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Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy
is the preferred method to eliminate residual cancer cells after surgery and prolong the
survival of patients with inoperable RCC. A variety of molecular targeted and
immunological therapies have been developed to improve the survival rate and
prognosis of RCC patients based on their chemotherapy-resistant properties. However,
owing to tumor heterogeneity and drug resistance, targeted and immunological therapies
lack complete and durable anti-tumor responses; therefore, understanding the
mechanisms of systemic therapy resistance and improving clinical curative effects in the
treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or
primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are
used to explore the drug resistance mechanisms of RCC and screen new targeted
therapeutic drugs. Here, we review the established methods and applications of in vivo
and in vitro RCC drug resistance models, with the aim of improving our understanding of
its resistance mechanisms, increasing the efficacy of combination medications, and
providing a theoretical foundation for the development and application of new drugs,
drug screening, and treatment guidelines for RCC patients.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most prevalent type of renal malignancy, accounting for 90-95%
of all renal cancers (1). Clear cell, papillary, and chromophobe are the most common types of RCC
(2), while collecting duct carcinoma, renal medullary carcinoma, mucinous tubular and spindle cell
carcinoma, papillary adenoma, and other pathological types are less common (3). More than
350,000 people worldwide are diagnosed with RCC, and approximately 140,000 people die annually
(4). Approximately 30% of RCC patients have metastases at diagnosis and 30-70% of the tumors
may relapse after surgery (5). Despite the promise of targeted therapies such as tyrosine kinase
inhibitors (TKIs) and mTOR inhibitors, as well as immunotherapies like VEGF monoclonal
antibodies and immune checkpoint inhibitors, on the extension of progression-free survival
(PFS) and overall survival (OS) in patients with progressed or metastasized RCC, the patients
eventually succumb to inevitable drug resistance. Recently, a number of studies have focused on the
sophisticated mechanisms of drug resistance in RCC with the help of various drug resistance
models. We reviewed original articles concerning drug resistance of RCCs that were published in the
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last 10 years. The drug resistance models used are summarized,
with some key drug resistance mechanisms which were found by
using the drug resistance models introduced in detail.
1 TRADITIONAL IN VITRO AND IN VIVO
DRUG RESISTANCE MODELS

1.1 Establishment Methods of Traditional
Drug Resistance Models
As the most commonly used method, traditional drug resistance
models have been established using commercial RCC cell lines.
For in vitro models, parental RCC cells are exposed to the drugs
either with a constant high concentration or gradually increasing
concentrations for 20-30 generations or 3-6 months to acquire
drug-specific resistance. There are two major ways to establish in
vivo drug resistance in mouse models. Drug-resistant RCC cells
can be directly implanted into nude mice subcutaneously or
orthotopically. Drug-resistant mice could also be established via
an initial subcutaneous or orthotopic injection of parental RCC
cells and subsequent long-term oral feeding of the drugs. Table 1
lists the studies on RCC drug resistance using traditional in vitro
and in vivo models. Briefly, 786-O, A498, ACHN, and CAKI-1
are the four most commonly used RCC cell lines for the
establishment of traditional in vitro and in vivo models. The
TKIs sunitinib and sorafenib and the mTOR inhibitors
temsirolimus and everolimus are major research objects.
Furthermore, resistance to a single drug may be associated
with many signaling pathways. A specific drug that could
reverse the above signaling could be used as an alternative or
combined treatment.

