽-carotene, all-trans 𝛽-carotene, 9-cis 𝛽-carotene, cis
lycopene, and trans lycopene were separated and detected
at 455 nm. 𝛼-Tocopherol, and retinol were detected at 292
and 340 nm, respectively. Using this method, the lower limit
of detection was 0.2 pmol for carotenoids, 2.7 pmol for 𝛼-
tocopherol and 2.0 pmol for retinol.

The analysis of serum and brain tissues was conducted
without knowledge of values for the associated measures of
cognition.

2.4. Measures of Cognitive Performance. Subjects under-
went a battery of cognitive tests designed to evaluate
global cognitive function, dementia, and depression as well
as several cognitive domains including memory, process-
ing speed, or attention and executive functioning (see
Table S1 in the Supplementary Material available online at
http://dx.doi.org/10.1155/2013/951786). The Geriatric Depres-
sion Scale-short form was administered to screen for depres-
sive symptoms in the subjects [27]. Cognitive measures
included the Mini-Mental State Examination (MMSE) [28],
Global Deterioration Rating Scale (GDRS) [29], Severe
Impairment Battery (SIB) [30], Fuld Object Memory Eval-
uation (FOME) [31], Wechsler Adult Intelligence Scale-III
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(WAIS-III) Similarities Subtest [32], Behavioral Dyscontrol
Scale [33], and Controlled Oral Word Association Test
(COWAT) [34].

For participants in the separate brain donation compo-
nent, additional cognitive tests were administered every six
months until mortality. These tests included the Consortium
toEstablish aRegistry forAlzheimer’sDisease (CERAD)neu-
ropsychological battery, which is composed of five subtests
derived from previously established cognitive tests (verbal
fluency, Boston Naming Test, MMSE, Constructional Praxis,
and Word List Memory) [35, 36]. These subtests have been
found to be valid and reliable measures of cognition in
normal aging and in Alzheimer’s disease [37]. Further, no
differences were found between participants in the brain
donation component of the GCS and the rest of the cen-
tenarian participants [38]. All of these tests or versions
of them have been used and validated in aging research
settings or have demonstrated sensitivity to health variables
in epidemiological studies [39–42].

2.5. Covariates and Predictors. In the analyses involving
serum, covariates and predictors included age (80–89 or
≥98 y), gender, and race (white or African American, by
design). The proportion of participants from each age group
recruited from skilled nursing facilities was based on esti-
mates of the “institutionalized” population of the study area
according to the 2000 US Census figures [21]. Residence sta-
tuswas not considered as a covariate because it was a potential
suppressor variable. Fifteen percent of the octogenarians and
62% of the centenarians resided in skilled nursing facilities.
The remaining “community dwelling” participants resided in
private residences and personal care homes. In the analyses
involving brain tissue, which involved centenarian decedents,
31% of the decedents had resided in skilled nursing facilities.

2.6. Statistical Analyses. Results are expressed as geometric
means ± SDs. Relationships between trans and cis isomers of
individual carotenoids and cognition did not differ apprecia-
bly. Therefore, the total (𝑡𝑟𝑎𝑛𝑠 + 𝑐𝑖𝑠) was used in the analysis.
Given that the purpose of our analyses was to increase the
precision with which an association could be estimated fol-
lowing adjustment for variables associated with our criterion,
but not our predictor, we chose to analyze relationships
between carotenoids, 𝛼-tocopherol, and retinol with cogni-
tive measures using partial correlations. Thus, the partial
correlation can provide an estimate of substantive interest but
has the added advantage in that it does so in a standardized
and easily interpretable metric. Statistical significance was set
at 𝑃 < 0.05. All statistical analyses were performed using SAS
version 9.0 (serum) and SPSS version 19.0 (brain).

2.6.1. Serum Analyses. Data were verified for normal-
ity (Shapiro-Wilk test) and, when necessary, were log-
transformed for normal distribution before further statistical
analysis. Chi-square test and Student’s 𝑡-test were used to
compare subject characteristics, serum carotenoid levels,
and cognitive values between groups. Pearson’s correlations
were performed to identify associations between cognitive

indices with age, sex, anthropometric variables, and other
possible confounders. The associations between cognitive
indices and serum carotenoids were determined by calculat-
ing partial Pearson’s correlation coefficients adjusted for age,
sex, body mass index (BMI), smoking, alcohol, diagnosed
hypertension, and diabetes. For the centenarians, diagnosis
of hypertension and diabetes was drawn from proxy, family,
staff, or charts.

