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Abstract: This study explores the modification of lignin with surfactants, which can be used as a
template to make mesoporous structures, and can also be used in combination with manganese
oxide to produce manganese oxide/lignin-derived carbon. Organosolv extraction, using ethanol
(70%) at 150 ◦C, was carried out to extract lignin from oil palm wood. Lignin was then mixed
with Pluronic F-127, with and without Mn(NO3)2, and then crosslinked with acidic formaldehyde,
resulting in a carbon precursor-based modified lignin. Carbonization was carried out at 900 ◦C to
produce lignin-derived carbon and manganese oxide/lignin-derived carbon. The characterization
materials included Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope-
energy dispersive X-ray (SEM-EDX) mapping, X-ray diffraction (XRD), and N2-sorption analysis.
FTIR curves displayed the vibration bands of lignin and manganese oxide. SEM images exhibited
the different morphological characteristics of carbon from LS120% (lignin with a Pluronic surfactant
of 120%) and LS120%Mn20% (lignin with a Pluronic of 120% and Mn oxide of 20%). Carbon LS120%
(C-LS120%) showed the highest specific surface area of 1425 m2/g with a mean pore size of 3.14 nm.
The largest mean pore size of 5.23 nm with a specific surface area of 922 m2/g was exhibited by
carbon LS120%-Mn20% (C-LS120%-Mn20%). C-LS120%Mn20% features two phases of Mn oxide
crystals. The highest specific capacitance of 345 F/g was exhibited by C-LS120%-Mn20%.

Keywords: lignin; manganese oxide; mesopores carbon; kinetic study; supercapacitor; surfactant

1. Introduction

Lignin, one of the carbon precursors with the most potential, can be found contained
in biomass [1]. Several methods are used to isolate the lignin from biomass, including
organosolv [2], kraft [3], and alkali treatment. To obtain a porous carbon, lignin must be
treated through pyrolysis under inert conditions or in a vacuum (as part of the carboniza-
tion process) [4]. Because of its advantageous properties, porous carbon is an important
material that is applied in many subject area, such as energy storage [5], purification [6],
adsorption [7], and catalysis [8].

An electric double layer capacitor is a supercapacitor, i.e., an electrical storage device,
which can use carbon as an electrode, including lignin-derived carbon. However, previous
research has shown that lignin-derived carbon has a low capacitance, which is caused by
small pores, low hydrophilicity, and low specific surface area. Improving its electrochemical
properties by modifying the characteristics of porous carbon is an on-going concern.

The specific surface area and porosity of carbon have been explored as areas where
the electrochemical properties of carbon electrodes can be improved. To improve in these
areas, carbon material can be developed using a template. Surfactants are commonly
used as a template material because they can modify pore structures. Surfactants are
divided into two types: ionic and non-ionic surfactants. The molecular weight of the
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surfactant plays a role, because the size arrangement of the template is important, as is
temperature, concentration, and the solvent used during synthesis. One surfactant that can
be used to develop lignin-derived carbon is Pluronic F-127. Pluronic F-127 has a higher
molecular weight than other surfactants, and is also one of the materials that can be used
as a template for developing mesoporous structures. Furthermore, metal oxide loading
can be also performed to improve the electrochemical properties of carbon as an energy
storage material [9].

Manganese oxide has good properties: it has good electrical conduction, it is magnetic
and catalytic, and it is also environmentally friendly [10]. Because of these properties, it is
often applied in many subject areas, especially for energy storage. The crystal phases of
manganese oxide consist of MnO, Mn3O4, Mn2O3, and MnO2 [11]. The high performance
of manganese oxide as a supercapacitor has been demonstrated in many studies [12].
However, due to its pseudocapacitive behavior, it results in a low power density with
respect to capacitive double layers. Therefore, combining manganese oxide and porous
carbon could produce a supercapacitor with an optimized performance.