1.2 Drug-Resistant Mechanisms Based on
Traditional Models
Juengel et al. (7) used the Caki-1 RCC cell line to build secondary
drug resistant models, and found that the resistance to
everolimus owing to long-term mTOR suppression is
prevented by valproic acid (VPA), a type of histone-deacetylase
inhibitor in vitro. Caki-1 cells were treated twice a week, either
with VPA (0.5 or 1 mM), everolimus (1 or 5 nM), or both for 2
versus 12 weeks, and a series of tests were performed with the
two groups of cells. Cells cultivated with either drug alone for 12
weeks showed increased viability and decreased ratios of G0/G1
cells, indicating chronic resistance to either everolimus or VPA.
However, combined drug administration increased the drug
sensitivity of Caki-1 cells cultured for 12 weeks. The levels of
H3 acetylation remained high, but Akt was not inactivated
during combined drug administration, indicating the effects of
histone H3 acetylation on the prevention of resistance to mTOR
inhibitors in RCC. Juengel et al. (18) further discovered that
everolimus resistance is associated with increased cdk2/cyclin A
levels, promoting the transition of RCC cells into the G2/M
phase. valproic acid (VPA) decreases the levels of cdk2/cyclin A,
suggesting its potential as a treatment for patients with advanced
RCC and acquired everolimus resistance. Su et al. (15)
established an RCC xenograft mouse model with acquired
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resistance to sunitinib. Injections of UMRC3 cells were
administered to BALB/c nude mice in both flanks, and the
mice received sunitinib treatment (40 mg/kg) by oral gavage
daily. The levels of ATX, an extracellular lysophospholipase D,
were significantly upregulated in the endothelial cells of the
sunitinib-resistant xenograft models, and combined application
of Ki16425 (LPA1 antagonist) with sunitinib significantly
increased the sensitivity of RCC to sunitinib, indicating that
the acquired resistance to sunitinib is associated with aberrant
activation of the ATX-LPA signaling pathway. Liu et al. (22)
found that the tumor PD-L1 was upregulated after treatment
of RCC cell lines and RCC xenografts in nude mice with
sunitinib, suggesting that immunosuppression of the tumor
microenvironment may induce resistance to antiangiogenic
treatment in metastatic RCC. Zhou et al. (27) established an
acquired sunitinib-resistant 786-O RCC cell line and xenograft
mouse models to study the resistance mechanisms after chronic
sunitinib treatment in vivo and in vitro. Time course assays and
dose curves were performed to obtain a clear picture of the
optimal treatment duration and dose to induce sunitinib-
resistant 786-O cells, and 1 mM sunitinib for 2 weeks was
chosen to induce sunitinib resistance. Activation of both AXL
and MET, upregulation of EMT-associated genes such as Snail
and b-catenin, and promotion of migrative and invasive abilities
were found in acquired sunitinib-resistant 786-O RCC cells.
Furthermore, angiogenesis was promoted in 786-O/HUVEC
co-culture models pretreated with sunitinib. Two chronic
sunitinib-treated xenograft mouse models were established for
in vivo evaluations. For the first model, sunitinib-resistant and
parental 786-O cells were injected into opposite flanks of NCr-
nu/nu mice, fed for 9 weeks, and then sacrificed to harvest the
tumor tissues for subsequent tests, which further indicated that
chronic sunitinib pretreatment accelerates tumor proliferation
and angiogenesis through the activation of AXL and MET. For
the second model, 30 nude mice were subcutaneously injected
with 1 × 107 786-O cells. After the tumors grew to 200 mm3, 20
mice were treated with sunitinib by oral gavage (20 mg·kg−1d−1)
until the tumor growth progressed. Half of the sunitinib-resistant
mice were switched to cabozantinib treatment (40 mg·kg−1d−1).
Tumor growth was inhibited in the cabozantinib-treated group.
Furthermore, AXL and MET were inhibited by cabozantinib,
suggesting the ability of the drug to reverse acquired resistance to
sunitinib in RCC.Zhou et al. (31) discovered a potent compound,
CYD-6-17, that significantly inhibited the proliferation of drug-
resistant RCC cells with different genetic profiles in vitro and
exhibited in vivo efficacy in three established drug-resistant RCC
cell lines: HK-2 KD and 786-O KD, which are resistant to mTOR
and tyrosine kinase inhibitors, and Sor001, derived from
sorafenib-resistant mRCC patients. 3-Phosphoinositide-
dependent protein kinase 1 (PDPK1) is a potent AKT
regulator and is associated with poor survival after targeted
therapies. CYD-6-17 targets PDPK1 to kill drug-resistant RCC
cells. Huang et al. (45) constructed 786-OR and ACHN-R cells
with acquired sunitinib resistance and found that EIF3D is
overexpressed in 786-OR and ACHN-R cells compared with
that in 786-O and ACHN cells, which is consistent with EIF3D
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TABLE 1 | Researches on RCC drug resistance using traditional in-vitro and in-vivo models.