2.6.2. Brain Analyses. Datawere analyzed for all 47 decedents
together and also separately for decedents based on their
premortem GDRS scores. The purpose was to determine
differences between decedents who had intact cognitive
function (GDRS = 1), mild memory loss (GDRS = 2), mild
cognitive impairment (GDRS = 3), and dementia (GDRS >
3) before death. One-way ANOVA was used to determine
differences in age, education, BMI and brain carotenoid, 𝛼-
tocopherol, and retinol concentrations between the GDRS
groups. Chi-square tests were used for categorical variables,
which included sex, race, living arrangement, smoking status,
alcohol use, hypertension, and diabetes. Repeated measures
ANOVA was used to determine differences in carotenoids,
tocopherol, and retinol concentrations between the four
regions of the brain. For frontal and occipital cortices, tissue
from both the left and right lobes of the brain was obtained.
For cerebellum and temporal cortices, tissue from only the
right side of the brain was obtained. No differences were
observed in carotenoid, tocopherol and retinol concentra-
tions between the right and left lobes for ten decedents (data
not shown). In order to maintain consistency, only the right
lobe of the brain was analyzed for all decedents. Mean brain
carotenoid, 𝛼-tocopherol, and retinol concentrations were
calculated for each decedent based on measures from the
four regions of the brain (cerebellum frontal, occipital, and
temporal cortices). These means were used for comparison
of carotenoid, 𝛼-tocopherol, and retinol profiles between the
brain and serum and also to evaluate differences between
brain concentrations of individual micronutrients. Partial
correlation coefficients were determined in order to evaluate
the relationship of carotenoids, 𝛼-tocopherol, and retinol
with different measures of cognitive function. Age, sex,
education, diabetes, and hypertension were used as covari-
ates since these variables have the strongest influence on
cognitive function measures. Concentration of trans lutein
and zeaxanthin in the cerebellum was significantly greater
than the three cortical regions of the brain. In order to
determine associations with cognitive indices, concentration
of carotenoids in the temporal, frontal, and occipital cortices
was averaged, and associations were evaluated with and
without cerebellum carotenoids.

3. Results

3.1. Serum Analytes and Cognition

3.1.1. Subject Characteristics. The characteristics of the octo-
genarians and centenarians who provided serum are given in
Table 1. A significantly greater proportion of the centenarians
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Table 1: Subject characteristics.

≥80 to ≤89 y
(𝑛 = 78)

≥98 y
(𝑛 = 220) 𝑃 value∗

Community
dwelling
(𝑛 = 150)

Institutionalized
(𝑛 = 148) 𝑃 value∗ Total

(𝑛 = 298)

Age, yrs (mean ± SD) 84.2 ± 2.7 100.4± 1.9 93.3 ± 8.3 99.7 ± 4.6 <0.0001 96.6 ± 7.4

Male : female 27 : 51 36 : 184 0.0007 40 : 110 23 : 125 0.0187 63 : 235
Community dwelling
(𝑛) : institutionalized (𝑛) 66 : 12 84 : 136 <0.0001 — — 150 : 148

Education, yrs (mean ± SD) 13.0 ± 3.5 10.6 ± 3.8 <0.0001 12.1 ± 3.7 10.3 ± 3.7 <0.0001 11.2 ± 3.8

Body mass index (kg/m2)
(mean ± SD) 25.5 ± 4.8 22.6 ± 4.7 <0.0001 24.2 ± 4.7 22.5 ± 4.8 0.0059 23.3 ± 4.8

Smoking (𝑛) <0.0001 0.035
None 33 156 88 101 189
Ex-smoker 40 54 53 41 94
Current 5 7 9 3 12
No information 0 3 0 3 3

Alcohol use (𝑛) <0.0001 <0.0001
None 22 134 67 89 156
Ex-drinker 27 45 32 40 72
Current 29 39 51 17 68
No information 0 2 0 2 2

Hypertension (𝑛) 0.394 0.306
Yes 32 108 66 74 140
No 45 109 83 71 154
No information 1 3 1 3 4

∗

Significant difference between groups. Means were compared using Student’s 𝑡-test. Fisher’s exact test was applied for categorical variables.

were women, institutionalized, and nonsmokers compared to
the octogenarians (𝑃 < 0.001). Furthermore, the centenar-
ians had significantly less education years, alcohol use, and
BMI (𝑃 < 0.001). There was no difference in the prevalence
of hypertension in these two age groups.

A greater proportion of the institutionalized subjects
were women and nonsmokers compared to the community
dwelling subjects (𝑃 < 0.02 and 0.035, resp., Table 1). They
were also significantly older than the community dwelling
subjects (𝑃 < 0.001). The institutionalized subjects had
significantly less education years, alcohol use, and BMI
(𝑃 < 0.001). There was no difference in the prevalence of
hypertension in these two groups.

3.1.2. Serum Carotenoids, 𝛼-Tocopherol, and Retinol Concen-
trations. Serum concentrations of individual carotenoids, 𝛼-
tocopherol and retinol are given in Table 2. Compared to
the octogenarians, the centenarians had lower mean values
for all carotenoids and 𝛼-tocopherol, which was significantly
different (𝑃 < 0.05) for all analytes except cis zeaxanthin and
marginally significant for trans lutein (𝑃 < 0.075) and 𝛽-
carotene (𝑃 < 0.084). Similarly, the institutionalized subjects
had lower mean values for all carotenoids and 𝛼-tocopherol
which was significantly different (𝑃 < 0.05) for all analytes
except for cryptoxanthin, 𝛼-carotene, and 𝛽-carotene and
marginally significant for trans zeaxanthin (𝑃 < 0.052).

Serum retinol values were neither significantly different
between octogenarians and centenarians nor between com-
munity dwelling and institutionalized subjects.

3.1.3. Cognitive Function in Octogenarians and Centenarians.
The cognitive function status of subjects from the Georgia
Centenarian Study is found in Table S2 of the Supplemen-
tary Material. For all measures of cognitive function, mean
values were significantly lower in the centenarians than in
octogenarians (𝑃 < 0.0001) except for delayed recognition
which was not different between the two groups. For all
measures of cognitive function, the institutionalized subjects
had significantly lower values than the community dwelling
subjects (𝑃 < 0.0005).