In this research, composite materials, developed with lignin-derived carbon and
manganese oxide/lignin-derived carbon, were synthesized and tested as supercapacitor
electrodes. Lignin was extracted from Elaeis guineensis Jacq (oil palm wood) using the
organosolv method. Manganese oxide was added to lignin-derived carbon to improve
the properties of the material through a redox reaction. This work includes not only the
characterization and testing of the performance materials as electrodes, but also a kinetic
study to investigate the effects of modification with surfactants and manganese oxide on
the carbonization process.

2. Results and Discussion
2.1. Lignin Extraction

Lignin from Elaeis guineensis Jacq (oil palm wood) was extracted using the organosolv
process, using ethanol in a single-step fractionation process, resulting in an average yield of
30% (pentaplicate). Using alcohol with a longer alkyl chain (for instance ethanol) leads to a
higher yield of a purer product during extraction [13]. During the fractionation process,
the solvent breaks the complex beta aryl ethers bond (β-O4) into its simple components [14].
Increasing the temperature of the extraction process increases the amount of extracted
lignin that can be obtained, but reduces the molecular weight of the lignin.

2.2. A Kinetic Study of the Carbonization Process

To evaluate thermal behavior during the stages of carbon synthesis, a kinetic study
was performed using thermogravimetric analysis. There were two materials for the
kinetic study analysis: lignin with a surfactant addition (120%) named LS120% and a
lignin+surfactant+Mn precursor (120% surfactant, and 20%Mn) named LS120%-Mn20%.
The differential mass loss (DTG) of lignin and the modified materials during thermal de-
composition are shown in Figure 1. In general, the degradation process is divided into three
stages: the dehydration stage, the fast decomposition stage, and the slow decomposition
stage [15]. The dehydration stage occurs in temperatures below 200 ◦C and is followed
by the loss of organic and volatile compounds. Rapid decomposition (active pyrolysis)
occurs in the 200–400 ◦C range, where the material is partially converted into volatile
compounds. The slow decomposition stage begins with temperatures above 400 ◦C [16].
Figure 1 shows that the lignin sample without modification was directly carbonized, with
three peaks indicating that the extracted material still contained lignin (340–480 ◦C), cellu-
lose (230–340 ◦C) [17], and hemicellulose (150–230 ◦C). The opposite is seen in materials
that do not show peaks of cellulose and hemicellulose. This is possible because there is a
polymerization reaction during the templating process. There is an increase and shift in the
peak compared to the lignin sample. The presence of the surfactants that were bound to the
lignin resulted in a decrease in the decomposition temperature range to 330–420 ◦C [18].
The slight increase in the DTG curve in the LS and LS-Mn samples was due to the presence
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of surfactants and formaldehyde, which led to a higher decomposition rate [19]. The
presence of manganese oxide caused a peak shift that is not significant, with the peak
height of the DTG remaining the same. This is because there is no Mn that decomposes
and forms gas or that is carried away by nitrogen flow gas. In the decomposition of lignin,
the carboxyl group will tend to decompose into CO2 [20], with ether decomposing into
CO at low temperatures [14]. The formation of CO from the carbonization process in
biomass tends to result from the decomposition of cellulose. Charred material tends to be
produced by the demethoxylation of syringyl units [21]. In the carbonization process at
350–400 ◦C, the C=O-C-CH2-OH component will produce two possible types of product.
The first product type is a benzene ring, such as guaiacol, and the second product type
is two benzene rings. However, as the carbonization temperature increases, the process
tends to result in the formation of a benzene ring [15]. The formation of monomers, such
as guaiacol, coniferyl alcohol, and species radicals, will induce a polymerization reaction
as a side reaction of the decomposition process in the formation of charred material [4].
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Figure 1. Difference mass loss of lignin, LS120%, and LS120%-Mn20%.