Year Model Primary/
secondary

Resisted drug In
vitro/vivo

Core molecule Alternative/
combined drug

Reference

2011 786-O Secondary Sunitinib In vitro Lysosomal sequestration – (6)
2012 Caki-1 Secondary Everolimus/VPA In vitro HDAC VPA (7)
2013 Caki-1 Secondary VPA In vitro,

vivo
Akt – (8)

2013 786-O Secondary Sunitinib In vitro mTOR, PI3K Rapamycin
analogs

(9)

2013 786-O, ACHN Secondary Sunitinib/sorafenib In vitro b-Catenin Signaling Ovatodiolide (10)
2013 ACHN Secondary Sunitinib In vitro,

vivo
Akt – (11)

2013 ACHN, A498, Caki-1, Caki-2 Secondary Vinblastine In vitro P-glycoprotein – (12)
2013 786-O Secondary Sunitinib In vitro EMMPRIN – (13)
2013 ACHN Secondary Temsirolimus In vitro,

vivo
mTORC2 – (14)

2013 UMRC3 Secondary Sunitinib In vivo Autotaxin – (15)
2014 786-O, A498, ACHN, CAKI1 Secondary Sunitinib In vitro Sphingosine kinase-1 – (16)
2014 Caki-1, KTCTL-26, A498 Secondary Temsirolimus In vitro integrin a5, integrin b3 – (17)
2014 Caki-1 Secondary Temsirolimus In vitro cdk2, cyclin A VPA (18)
2015 Caki-1, KTC-26, A498 Secondary Sunitinib In vitro cdk1, cdk2, Akt, Rictor, Raptor, p27 Everolimus (19)
2015 786-O Secondary Sunitinib In vitro EZH2 – (20)
2015 KURC1, KURC2, 786-O,

Caki-1
Secondary Sunitinib In vivo IL13RA2 – (21)

2015 786-O Secondary Sunitinib In vitro,
vivo

PD-L1 – (22)

2015 Caki-1 Secondary Sunitinib In vitro EGFR – (23)
2015 Caki-1 Secondary Sunitinib In vitro,

vivo
Reelin, Notch, BMP-6 – (24)

2015 786-O Secondary Sunitinib,
pazopanib,

erlotinib, lapatinib

In vitro Lysosomal sequestration Everolimus (25)

2015 786-O, RCC10 Secondary Sunitinib In vitro Lysosomal sequestration Elacridar, LLOM,
bortezomib,
MG132

(26)

2016 786-O Secondary Sunitinib In vitro,
vivo

AXL, MET Cabozantinib (27)

2016 ACHN Secondary Rapamycin In vitro GSK-3b, 4EBP1 – (28)
2016 ACHN Secondary Sunitinib In vitro,

vivo
p44/42

MAPK, VEGFR-2
Axitinib (29)

2017 769-P Secondary Sorafenib/sunitinib In vitro MUC13 – (30)
2017 HK-2 KD, 786-O KD,

Sor001
Primary mTOR and

tyrosine
kinase inhibitors

In vitro,
vivo

PDPK1 CYD-6-17 (31)

2017 ACHN, RCC23 Secondary Sunitinib In vitro miR-575, miR-642b-3p, and miR- 4430 (↑), miR-
18a-5p, miR-29b-1-5p, miR-431-3p, and miR-

4521 (↓)

– (32)

2017 786-O, ACHN Secondary Sunitinib In vitro CAV1 – (33)
2017 786-O, UMRC2 Secondary Sunitinib In vitro EZH2 – (34)
2018 ACHN Secondary Sunitinib In vitro LAMP−2 – (35)
2018 Caki-2 Secondary Doxorubicin

/vinblastine
In vitro,
vivo

ABCC1 – (36)

2018 786-O Secondary Metformin In vitro Histone
H3 acetylation (↓)

VPA (37)