3.1.4. Relationships between Serum Carotenoids, 𝛼-Tocopherol,
and Retinol and Cognitive Performance. In the total study
population, serum lutein and zeaxanthin concentrationswere
most consistently related to better cognitive performance,
with a significant correlation observed (𝑃 < 0.05) (Table 3)
for all cognitive measures except delayed recognition. It
should be noted that none of the serum analytes were
correlated with delayed recognition. Serum concentrations
of 𝛽-carotene were also significantly correlated to most
measures of cognitive function (𝑃 < 0.05) with the exception
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Table 2: Serum carotenoid, 𝛼-tocopherol, and retinol concentrations in subjects from the Georgian Centenarian Study (mean ± SD).

nmol/L (carotenoids)
𝜇mol/L (𝛼-tocopherol, retinol)

≥80 to ≤89 y
(𝑛 = 78)

≥98 y
(𝑛 = 220) 𝑃 value∗

Community
dwelling
(𝑛 = 150)

Institutionalized
(𝑛 = 148) 𝑃 value∗ Total

(𝑛 = 298)

Lutein, trans 213 ± 162 199 ± 177 0.0753 223 ± 199 181 ± 141 0.0072 204 ± 174

Lutein, cis 58 ± 58 53 ± 65 0.0006 63 ± 77 46 ± 46 0.0162 56 ± 63

Lutein, total 316 ± 255 293 ± 285 0.0156 334 ± 329 265 ± 207 0.0116 300 ± 276

Zeaxanthin, trans 47 ± 23 44 ± 28 0.0194 49 ± 30 42 ± 23 0.0516 46 ± 26

Zeaxanthin, cis 5 ± 16 5 ± 11 0.6388 7 ± 14 4 ± 9 0.0764 5 ± 12

Zeaxanthin, total 53 ± 32 49 ± 37 0.0355 56 ± 40 46 ± 28 0.0195 51 ± 35

Cryptoxanthin 159 ± 105 148 ± 125 0.0362 166 ± 137 134 ± 96 0.3174 150 ± 119

𝛼-Carotene 80 ± 110 63 ± 61 0.0122 71 ± 93 63 ± 54 0.6972 67 ± 76

𝛽-Carotene, trans 547 ± 836 443 ± 419 0.2200 542 ± 670 398 ± 406 0.0056 471 ± 558

𝛽-Carotene, cis 20 ± 26 17 ± 22 0.6538 19 ± 26 17 ± 20 0.5322 19 ± 22

𝛽-Carotene, total 568 ± 855 460 ± 432 0.0839 560 ± 69 415 ± 419 0.0039 488 ± 573

Lycopene, trans 240 ± 181 138 ± 119 <0.0001 199 ± 166 130 ± 112 <0.0001 164 ± 145

Lycopene, cis 389 ± 277 231 ± 227 <0.0001 324 ± 276 220 ± 212 0.0003 272 ± 251

Lycopene, total 629 ± 443 369 ± 337 <0.0001 523 ± 430 348 ± 309 0.0003 436 ± 384

𝛼-Tocopherol 31.9 ± 16.8 25.5± 12.9 0.0011 29.6 ± 15.0 24.8 ± 13.2 0.0016 29.2 ± 14.3

Retinol 2.14 ± 0.07 1.84± 0.62 0.449 2.00 ± 0.64 1.83 ± 0.59 0.247 1.92 ± 0.62

∗

Significant difference between groups. Means were compared using Student’s 𝑡-test. Chi-square analysis was applied for categorical variables.

Table 3: Partial correlation coefficients between cognition indices and serum carotenoids, 𝛼-tocopherol, and retinol in octogenarians and
centenarians from the Georgia Centenarian Study (adjusted w/age, sex, education years, BMI, smoking, alcohol, hypertension, and diabetes,
𝑛 = 298).

Mini-
Mental

State Exam

Global Dete-
rioration

Rating Scale

FOME1

delayed
recall

FOME
delayed

recognition

FOME
delayed
retention

Controlled
Oral Word
Association

Test

WAIS-III
Similarities
Subtest2

Behavioral
Dyscontrol
Scale Total

Score
Lutein, (trans+ cis) 0.114 −0.350a 0.177b 0.009 0.114 0.148c 0.244a 0.180b

Zeaxanthin, (trans+ cis) 0.128c −0.236a 0.134c 0.069 0.146c 0.169b 0.184b 0.196b

Cryptoxanthin 0.026 −0.096 0.054 0.002 0.035 0.031 0.129c 0.045
𝛼-Carotene −0.014 −0.068 0.017 −0.029 0.009 0.015 0.074 0.029
𝛽-Carotene, (trans+ cis) 0.072 −0.244a 0.173b 0.082 0.168b 0.186b 0.144c 0.227a

Lycopene, (trans+ cis) −0.014 −0.142c −0.017 −0.033 0.014 0.017 0.108 0.044
𝛼-Tocopherol 0.118 −0.194b 0.097 0.097 0.145c 0.106 0.121c 0.200b