Thermal decomposition curve analysis was used as the basis for a kinetic study
that was performed to investigate the activation energy and pre-exponential factor. The
variation of the heating rate (5 and 10 ◦C/min on a nitrogen gas stream) of the carbonization
material was used to identify the effect on the kinetic parameter. The flow of nitrogen gas is
used because it can ignore the various factors that arise due to the oxidative atmosphere [22].
Although this does not affect the kinetic parameters, it lowers the yield produced in the
carbonization process [17]. Studies related to the decomposition kinetics of LS120% and
LMn20% assume that the reaction proceeds at reaction orders of one and two. The use of
the free model equation is more suitable for obtaining the values of Ea and A than other
equations, such as the Kissinger equation, because it avoids the discrepancies that occur
due to the influence of the multistep reaction [23]. The presence of functional groups will
have a significant effect on the overall decomposition reaction and on the distribution
of the decomposition products on the equation model [24]. Figure 2a–d shows that the
model follows the second-order reaction equation, which is corroborated by the presence
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of fitted lines that sit close to the data. The value of the activation energy and the pre-
exponential factor from the modeling of the LS120% sample and the LS120%-Mn20%
sample decomposition processes are shown in Table 1.
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Figure 2. Model fitting for the thermal decomposition kinetic analysis of the material carbonization
process: heating rate 5 ◦C/minutes for (a) LS120% and (b) LS120%-Mn20%; heating rate 10 ◦C/min
for (c) LS120% and (d) LS120%-Mn20%.

Table 1. Kinetic parameters of the material carbonization process.

Parameters Ramp Rate
(◦C/min) Order A (/s) Ea (kJ/mol) R2

LS120%
5

1 0.33 ± 0.06 5.00 ± 0.09 0.9730
2 13.99 ± 2.31 6.70 ± 0.87 0.9832

10
1 (4.45 ± 1.98) × 104 10.02 ± 0.02 0.9835
2 (5.22 ± 2.25) × 106 100.25 ± 0.02 0.9878

LS120%-
Mn20%

5
1 1.83 ± 0.35 5.59 ± 0.09 0.9786
2 42.68 ± 7.14 6.95 ± 0.08 0.9866

10
1 (1.54 ± 0.47) × 103 8.143 ± 0.15 0.9887
2 (3.40 ± 1.09) × 105 10.07 ± 0.02 0.9915

The activation energy value during pyrolysis is the minimum energy needed for lignin
to become carbon. The value of the activation energy in the carbonization process that
involves inert gas will be greater than in atmospheric conditions due to the influence of
the presence of oxygen in the environment. The greater the heating rate, the greater the
heat transfer, which means that more particles react. Over a certain period, the frequency
of particle reaction increases, which is shown by the value of A. However, the heating
rate does not affect the activation energy value in the material carbonization process. The
composite material (LS120%-Mn20%) has a lower activation energy value than LS120%.
The lower activation energy value is due to the presence of manganese oxide, which also
acts as a catalyst during the carbonization process. The presence of a catalyst helps in
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lowering the activation energy, which is seen significantly at the heating rate of 10 ◦C/min
for the second-order reaction. In addition to the effect of lowering the activation energy,
the presence of a catalyst can also reduce the yield of charred material because it breaks
the molecular components of lignin into a gas [25]. The heating rate also causes the mass
reduction rate to increase, which affects the mass transfer process. The carbonization
process will be less efficient as the heating rate increases due to the poor heat conduction
process from the external part of the particle to its internal part [26]. This is quite influential
if the material has a high content of volatile compounds [16].

2.3. Material Characterization
2.3.1. FTIR Spectra

Figure 3 shows the FTIR spectra of lignin during the organosolv extraction compared
to the modified lignins. According to the FTIR spectrum, lignin is similar to the LS120% and
LS120%-Mn20% compounds. The hydroxyl bond (-OH) in lignin is indicated by a strong
and broad peak in the wavenumber at 3400 cm−1, while the 2900–2700 cm−1 range shows
the vibration of the C-H bond in methoxyl from the methyl group [27,28]. The absorption
bands at wavenumbers 1710 cm−1 and 1620 cm−1 show a peak which indicates a stretching
vibration of the unconjugated C=O and C=C frame of the benzene aromatic group [1,21,29].
The lignin constituent group is also shown to have bending properties at the 1518 cm−1

guacyl (G) component, aromatic rings at the G and S lignin units (1272–1263 cm−1 and
1330–1326 cm−1) [30], a C-O-C band center position (1025 cm−1) [31], and C-O-C vibrations
that are influenced by the hydrogen band (1103 cm−1). In the FTIR spectrum of lignin, there
is a syringyl (S) at 809 cm−1. The S/G ratio of lignin represents the lignin fractionation
caused by solvent extraction [32]. The composite material of manganese oxide/lignin
displays a discrepancy in its FTIR peaks [33]. The key difference between the modified and
unmodified material is the existence of the Mn-O tetrahedral vibration band and the Mn-O
stretching (567 cm−1). The presence of Mn in the composite material causes the surface
material to become more polarized by increasing the hydrogen bonds [34].
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Figure 3. FTIR spectrum of modified and unmodified lignin.