2018 786O, ACHN Secondary Sunitinib In vitro RCAN1.4 – (38)
2019 Caki-1 Secondary Sunitinib In vitro miR-130b, PTEN – (39)
2019 786-O, OS-RC-2 Secondary Sunitinib In vitro FZD1 – (40)
2019 786-o Secondary Sunitinib In vitro miR-99a-3p, RRM2 – (41)
2019 ACHN, Caki-1 Secondary Sunitinib In vitro EMT-related genes – (42)
2019 786-O Secondary Everolimus In vitro miRNA-101, HIF-2a – (43)
2019 786-O Secondary Sunitinib In vitro COX-2, PGE2, CD133 – (44)
2019 786-O, ACHN Secondary Sunitinib In vitro,

vivo
EIF3D, GRP78 – (45)

2020 Caki-1, 786-O Secondary Sunitinib In vitro,
vivo

YB-1, ABCB-1 Elacridar (46)

(Continued)
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levels being upregulated in sunitinib-resistant RCC tissues
compared with chemosensitive RCC tissues. Mechanistically,
EIF3D enhances GRP78 stability by blocking ubiquitin-
mediated proteasomal degradation of GRP78. 786-OR cells
with or without LvshEIF3D and/or GRP78 were also
subcutaneously injected into nude mice who were either
administered sunitinib or a control treatment. The results
Frontiers in Oncology | www.frontiersin.org 4
show that EIF3D inhibition increases the sensitivity of RCC
tumors to sunitinib, which could be reversed by GRP78
treatment.D’Costa et al. (46) found that YB-1 and ABCB-1 are
overexpressed in sunitinib-resistant RCC samples compared to
sensitive samples. They further constructed acquired sunitinib-
resistant RCC cell lines and xenograft mouse models with Caki-1
and 786-O, and found that ABCB-1 inhibition with elacridar,
TABLE 1 | Continued

Year Model Primary/
secondary

Resisted drug In
vitro/vivo

Core molecule Alternative/
combined drug

Reference

2020 786-O Secondary Pazopanib In vitro,
vivo

Gankyrin, STAT3, CCL24, CCR3 – (47)

2020 786-O, ACHN Secondary Sorafenib In vitro,
vivo

miR-31-5p, MLH1 – (48)

2020 786-O, A498, ACHN, caki1 Secondary Sunitinib In vitro,
vivo

– Rapalink-1 (49)

2020 786-O, A498, ACHN, Caki1 Secondary Sunitinib In vitro RAB27B – (50)
2020 786-O, ACHN Secondary Sunitinib In vitro,

vivo
SNHG12, CDCA3 – (51)

2020 786-O, OS-RC-2, TK-10 Secondary Sunitinib In vitro,
vivo

CDK4-RB Wogonin (52)

2020 769P, 786O Secondary Sunitinib In vitro MALAT1, miR-362-3p, G3BP1 – (53)
2020 786-O, ACHN Secondary Sunitinib In vitro,

vivo
YB1, EphA2 – (54)

2020 ACHN, 786-O Secondary Sunitinib In vitro,
vivo

LINC00160, SAA1 – (55)

2020 ACHN, 786-O Secondary Sunitinib In vitro,
vivo

CCAT1, c-Myc – (56)

2020 Caki-1,786-O, KTCTL26, A-
498

Secondary Sunitinib In vitro – Artesunate (57)

2020 Caki-1 Secondary Sunitinib In vitro – HDACI (58)
2020 ACHN Secondary Sunitinib In vitro LAMP-2A,

LAMP-2B
– (59)

2020 ACHN, 786-O Secondary Sunitinib In vitro,
vivo

DAPK1 – (60)

2020 786-O Secondary Sunitinib In vitro,
vivo

SLC1A5 – (61)

2021 – Secondary VEGFR-TKIs In vitro,
vivo

ACE2, Ang- (1-7) – (62)

2021 786-O Secondary Sunitinib In vitro,
vivo

HIF-2, Plk1 Volasertib (63)

2021 786-O Secondary Sunitinib In vitro,
vivo

TFE3 – (64)