Retinol 0.089 −0.078 0.113 0.022 0.105 0.006 0.045 0.116
1
FOME: Fuld Object Memory Evaluation; 2WAIS-III Similarities Subtest: Wechsler Adult Intelligence Scale-III Similarities Subtest.
Significantly related (𝑃 <): a0.001; b0.01, c0.05.

of the MMSE and delayed recognition (Table 3). Serum 𝛼-
tocopherol concentrations were inversely related to dementia
severity (Geriatric Deterioration Scale) (𝑃 < 0.01) and
positively related to delayed retention, abstract reasoning,
and the Behavioral Dyscontrol Scale (𝑃 < 0.05). Higher
serum lycopene concentrations were only related to a lower
dementia severity (𝑃 < 0.01). Serum cryptoxanthin was only
related to the WAIS-III test (𝑃 < 0.05, Table 5). Serum
retinol concentrations were not related to any of the cognitive
function measures.

In the octogenarians, serum lutein concentrations were
significantly related to measures of global cognition, lower
dementia severity, and executive function (𝑃 < 0.05) (Table

S3 of the Supplementary Material). In this age group, serum
cryptoxanthin was inversely related to delayed recall (𝑃 <
0.05). There were no other significant relationships. In the
centenarians, none of the serum carotenoids or 𝛼-tocopherol
were related to global cognition or delayed recognition.
Higher concentrations of lutein, zeaxanthin, 𝛽-carotene, and
𝛼-tocopherol were significantly related to lower dementia
severity (𝑃 < 0.05). Additional significant relationships were
found between lutein and abstract reasoning, between 𝛽-
carotene and verbal fluency (Controlled Oral Word Asso-
ciation Test), WAIS-III and executive function, between 𝛼-
tocopherol and executive function, and between retinol and
delayed recall (𝑃 < 0.05).
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Table 4: Mean (±SEM) concentrations of carotenoids, 𝛼-tocopherol, and retinol in the cerebellum, frontal, occipital, and temporal cortices
(𝑛 = 47).

Analyte (pmol/g) Cerebellum Frontal cortex Occipital cortex Temporal cortex
Lutein, cis 6.5 ± 1.4

a
4.0 ± 1.6

a,b
2.8 ± 0.7

b
3.1 ± 0.8

b

Lutein, trans 169.8 ± 15.5
a

78.7 ± 7.6
b

91.8 ± 9.1
b

81.7 ± 7.8
b

Total Lutein (cis + trans) 176.4 ± 16.6
a

82.7 ± 8.0
b

94.6 ± 9.6
c

84.8 ± 8.4
b,c

Zeaxanthin, trans 52.9 ± 4.3
a

25.9 ± 1.9
b

30.0 ± 2.0
c

27.8 ± 2.0
b,c

Cryptoxanthin (𝛼 + 𝛽) 75.8 ± 13.7
a,b

63.4 ± 10.2
a

93.4 ± 15.6
b

60.7 ± 9.4
a

𝛽-Carotene, trans 59.8 ± 5.7
a

60.8 ± 6.4
a

70.2 ± 6.9
b

51.8 ± 4.3
a

𝛽-Carotene, 9-cis 12.0 ± 1.5
a

13.5 ± 1.8
a

16.9 ± 2.0
b

13.1 ± 1.9
a,b

Lycopene, trans 26.3 ± 4.4 21.0 ± 3.7 21.9 ± 3.6 19.9 ± 3.2

𝛼-Tocopherol 43475 ± 1877
a

67027 ± 2992
b,c

72971 ± 2442
c

65521 ± 1940
b

Retinol 472 ± 24
a

615 ± 42
b

676 ± 43
b,c

768 ± 54
c

Means not sharing a common superscript in the same row are significantly different at 𝑃 < 0.05 (repeated measures ANOVA with Bonferroni adjustment for
multiple comparisons).

Table 5: Mean (±SEM) concentrations of carotenoids, 𝛼-tocopherol, and retinol in the brain (average of cerebellum, frontal, occipital, and
temporal cortices) based on premortem GDRS scores in decedents with normal cognitive function (GDRS = 1), subjective mild memory loss
(GDRS = 2), and mild cognitive impairment (GDRS = 3).

pmol/g Global deterioration scale (GDRS)a

1 (𝑛 = 5) 2 (𝑛 = 7) 3 (𝑛 = 11)
Lutein, trans 133 ± 21

b
124 ± 17

b,c
67 ± 14

c

Total lutein (cis + trans) 145 ± 22
b

127 ± 18
b,c

68 ± 15
c

Zeaxanthin, trans 45.0 ± 7.5 43.1 ± 6.3 25.9 ± 5.0

Cryptoxanthin 90.1 ± 22.4 63.2 ± 19.0 57.2 ± 15.1

𝛽-Carotene, trans 77.6 ± 10.5
b

48.0 ± 8.9
b,c

39.5 ± 7.1
c

Lycopene, trans 37.0 ± 9.0 26.1 ± 7.6 16.4 ± 6.1

𝛾-Tocopherol 1609 ± 370 2129 ± 313 1518 ± 249

𝛼-Tocopherol 67408 ± 5295 63205 ± 4475 60028 ± 3570

Retinol 572 ± 109 530 ± 92 691 ± 74

a
GDRS = 1: no subjective complaints or objective evidence of memory deficits; GDRS = 2: subject complaints, but no objective evidence of memory deficits;
GDRS = 3: mild cognitive impairment.
Means not sharing a common superscript in the same row are significantly different at 𝑃 < 0.05 (univariate ANOVA with Bonferroni adjustment for multiple
comparisons).