2.3.2. Surface Morphology and Elemental Contents

The surface and particle morphology of the carbon in C-LS120% and C-LS120%-
Mn20% was observed using SEM. Figure 4 displays the C-LS120% particle, which has
a more spherical shape than the C-LS120%-Mn20% particle [35]. The spherical shape of
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the particles is caused by the surfactant, which acts as a template during the synthesis
process. Compared to C-LS120%, C-LS120%-Mn20% has ambiguously shaped particles.
The presence of Mn in C-LS120%-Mn20% makes the lignin and Mn compete to interact
with the surfactant, which leads to the smaller particle sizes of C-LS120%-Mn20%.
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with coloring of the carbon (blue), oxygen (red), and manganese (green).

Combined with SEM mapping, energy-dispersive X-ray analysis was used to measure
the elemental content in C-LS120%-Mn20% and map its elements. Analyzing these elements
is essential to confirm the content in the material (see Table 2). Based on Figure 4c, the SEM
image shows that the elements contained in the material composite (C-LS120%-Mn20%)
are evenly dispersed.

Table 2. Elemental percentages.

Material
Elements (%)

C O Mn

C-LS120%-Mn20% 74.61 9.25 16.14

2.3.3. Pore Structures

The pore size and specific surface area play an important role in the electrode material
for supercapacitors. N2 sorption analysis was used to evaluate the pore structures of the
materials. Materials C-LS120% and C-LS120%2-Mn20% both have an IV-type isotherm of
adsorption and desorption nitrogen (see Figure 5a,b). The curve with an IV-type isotherm
in the figure shows a hysteresis loop, which indicates the presence of mesoporous structures
in the material [36]. The broadening of the hysteresis loop indicates the domination of
mesoporous structures [37]. The variation of surfactants shows that hysteresis increases
with an increase in surfactant content.
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Figure 5. Isotherm curve of nitrogen sorption at STP for (a) C-LSy% and (b) C-LS120%-Mnx%
material, and pore size distribution curve for (c) C-LSy% and (d) C-LS120%-Mnx% material.

Figure 5c,d show the pore size distribution of the carbon material. With a variety of
surfactants, the addition of more surfactants caused an increase in the mesoporous structure
of the materials used in this study [38]. This is also similar to the increase in the amount
of manganese oxide. Figure 5d shows that the C-LS120%-Mn20% sample experienced a
decrease in micropore volume with an increase in the mesoporous volume when compared
to the C-LS120% and C-LS120%-Mn20% samples. During the carbonization process, several
components, including surfactants, play a role in forming the pore structure which will
affect the pore volume of the material. Micropores are predominantly produced due to
the flow of steam [39], while mesopores are caused by the decomposition of surfactants
as they act as templates [40]. The decrease in micropore volume is also caused by the
presence of manganese, which makes the pores micro sized when the carbonization process
is widened [41]. This is because the catalytic process that occurs due to the presence
of metal oxides decomposes lignin into H2, CO, CO2, or CH4 [25,42,43]. The higher
carbonization temperature could widen the pore size in the catalytic carbon material [35].
The microporous structure that is formed from pyrolysis due to steam at a temperature of
900 ◦C has a size range of 0.8–1.9 nm [39]. The material that has the addition of a surfactant
has a larger specific surface area than the material that has the addition of manganese
oxide, as seen in Table 3. The largest surface area was caused by the addition of 120% wt
surfactant in the lignin. Although the addition of the surfactant to C-LS120% and C-LS80%
did not have a large significant effect on the surface area, it did have a significant effect on
the micropore volume and the average pore diameter, as summarized in Table 3.
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Table 3. Material structure characteristic.