2021 786-O Secondary Sunitinib In vitro PI3K, AKT G-1 (65)
2021 786-O, ACHN Secondary Sunitinib In vitro MX2 – (66)
2021 – Secondary Sunitinib In vitro Lefty A – (67)
2021 786-O, A498, Caki-1 Secondary Sunitinib In vitro miR-17~92 cluster, PD-L1 – (68)
2021 Autochthonous Vhl/Trp53/

Rb1 mutant ccRCC mouse
model

Primary PT2399 In vivo Sphingosine-1-phosphate FTY720 (69)

2021 786O Secondary Sunitinib In vitro PFKFB4 – (70)
2021 HUVEC (human endothelial

cell)
Secondary Sunitinib In vitro – Axitinib, sorafenib (1)

2021 A498 Secondary Imatinib In vitro PDIA6 – (71)
2021 786-O Secondary Sunitinib In vivo BTRC, TRIM32 – (72)
2021 786-O, ACHN Secondary Sunitinib In vitro,

vivo
circRNA_001895 – (73)

2021 – Secondary Sunitinib In vitro,
vivo

circSNX6 – (74)

2022 786-O Secondary Everolimus In vitro p-4EBP1, p-AKT, HIF1a, HIF2a Norcantharidin (75)
2022 Caki-1, SN12K1 Secondary Sunitinib In vitro,

vivo
IL-6, VEGF, Bcl-2 Tocilizumab (76)
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combined with sunitinib, reverses sunitinib resistance
development in vitro and in vivo . Wang et al. (47)
demonstrated that pazopanib resistance in ccRCC results from
activation of the autocrine regulatory loop of Gankyrin/STAT3/
CCL24/CCR3 with acquired pazopanib-resistant of RCC cell line
786-O and xenograft mouse models. Liu et al. (51) established
two sunitinib-resistant RCC cell lines, 786-O-R and ACHNR,
and found that SNHG12 and CDCA3 levels are higher in
sunitinib-resistant cells. Mechanistically, SNHG12 promotes
CDCA3 transcription by increasing the stability of SP1. The
authors then subcutaneously injected ACHN-R cells into nude
mice to establish a xenograft model and demonstrated that
tumor growth and sunitinib resistance could be reversed
through SNHG12 (a long noncoding RNA) inhibition in vivo,
concluding that SNHG12-regulated CDCA3 may be one of the
numerous sunitinib-resistant mechanisms in RCC. Gotink et al.
(6) found lysosomal sequestration as an important mechanism of
sunitinib resistance using the 786-O cells that were acquired
resistant to sunitinib. The concentration of sunitinib in resistant
cells was 1.7- to 2.5-fold higher than that in untreated parental
cells because of increased intracellular sunitinib distribution to
acidic lysosomes. But the levels of p-Akt and p-ERK 1/2 were
comparable between the two groups, indicating lysosomal
sequestration reduced effectiveness of sunitinib. They further
found that sunitinib-resistant 786-O cells were cross-resistant to
pazopanib, erlotinib and lapatinib (25). Cross-resistance to TKIs
was also observed in pazopanib- and erlotinib- resistant 786-O
cells, which includes increased intracellular drug accumulation
accompanied by increased lysosomal storage (25). Zhitomirsky
et al. (77) also revealed lysosomal sequestration of hydrophobic
weak base chemotherapeutics could trigger multidrug resistance
of malignancies. Giuliano et al. (26) further constructed acquired
sunitinib-resistant RCC cell lines (786-OR and RCC10R) and
found lysosomotropic drugs or proteasome inhibitors could
reverse sunitinib resistance in vitro. Mechanically, sunitinib
stimulated the expression of ABCB1, an ATP binding cassette
(ABC) transporter that promotes the accumulation of sunitinib
in autolysosomes. The sunitinib-resistant cells could be
resensitized through inhibition of ABCB1 by elacridar or
increasing the permeability of lysosome membranes by Leu-
Leu-O-methyl (LLOM).
2 PATIENT-DERIVED DRUG
RESISTANCE MODELS

Recently, patient-derived RCC cell lines or xenograft mouse
models have been increasingly applied in drug resistance
research of RCC. Primary cultures of RCC tissue samples from
patients with drug resistance can be used to establish new drug-
resistant cell lines. Drug-resistant tumors could also be directly
xenografted into nude mice to construct in vivo drug resistance
models. In addition, the drug-resistant samples from RCC
patients can be directly tested to detect the in vivo expression
levels of target genes. Table 2 lists the studies on RCC drug
resistance using patient-derived in vitro and in vivo models.
Frontiers in Oncology | www.frontiersin.org 5
Primary RCC tumors and metastases can be collected during
surgery or biopsy. Pleural or ascitic effusions and plasma of
patients may also be used for subsequent research.