In the community dwelling subjects, serum zeaxanthin
had significant relationships with most measures of cognitive
function (Supplementary Material, Table S4), with higher
concentrations being significantly related to global cognitive
performance, lower dementia severity, delayed recall and
retention, verbal fluency, and concept formation/abstraction
(𝑃 < 0.05). Higher serum lutein was significantly related
to global cognitive function, lower dementia severity, and
delayed recall and retention (𝑃 < 0.05). Other significant
relationships were found between higher 𝛽-carotene concen-
trations and lower dementia, delayed recall and retention,
and verbal fluency and executive function (𝑃 < 0.05). In the
community dwelling subjects, 𝛼-tocopherol was only signif-
icantly related to executive function (𝑃 < 0.05). There were
no significant relationships found between cryptoxanthin, 𝛼-
carotene and retinol and cognitive measures.

Fewer significant relationships were found between
serum analytes and cognitive measures in the institution-
alized subjects. In this group, significant relationships were
found between lower dementia severity and serum concen-
trations of lutein, zeaxanthin, 𝛽-carotene, and 𝛼-tocopherol.

Serum lutein, zeaxanthin, cryptoxanthin, and 𝛼-carotene
were significantly related to concept formation/abstraction
(𝑃 < 0.05). Lutein, zeaxanthin, 𝛽-carotene, 𝛼-tocopherol
and retinol were significantly related to executive function
(𝑃 < 0.05).

3.2. Brain Analytes and Cognition

3.2.1. Subject Characteristics. The characteristics of the cen-
tentarian population for which brain tissues were available
are described in Table S5 of the Supplementary Material.
Of the 47 decedents, five had normal cognitive function
(GDRS = 1), seven had subjective mild memory loss
(GDRS = 2), and eleven had MCI (GDRS = 3). There were
24 decedents who had different stages of dementia (GDRS
4 to 7). Subjects with dementia were slightly older than
those with intact cognitive function. However, the differences
were not significant. Eighty-nine percent of the decedents
were females, and 89% were Caucasians. Race/ethnicity,
sex, education, BMI, smoking status, and alcohol use did
not differ by GDRS status. A greater proportion of the
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69.2 ± 8.2

384.6 ± 38.5

138.3 ± 18.8
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Figure 1: Mean (± SEM) concentrations of carotenoids (trans isomers) in the brain (average of cerebellum frontal serum, occipital, and
temporal cortices) of decedents from the Georgia Centenarian Study (𝑛 = 42). Dark gray bars indicate xanthophyll carotenoids. Light gray
bars indicate carotenes.

decedents were institutionalized; however, the differences
between institutionalized and community dwelling subjects
were not statistically significant. The prevalence of diabetes
and hypertension did not differ between these two groups.

3.2.2. Brain Carotenoid, 𝛼-Tocopherol, and Retinol Concentra-
tions. The mean concentration of individual carotenoids, 𝛼-
tocopherol, and retinol in the cerebellum, frontal, occipital,
and temporal cortices from the 47 decedents is shown
in Table 4. The range of values for carotenoids was
0–661 pmol/g. For 𝛼-tocopherol, the range was 22,979–
137,576 pmol/g and for retinol 202–2,233 pmol/g. Mean lutein
and zeaxanthin concentrations were significantly greater
in the cerebellum compared to the frontal, occipital, and
temporal cortices. Concentrations of cryptoxanthin and 𝛽-
carotene the were highest in the occipital cortex and were
significantly different from the frontal and temporal cortices.
𝛼-Carotene was not detected in these brain tissues. Contrary
to lutein and zeaxanthin, concentrations of 𝛼-tocopherol and
retinol were the lowest in the cerebellum and significantly
different from all three cortical regions.

The proportion of cis to trans isomers was much lower
in the brain than in the serum. The ratio of cis to trans
lutein and 𝛽-carotene was ∼0.25 in the serum while in the
brain it was only ∼0.04. Although present in the serum, cis
isomers of zeaxanthin and lycopene were not detected in any
of the brain regions analyzed.Of note is that brain carotenoids
were significantly related to their concentrations in serum
(𝑃 < 0.01 for all, except cis lutein: 𝑃 < 0.05). 𝛼-Tocopherol
concentrations in the cortices were also significantly related
to serum concentrations (𝑃 < 0.01). However, 𝛼-tocopherol
in the cerebellum was not. Retinol concentrations in all brain
regions were not related to serum retinol concentrations.

Figure 1 shows the mean carotenoid (trans isomers)
concentrations in the brain and matched serum for the

decedents that had both serum and brain tissue. In the
brain, xanthophylls (lutein, zeaxanthin, and cryptoxanthin)
accounted for 72% of total carotenoids, of which lutein
accounted for 34% of the total and was significantly greater
than all other carotenoids (𝑃 < 0.02). The proportion of
carotenes (𝛼-carotene, 𝛽-carotene, and lycopene) was higher
than xanthophylls in serum, accounting for 57% of the total
carotenoids of which 𝛽-carotene accounted for 37% of the
total and was significantly greater than all other carotenoids
(𝑃 < 0.0001).