Materials
Addition of

Surfactant/Mn (%.wt)

Pore Characteristics

SSA *
(m2/gr)

Vmic **
(%)

Dave ***
(nm)

C-LS
20 1085 79.26 1.89
80 1411 50.38 2.36
120 1425 38.06 3.14

C-LS120%-Mn
5 1210 37.26 3.31

20 922 12.67 5.23
* SSA: specific surface area; ** Vmic: micropore volume; *** Dave: average diameter.

2.3.4. Crystal Phase

Manganese oxide crystal phases (MnxOy) were evaluated using X-ray diffraction
(XRD) in a 2θ range of 10–80◦ [44]. Figure 6 shows that C-LS120%-Mn20% has two phases
of its crystal structure, one containing Mn3O4 and the other MnO. The analysis was
performed considering the peaks at 2θ in 29◦, 32◦ dan 36◦ [45] for Mn3O4 and 34◦, 40◦ dan
58◦ [46–48] for MnO, which is compared to database ICDD card numbers, 00-024-0734 and
01-071-1177.
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and MnO.

The presence of two phases is caused by the presence of Mn, temperature, and oxygen
during the carbonization process of the material [49]. MnO is the result of a reduction from
Mn3O4. During the carbonization process, the Mn3O4 was reduced, becoming MnO at
temperatures of 600 ◦C [50]. Two phases of crystals in C-LS120%-Mn20%, 2θ in 20–28◦ and
42–47◦, show the humped peaks [51]. The humped peaks are caused by the properties of
the carbon present in the material.
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2.4. Electrochemical Properties

Cyclic voltammetry (CV) curves of the synthesized materials are shown in Figure 7a for
various surfactant additions and Figure 7b for various manganese oxide additions. Porous
carbon with a 10% Mn loading was prepared and tested to examine the electrochemical
performance of the material against loadings of between 5% and 20%. It was expected that
the characteristics would be in between those of the 5%- and 20%-loaded material. All
materials were pre-treated with hydrogen peroxide to increase the surface wettability [52].
The CV curves of the surfactant variation have a quasi-rectangular shape because the
electrochemical process is dominated by ion adsorption on the surface of the material [53].
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Figure 7. Cyclic voltammetry curve at a scan rate of 10 mV/s for: (a) surfactant variations; (b) manganese oxide variations.

The scanning rate for the C-LS120% variation, shown in Figure 7a, indicates the
presence of a hump at a voltage of 0.18–0.25 V due to the contribution of pseudo-capacitance
caused by the presence of oxygen on the carbon surface [54]. The increase in the amount
of oxygen on the carbon surface increases the capacitance of the material. Compared to
C-LS120%, the material of C-LS120%-Mnx (the variation with manganese oxide) shows
a peak in the voltage range of −0.1 to 0.1 V [55,56] that is evidence of the redox process
at a low scanning rate. The crystal phase affected the specific capacitance due to the ion
transfer and the change in the oxidation state of the manganese oxide. The crystal structure
induced a surface charge in the initial step of oxidation. It indicated the involvement of
electrolyte ion intercalation in the network of structures, which is accommodated at the
oxygen-vacant site that strongly interacts with Mn atoms [57]. The crystal phase structure
of manganese shows the distribution of a number of oxygen and manganese sites, and
both of them are important to the electrochemical performance, especially as it relates to
the specific capacitance. The pure Mn3O4 has poor conductivity and cyclic stability as
an electrode [58]. However, it could be improved by making Mn3O4 into a composite
with carbon [59]. The porous manganese oxide–carbon composite increases conductivity
and has excellent specific capacitance and cyclic stability [58,59]. The mechanism of the
discharging reaction in composite materials is estimated to follow Equation (1) [56].