2.1 Primary Culture Models
Primary culture models can be established using RCC tissues
from drug-resistant patients through a series of processes
including tumor resection, tissue digestion, cell separation and
purification, and primary cell culture. The drug-resistant
primary RCC cell lines better represent and mimic the
physiological and pathological characteristics of the
individuals, providing better models for researches on either
mechanisms or individualized treatments.

Karashima et al. (80) established a primary sorafenib-resistant
ccRCC cell line, KMRM-S2, from a cutaneous metastasis of a 62-
year-old man with metastatic RCC of the scalp. The metastatic
RCC tissue of the cephalic skin was resected, washed with saline,
cut up with sterile scalpels, and digested with serum-free solution
containing collagenase type I and deoxyribonuclease I.
Undigested tissue debris was removed through a gauze filter,
and the cells were washed and incubated in medium containing
10% fetal bovine serum, insulin, human recombinant epidermal
growth factor, GA-100, hydrocortisone, T3, epinephrine, and
transferrin at 37°C. Thus, the ccRCC cell line KMRM-S2 was
established. KMRM-S2 was confirmed to have a higher resistance
to sorafenib in vitro. Cytogenetic abnormalities, such as
hypertriploidy and translocation, were also observed in
KMRM-S2.

2.2 Patient-Derived Xenograft Models
Patient-derived xenografts (PDXs) are tumors from patients
directly implanted in nude mice, which stably preserve the
molecular signature of patient tumors, including DNA copy
number alterations, gene expression levels, and mutations,
which are more physiological than conventional tumor cell
lines (110). The transplantations can be either subcutaneous or
orthotopical. The tumors are more likely to form and the sizes
are easier to be monitored in subcutaneous transplantation
models. Orthotopic transplantation models provide a better
original tumor microenvironment, however, the operations
may be more complex (111).

Adelaiye et al. (20) established two sunitinib-resistant ccRCC
models (RP-R-01 and RP-R-02) from two patients. RP-R-01
originated from a skin metastasis of a patient with sporadic
ccRCC who was initially sensitive to sunitinib but developed
resistance. The VHL gene was deleted from RP-R-01. RP-R-02
was obtained from a skin metastasis of a patient with hereditary
ccRCC (VHL syndrome) who did not respond to sunitinib from
the start. The two samples were cut into 1 mm2 pieces and
implanted subcutaneously into nude mice for subsequent in vivo
studies. Based on a dose-escalation schema (40-60-80 mg/kg of
sunitinib) and a direct-increase schema (80 mg/kg of sunitinib),
they observed that the tumor eventually developed resistance to
sunitinib, but transient resistance could be overcome by dose
increase. Jiménez-Valerio et al. (81) developed a patient-derived
RCC xenograft mouse model based on the orthotopic
implantation of primary biopsies from the tumors of ccRCC
May 2022 | Volume 12 | Article 870396

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiang et al. Advances in RCC Drug-Resistance Models
TABLE 2 | Studies on RCC drug resistance using patient-derived in vitro and in vivo models.

Year Model Primary/
secondary

Resisted drug In vitro/
vivo

Core molecule Combined drug Reference

2013 CcRCC tissues Primary sunitinib In vivo microRNA-141 – (78)
2013 Papillary RCC cells from ascitic fluid secondary PF-04217903 In vivo MET kinase – (79)
2013 KMRM-S2 Primary Sorafenib In vitro Angiogenesis related

molecules
– (80)

2015 RP-R-01, RP-R-02 Primary Sunitinib In vivo EZH2 – (20)
2016 CcRCC tissue Secondary Sunitinib In vivo mTOR Everolimus (81)
2016 Primary cultures of PDX Primary Sunitinib In vitro,

vivo
FGFR, ERK, unknown
paracrine signalings

Dovitinib,
PD173074

(82)