3.2.3. Brain Carotenoids, 𝛼-Tocopherol, and Retinol Concen-
trations in Decedents with Intact Cognitive Function, Mild
Memory Loss, and MCI. The mean brain concentrations of
carotenoids, 𝛼-tocopherol, and retinol for decedents with
GDRS ≤3 and GDRS >3 were not significantly different
(data not shown) with the exception of 9 cis 𝛽-carotene which
was significantly higher in dementia (17 ± 3.1 versus 9,8 ±
1.7 pmol/g).

Table 5 shows brain carotenoids, 𝛼-tocopherol, and
retinol concentrations in decedents with normal cognitive
function, mild memory loss, and MCI. Due to the advanced
pathological changes in brain and significant reduction in
brain volume associated with dementia, decedents with
dementia were not included in this analysis [43]. Addi-
tionally, the neuropathological and neurobiological brain
changes associated with MCI are quantitatively less than
those associated with dementia [44]. Mean concentrations
of all carotenoids were found to progressively decrease with
increasing GDRS scores from 1 to 3. However, only the
differences in lutein and 𝛽-carotene concentrations between
subjects with normal cognitive function and MCI were
statistically significant (𝑃 < 0.05). When data were adjusted
for age, sex, education, diabetes, and hypertension, only the
differences observed in lutein concentrations between the
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Table 6: Cross-sectional relationship between concentrations of carotenoids, 𝛼-tocopherol, and retinol in the cortex (average concentrations
of the frontal, occipital, and temporal cortices) and premortem measures of cognitive function in subjects with normal cognitive function,
mild memory loss, and MCI who completed the cognitive function tests a year prior their death (𝑛 = 21).

MMSE FOME recognition SIB COWAT BDS CERAD verbal fluency CERAD Boston naming test
Lutein (trans+ cis) 0.494a −0.297 0.076 0.142 0.459 0.455 0.572a

Zeaxanthin 0.439 −0.281 0.139 0.177 0.286 0.461a 0.207
Cryptoxanthin −0.056 0.325 −0.021 0.152 0.046 0.302 0.084
𝛽-Carotene, trans 0.265 −0.010 −0.014 0.269 0.137 0.265 0.008
Lycopene, trans 0.124 −0.003 0.132 0.067 −0.085 0.065 0.275
𝛼-Tocopherol 0.393 −0.295 0.568a 0.637a 0.434 0.328 0.165
Retinol 0.161 −0.456 0.168 0.400 0.067 0.108 −0.307
Values are partial correlation coefficients adjusted for sex, education, diabetes, and hypertension.
a
𝑃 ≤ 0.05.
MMSE:Mini-Mental State Examination; FOME: FuldObjectMemory Evaluation; SIB: Severe Impairment Battery; COWAT:ControlledOralWordAssociation
Test; BDS: Behavioral Dyscontrol Scale; CERAD: Consortium to Establish a Registry for Alzheimer’s Disease.

two groups remained significant (𝑃 < 0.05). Mean brain
retinol concentration was not significantly different between
individuals withMCI and normal cognitive function. Similar
results were obtained when concentrations of carotenoids, 𝛼-
tocopherol, and retinol in the cerebellum and cortex (average
of frontal, temporal, and occipital) were analyzed separately.
Data corrected for covariates are not reported due to the small
sample size in each GDRS subgroup.

3.2.4. Relationship between Brain Carotenoids, 𝛼-Tocopherol,
and Retinol and Cognitive Function Measures. Of the 23
decedents with normal cognitive function, mild memory
loss, and MCI, data for 21 subjects whose cognitive func-
tion tests were performed within one year (4.3 ± 2.8mo,
range: 0.3–10.5mo) prior to their death were analyzed for
associations with cognition. A significant positive correlation
was observed between lutein concentrations in the cortex
and the MMSE (global measure of cognitive function) and
the Boston Naming Test (CERAD battery, a measure of
language), while a negative correlation was observed with
Geriatric Depression Scale (𝑃 < 0.05) (Table 6). The positive
association of zeaxanthin in the cortex and verbal fluency
was statistically significant (𝑃 < 0.05). 𝛼-Tocopherol was
positively associated with SIB (a global measure of cognitive
function) and COWAT (a measure of executive function)
(𝑃 < 0.05). In the case of retinol, there was a negative relation
with FOME-delayed recognition (𝑃 < 0.05). No associations
were observed with the other listed measures of cognitive
function.

Carotenoids in the cerebellum were not associated with
any of the cognitive function measures with the exception
of a negative association between lutein and the Geriatric
Depression Scale (𝑟 = −0.63, 𝑃 = 0.005). 𝛼-tocopherol in the
cerebellum was positively associated with MMSE (𝑟 = 0.535,
𝑃 = 0.027) and SIB (𝑟 = 0.602, 𝑃 = 0.01), both of which are
measures of global cognition.