Mn(III)2Mn(II)O4 + xC+ + yH+ + (x + y)e− ↔Mn(III)(2−(x+y)) Mn(II)(1+x+y)O4CxHy (1)

The C-LS120% sample has the largest capacitance among the surfactant variations in
this study. This is due to the influence of the specific surface area, which is greater than
the other variations (although the specific surface areas of C-LS120% and C-LS80% are not
much different). Table 3 shows that the average pore size of the samples is different, so the
pore structure will affect the electrolyte ion transfer process [60]. The specific capacitance
value is also influenced by the scan rate, which is related to the ion transfer process and ion
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contact with the material. This phenomenon occurs due to the diffusion of ions from the
bulk electrolyte to the diffusion surface and the possibility of the intercalation of ions into
the crystal host structure [61]. For the composite material of C-LS120%-Mn, all variations
show a high value of specific capacitance due to the additional redox charge. The highest
specific capacitance of 345 F/g is featured by C-LS120%-Mn20%, which is superior to
the other studies listed in Table 4. It is important to mention that further studies are
needed to characterize the electrochemical properties through electrochemical impedance
spectroscopy (EIS), the Nquist plot, and charge/discharge and cycle life measurement.

Table 4. The specific capacitance of the materials.

Material Specific Capacitance
(F/gr) Reference

C-LS0% 22.0

This research

C-LS20% 14.1
C-LS40% 33.6
C-LS80% 81.7
C-LS120% 140.9

C-LS120%-Mn5% 128.3
C-LS120%-Mn10% 223.8
C-LS120%-Mn20% 345.3

Lignin-derived mesoporous carbon 91.7 [40]

MnO/carbon nanofiber 301.8 [56]

Porous carbon/MnO nanosheet 162.7 [47]

Nitrogen-doped porous hollow
carbon spheres/MnO2

255 [62]

Puffedrice-based biomass carbon 117.2 [63]

3. Materials and Methods
3.1. Material

The materials used were Elaeis guineensis Jacq (oil palm wood) as the lignin-derived
carbon source, ethanol, methanol triblock copolymer surfactant (Pluronic F-127, Sigma
Aldrich, Singapore), Mn(NO3)2·4H2O from Merck Germany, formaldehyde solution 37%
from Merck Germany, hydrogen peroxide solution 15%, Nafion (5% purity, Sigma Aldrich),
isopropyl alcohol (99% purity, Merck, Darmstadt, Germany), hydrogen peroxide (50%
purity, PT Peroksida Indonesia Pratama, Karawang, Indonesia), and aquadest.

3.2. Preparation
3.2.1. Lignin Extraction

Lignin was extracted from oil palm wood (OPW) using organic solvents (ethanol 70% v/v)
in a single-step fractionation process. OPW was crushed and ground under a 50 mesh and
mixed with ethanol in an autoclave with a temperature of 150 ◦C for 150 min and under
nitrogen pressure. The black liquor was separated from the solid phase of the extract, then
added with aquadest to pH 2 and precipitated. The precipitated result was washed using
aquadest to neutral and filtered, followed by drying in the oven at 105 ◦C.

3.2.2. Porous Carbon and Composite Synthesis

Mesoporous carbon material was prepared by mixing precursors. The lignin from
the extraction was used as a carbon source. Four grams of lignin were mixed with the
surfactant, Pluronic F-127, at variations of 20%, 40%, 80%, and 120% wt (denoted as “y%”)
of lignin. They were put into 30 mL distillate water, which contained 3 mL of 1 M HCl
and 5 mL of 37% formaldehyde. The mixture was stirred overnight so that it would
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completely react. The sample was poured into a Petri dish, dried, and then carbonized in
an N2 atmosphere, and then activated using steam at a temperature of 900 ◦C for 2 h. For
the composite material, the ratio of lignin and surfactant used was 120 wt.%, while the
Mn(NO3)2·4H2O content was varied to obtain 5, 10, and 20 wt.% Mn (denoted as “x%”) in
porous carbon. The material and LS120%-Mnx% that were the result of the carbonization
were surface oxidized using 15% v/v of H2O2 and named C-LSy% and C-LS120%-Mnx%.
Detail material preparation is given in reference [64].