2016 Ren-01, Ren-02 Secondary Sunitinib In vivo MEK1/2, ERK1/2, MDSC PD-0325901 (83)
2017 TKI-resistant patients Primary,

secondary
Sunitinib/sorafenib In vivo GLUT-1 Everolimus (84)

2017 RCC tissues primary sorafenib In vivo lncRNA-SRLR, IL-6, STAT3 – (85)
2017 PDC, PDX Primary TKIs, everolimus In vitro,

vivo
– – (86)

2017 RP-R-01, RP-R-02, RP-R-02LM Primary Sunitinib In vivo EZH2 – (34)
2018 Patients – Sunitinib, Axitinib Clinical

trial
– – (87)

2018 RCC tissues Primary Sunitinib/pazopanib/
sorafenib

In vivo miR-9-5p – (88)

2018 Plasma of RCC patients Secondary Sunitinib In vivo S1P – (89)
2018 RCC tissues of patients Secondary Everolimus/

temsirolimus
In vivo PBRM1 – (90)

2018 CcRCC tissues of patients Primary Sunitinib In vivo BCRP/ABCG2 – (91)
2019 CcRCC tissues of patients Primary/

secondary
TKI In vivo EMT-related genes – (42)

2019 RCC tissues of patients Primary Sunitinib In vivo QPCT – (92)
2019 RCC tissues of patients Primary TKIs In vivo Adiponectin, AdipoR1 – (93)
2019 RCC tissues of patients Primary Sunitinib In vivo EIF3D, GRP78 – (45)
2019 Patients Primary PD-1/PD-L1

inhibitors
Clinical
trial

– – (94)

2020 RCC tissues of patients Secondary TKIs In vivo TNFR1 – (95)
2020 RCC tissues of patients Primary Sunitinib In vivo YB-1, ABCB-1 elacridar (46)
2020 RCC tissues of patients Secondary PT2385 In vivo HIF-2 – (96)
2020 RCC tissues of patients Primary Sunitinib, Sorafenib In vivo PTEN – (97)
2020 Patients Primary TKIs and/or ICIs Clinical

trial
– lenvatinib plus

everolimus
(98)

2020 RCC tissues of patients Primary Sunitinib In vivo MALAT1, miR-362-3p, G3BP1 – (53)
2020 fecal samples – ICBs In vivo Antibiotics – (99)
2020 Blood samples of patients Primary Pazopanib In vivo SDF-1, VEGF-A – (100)
2020 RCC tissues of patients Primary Sunitinib In vivo CCAT1, c-Myc – (56)
2020 RCC tissues of patients Primary Sunitinib In vivo LAMP-2A,

LAMP-2B
– (59)

2020 RCC tissues of patients Primary PD-1 inhibitors In vivo CD8+ T cell – (101)
2021 RCC tissues of patients Primary PD-1 inhibitors In vivo AXL, PD-L1 – (102)
2021 RCC tissues of patients Primary Sunitinib In vivo HIF-2, Plk1 Volasertib (63)
2021 RCC tissues of patients Primary ICIs In vivo TDO – (103)
2021 RCC tissue

and plasma of patients
Primary Sunitinib In vivo CTCF, QPCT – (104)

2021 RCC tissues of patients Primary Sunitinib In vivo P53 – (105)
2021 RCC tissues of patients Primary Sunitinib In vivo CD44 – (106)
2021 RCC tissues of patients – Nivolumab In vivo TCR, GZMB/K, HERV – (107)
2021 RCC tissues of patients Primary Imatinib In vivo PDIA6 – (71)
2021 RCC tissues of patients Primary Sunitinib In vivo circRNA_001895 – (73)
2021 RCC tissues of patients Primary Sunitinib In vivo CircSNX6 – (74)
2021 Tri-culture model (cancer cells, endothelial

cells,
and patient-derived immune cells)

Primary Cabozantinib In vitro CD4+ T cells – (108)