4. Discussion

In this cross-sectional study involving octogenarians and
centenarians, we found significant relationships between

serum and brain concentrations of dietary carotenoids and
variousmeasures of cognitive function.No specific domain of
the cognitive performance showed the strongest relationship
with either serum or brain concentrations of carotenoids
since significant relationships were observed with memory,
executive function, and language. The fact that specific
carotenoids were associated with more than one cognitive
function and that these associations remained statistically
significant after controlling for potential confounding factors
supports a possible role for these phytonutrients in age-
related cognitive health. The present study is the first report
on serum and brain carotenoids, 𝛼-tocopherol, and retinol
concentrations and their relationship to cognitive function in
the oldest of the old.This is of importance given the dramatic
increase in the number of Americans surviving into their 80s
and 90s and the increased prevalence of age-related cognitive
diseases such as Alzheimer’s disease [4].

Others have also found relationships with dietary
carotenoids and age-related cognitive function. In cross-
sectional and longitudinal analysis of 442 subjects aged
65–94 years, Perrig et al. [45] reported that a higher 𝛽-
carotene plasma level was associated with better memory
performances (free recall, recognition, and vocabulary). In
the Rotterdam Study of 5182 community participants aged
55–95 yrs, cross-sectional analysis found that a lower intake of
𝛽-carotene was associated with impaired cognitive function
asmeasured by theMMSE [46]. In both of these studies, there
were no significant relationships with vitamin E. Also, no
other carotenoids were evaluated. Two studies have reported
that supplementation with antioxidants including 𝛽-carotene
[47, 48] reduces the risk of cognitive decline. However,
given that both studies involved multivitamin/mineral
supplementation, a specific effect of 𝛽-carotene is difficult
to determine. In the EVA, a cross-sectional study using a
variety of cognitive measures in 589 subjects (68–79 yrs), it
was found that those with the lowest cognitive functioning
(<25th percentile) had a higher probability of having low
plasma levels of lycopene and zeaxanthin, but not lutein
or 𝛽-carotene [49]. However, in a prospective study of
older adults (mean age 73 y), Morris and colleagues found
no association between 𝛽-carotene intake and risk of
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Alzheimer’s disease [50]. Additionally, the Age-Related
Eye Diseases Study Research Group [51] found no effect of
a multivitamin/mineral supplementation which included
𝛽-carotene on MMSE score and a battery of cognitive
measures in a population with a median age of 69 yrs.
Rinaldi et al. found that plasma levels of lutein, zeaxanthin,
and 𝛼-carotene were lower in MCI and Alzheimer’s disease
subjects compared to controls but no difference for lycopene
and 𝛽-carotene [10]. 𝛽-Cryptoxanthin was also significantly
lower than controls in subjects with Alzheimer’s disease
but not in subjects with MCI. Others have reported lower
levels of zeaxanthin, 𝛽-cryptoxanthin, lycopene, and 𝛽-
carotene but not lutein and 𝛼-carotene in Alzheimer’s
patients than in controls [52]. Inconsistencies among
studies may be due to limited sample size, cognitive tests
used, method of carotenoid assessment, or characteristics
of the subject population. The major difference between
our present study and previous research is the age of the
population. In our population, the average age was 97 yrs
compared to averages of 67–77 yrs for the studies discussed
above.

Whether a possible protective effect of carotenoids differs
between the old and the oldest of the old remains to be tested.
However, in our study, the most consistent relationships with
cognition were observed for serum lutein, zeaxanthin, and
𝛽-carotene, reflecting diets rich in green leafy vegetables
and orange and yellow vegetables such as carrots, sweet
potatoes, and winter squash [53]. This remained to be true
for the centenarians and with respect to living status, but
only lutein remained significantly related to better measures
of cognitive performance in the octogenarians. Furthermore,
in brain tissue only concentrations of lutein and 𝛽-carotene
were significantly lower in the cortex and cerebellum of
subjects with MCI compared to those with normal cognitive
function. Lutein and 𝛽-carotene may thus be important
carotenoids for maintaining normal cognitive function in
older adults. Consumption of vegetables, particularly the
green leafy varieties that are rich sources of lutein and 𝛽-
carotene, was associatedwith slower rates of cognitive decline
in two large cohort studies [5, 8]. Other evidence suggests
that lutein supplementation, alone or in combination with
docosahexaenoic acid, may be able to improve certain aspects
of cognitive performance in healthy older women [22].

Although much recent work has focused on lutein and
its role in ocular health [54], lutein was also the dominant
carotenoid in various regions of the centenarian brains.
On the contrary, carotenes (𝛼-carotene, 𝛽-carotene, and
lycopene) were predominant in serum, which more closely
reflects dietary intake. These findings suggest that although
not predominant in the diet, there seems to be a preferential
uptake of lutein from the circulation into the brain. Craft et al.
reported similar preferential uptake of xanthophylls in brain
[23]. Trans isomers of lutein, zeaxanthin, cryptoxanthin and
𝛽-carotene, 𝛼-tocopherol, and retinol were detected in all the
brain tissues analyzed in this study. Only three cis isomers,
two of lutein and one of 𝛽-carotene, were detected in the
centenarian brain, which were not reported in the elderly
brain tissues analyzed by Craft et al. [23]. Also, the ratios of cis
to trans isomers in the brain were much lower than in serum,

indicating a preferential uptake of trans isomers in the brain
of these centenarians.