3.3. Kinetic Study

The study of the carbonization process of the modified material was carried out by
thermogravimetric analysis at 700 ◦C with a heating rate of 5 ◦C/m and 10 ◦C/m in a
nitrogen atmosphere. It was compared with a model of a kinetic study to determine the
activation energy and pre-exponential factor. The irreversible of carbonization lignin was
defined as:

Lignin organosolv-surfactant k→ carbon + tar + syngas (2)

Lignin organosolv-surfactant-manganese oxide k→ carbon-manganese oxide + tar + syngas (3)

where k is defined as the rate constant for a reaction that is temperature dependent:

k = A e
−Ea
RT (4)

where Ea is the activation energy (kJ/mol), A is the pre-exponential factor (minutes−1), T is
the absolute temperature (K), and R is gas constant (8.314 J/mol·K). The transformation
rate of the solid phase to the volatile phase of the material follows Equation (5):

dα

dt
= k(T) f (α) (5)

where α, t, k(T), and f (α) represent the degree of conversion of the process, the time, the
rate constant, and the reaction model, respectively. The conversion was normalized from
the weight data, which is caused by the decomposition process as follows:

α =
(mi −mt)(
mi −m f

) (6)

where mi is the initial mass of the sample, mt is the actual mass at a certain time, and
mf is the final mass after the carbonization process. Hence, many authors restrict the
mathematical function f (α) as:

f (α) = (1− α)n (7)

where n is the reaction order. By substituting Equations (3) and (5), and combining the
non-isothermal experiment data with the linear heating rate to Equation (4), the final
equation can be written as:

dα

dT
=

A
β
·(1− α)n·e−Ea/RT (8)

3.4. Material Characterization

Synthesized materials were characterized using the Fourier transform infrared (FTIR)
Thermo Scientific Nicolet iS10 to identify the functional groups of lignin, lignin + surfactant
and lignin + surfactant + Mn. FTIR spectra were recorded at a wavenumber range of
4000–400 cm−1. The morphological material was characterized using a scanning electron
microscope energy dispersion X-ray (SEM-EDX) JEOL JSM-6510LA instrument at a voltage
of 15 kV. Analysis of the crystal phase of the composite material was conducted on a
Bruker D2 Phaser at 2θ range 10–80 using Cu kα radiation. The pores and surface area of
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the materials were analyzed through N2 sorption analysis using a NOVA 2000 analyzer
(Quantachrome Inc., Boynton Beach, FL, USA).

3.5. Material Testing

The material was ground in a mortar and sieved using a 300 mesh and oxidized using
15% H2O2 with a ratio of material to hydrogen peroxide of 1:200 w/v. The oxidized material
was dried at room temperature. Ten milligrams of sieved materials were dispersed into
1 mL of isopropyl alcohol, which was added to a 20 µL Nafion binder. It was ultrasonicated
for 30 min. Ten liters of ink were dropped onto a glassy carbon electrode of 0.3 mm. The
materials were tested using a three-electrodes system for measuring capacitance. The
materials were mixed with a binder and isopropyl alcohol. Three electrodes (working,
counter (Pt), and references (Ag/AgCl)) were dipped into 1 M of H2SO4 to create an
electrolyte solution. Electrochemical testing was carried out using a DROPSENS Stat
400 connected to DROPVIEW 8400 at the potential range of −0.2 to 0.7 V.

4. Conclusions

The potential preparation of mesoporous lignin-derived carbon and manganese
oxide/lignin-derived carbon has been evaluated. Lignin was successfully extracted from oil
palm wood and was modified using surfactants, with and without the addition of Mn oxide
precursors. The kinetic model of carbonization followed the second-order equation. The
modification of lignin with surfactants and its loading with Mn oxide precursor was suc-
cessfully used to prepare mesoporous lignin-derived carbon and manganese oxide/lignin-
derived carbon. The material characterizations with FTIR, SEM-EDX-mapping, XRD,
N2-sorption analysis confirmed the success of the material preparation and was used to
understand the performance of its electrochemical properties (specific capacitance). The
excellent specific capacitance of up to 345 F/g was shown by the carbon material that
was prepared through the carbonization of lignin and modified by 120% of surfactant and
20 wt.% of manganese oxides.
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