The majority of our findings find an association between
lutein concentrations in serum or brain with age-related
cognitive performance. However, there were significant asso-
ciations for zeaxanthin and 𝛽-carotene as well. Therefore,
the protective effect of carotenoids does not appear to be
limited to the provitamin A carotenoids (𝛽-cryptoxanthin,
𝛼-carotene, and 𝛽-carotene) nor to a class of carotenoids
(xanthophylls versus carotenes). In addition, brain retinol
levels were positively related to very few of the measures of
cognition and negatively related to delayed recognition.

A protective effect of carotenoids may, in part, to be
related to an antioxidant effect given that an antioxidant
function is common to all carotenoids [55–58]. Furthermore,
𝛼-tocopherol, a major dietary antioxidant, was found to be
related to several measures of cognitive. Cortical carotenoids
may be protective in nature and may also influence interneu-
ronal communication and function viamultiplemechanisms.
Other mechanisms by which certain carotenoids may func-
tion include modulation of functional properties of synaptic
membranes along with changes in their physicochemical and
structural features [59]. Carotenoids have also been shown
to enhance gap junctional communication [60] which in the
retina is important for light processing andmay be important
for the development of neural circuitry in the visual system.
Lutein and zeaxanthin, as macular pigments in the retina,
have been related to increased visual processing speed and
to reduced scotopic noise (noise associated with vision under
dim light conditions) [61–63]. Lutein may also have anti-
inflammatory action in the brain, lowering inflammatory
markers, and preventing cognitive decline [64, 65]. Neu-
roinflammation is also one of the factors that contribute
to the pathogenesis of MCI and AD with increased levels
of inflammatory markers being correlated with cognitive
impairment [66].

The significant progressive decline in brain lutein and 𝛽-
carotene with increased impairment from normal to MCI
indicates that these carotenoids may play a role in preventing
cognitive decline. MCI is thought to be the transitional stage
between normal aging and the earliest symptoms of AD.
There may be as much as a 50% likelihood of individuals
with MCI developing AD within five years [67]. Our finding
of a significant decrease in lutein and 𝛽-carotene in subjects
with MCI indicates that these carotenoids may play a role
in maintenance of cognitive health prior to a decline to
MCI. Future clinical studies should focus on nutritional
interventions with lutein and 𝛽-carotene in subjects with
MCI. Thus, far supplementation studies with 𝛽-carotene
have yielded mixed results; the Physician Health Study II
showed a long-term beneficial effect [68], while some studies
showed no effect on cognitive function with 𝛽-carotene or
antioxidant supplementation [69, 70]. Effects of lutein sup-
plementation on subjects with MCI have not been studied to
date.

The strength of this study is that we were able to
evaluate cognitive function in the elderly using a battery of
cognitive tests that included the MMSE. This approach is
more powerful than using only the less sensitive measure



10 Journal of Aging Research

of MMSE. With the other tests, the scores ranges are wider,
allowing for a better ability to study cognitive impairment.
We were also able to evaluate cognitive relationships with
a variety of dietary carotenoids using measures of serum
concentrations. Carotenoid assessment using serum con-
centrations may be preferred to food frequency question-
naires because the high interindividual variation in intesti-
nal bioavailability of carotenoids [71] does not need to be
considered. Whether such variability exists for, uptake of
carotenoids into brain tissue is not known. What is known
is that the macular pigment response to supplementation
of lutein from diet or supplements varies widely among
individuals [72, 73]. A variable response of uptake into the
brainmay also exist given the significant relationship between
concentrations of xanthophylls in the retina and brain
[26].

Thus, another strength of this study is the measures in
brain tissue that are associated with premortem measures of
cognition. Additionally, the strength of these cross-sectional
relationships lies in the high interindividual variability in
brain carotenoid concentrations, similar to that observed
in the serum of these centenarians. Another strength of
the study is that associations with cognitive function were
evaluatedwith carotenoids,𝛼-tocopherol, and retinol actually
embedded in brain tissue. However, the significant correla-
tions between carotenoid concentrations in serum and brain
tissue suggest that serum carotenoid measures could be a
useful tool for evaluating the benefits of dietary carotenoids
to age-related cognitive health.

One limitation to this study is that, in cross-sectional
analysis, it is not possible to affirm whether these low
levels of carotenoids preceded or were the consequence of
cognitive impairment. Low carotenoid status, that is, poor
food choices, may be a reflection of poor cognitive status.
The significant relationships observed may not be due to
specific effects of the individual carotenoids but, indication
of overall healthier diets and lifestyles. Another limitation is
that our analyses were performed in a sample drawn from
a relatively small population. Therefore, we were unable to
perform multivariate regression analysis that would have
provided additional information regarding the independent
contributions of the individual nutrient components.

5. Conclusions

In conclusion, this is the first study to evaluate the role of
carotenoids, 𝛼-tocopherol, and retinol in cognitive function
in the oldest of the old. To date, previous studies evalu-
ated older populations with average ages of 20–30 years
younger than those of this study. Evaluations of the role of
diet to health in this age group are becoming increasingly
important given the rise in both life expectancy and the
segment of the population who are >80 years. While far from
conclusive, the idea that certain carotenoids can influence
cognitive function is certainly feasible.The significance of our
findings requires further research using biological studies,
longitudinal epidemiological studies, and clinical trials with
carotenoid supplementation.
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