2022 RCC tissues of patients Secondary Sunitinib In vivo Cancer-associated fibroblasts – (109)
2022 Human fibroblasts from skin biopsies of a

normal individual
Secondary Sunitinib In vitro Cancer-associated fibroblasts – (109)
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patients, in which acquired resistance to sunitinib was induced
after chronic sunitinib treatment. All tumors were initially
sensitive, but finally adapted to sunitinib antiangiogenic
therapy. Metabolic symbiosis between the tumor cells distal
and proximal to the surviving vessels was also observed in
sunitinib-induced RCC acquired resistance. Metabolic
symbiosis, a process regulated by the mTOR pathway, was
found to be responsible for sunitinib resistance, which could be
overcome by mTOR inhibitors such as everolimus (81). Tran
et al. (82) established 27 primary cultures of PDXs. The
xenografts were obtained from the kidney RCCs or RCC
metastases of vein thrombus, brain, bone, adrenal gland, and
pleural fluid. Five patients with RCC were resistant to sunitinib
treatment. They tested the ability of primary RCC cultures to
signal to endothelial cells (ECs) and fibroblasts in co-culture
assays and to stimulate angiogenesis in chorioallantoic
membrane assays. Primary RCC cultures supported EC
survival and were further divided into sunitinib-sensitive and
sunitinib-resistant groups. Thirteen were sensitive and fourteen
(including five from sunitinib-resistant patients) were resistant.
For the sunitinib-sensitive group, VEGFs, secreted by RCC cells,
combined with VEGFRs on the membranes of Ecs, activated
ERK to promote EC growth. This process can be inhibited by
sunitinib, and sunitinib sensitivity is correlated with VEGR
production. However, sunitinib-resistant RCC cells show less
dependency on VEGF to promote EC survival. The combined
application of sunitinib (VEGFR and PDGFR inhibitor) and
dovitinib (VEGFR and FGFR inhibitor) inhibits ERK activity in Ecs,
but only a small part of ERK in fibroblasts. They concluded that RCC
could activate EC through VEGF-dependent and -independent
pathways, and combined inhibition of VEGF/PDGF/FGF receptors
could inhibit mitogenic signaling in Ecs but not in fibroblasts. The
problem is that sunitinib does not directly inhibit the proliferation of
RCC cells in vitro and in vivo, which seems counterintuitive. A
possible explanation might be the acquired mutations and copy
number alterations in the RCC cells that the author used in the
experiments. Diaz-Montero et al. (83) established two RCC xenograft
models from two patient-derived ccRCC cell lines, Ren-01 and Ren-
02. Ren-02 was obtained from a subcutaneous metastasis of a 42-
year-old man with metastatic ccRCC and disease progression after
bevacizumab therapy, but the relevant information on Ren-01 is
missing. Sunitinib was administered to the tumor-xenografted mice
via oral gavage for 4 weeks at 40 mg·kg−1d−1 to acquire resistance.
Phospho-MEK1/2, Phospho-ERK1/2, and accumulation of MDSCs
were induced but could be reversed by switching from sunitinib to
PD-0325901 or a combination therapy. Adelaiye et al. (34) established
another PDX model, named RP-R-02LM, which is intrinsically
resistant to sunitinib but not to the VEGF therapeutic antibody
bevacizumab. They implanted RP-R-02 cells into the prostates of
nude mice to select a metastatic population. Lung metastasis was
found and reimplanted subcutaneously or orthotopically to harvest a
pure metastatic population. The metastatic model, together with
previous RP-R-01 and RP-R-02, was used to explore the effect of
the histone methyltransferase EZH2 on sunitinib-resistant RCC in
vivo. The acquired sunitinib-resistant RCC cell lines 786-O and
UMRC2 were employed in vitro. The antiangiogenic and anti-
Frontiers in Oncology | www.frontiersin.org 7
metastatic effects of sunitinib were preserved, while its direct anti-
tumor effects were lost because of kinome reprogramming, which
inhibits the expression of proapoptotic and cell cycle regulatory genes.
Downregulation of EZH2 suppresses RTK phosphorylation and
resensitizes the cells to sunitinib. An interesting study by Derosa
et al. (99) investigated the relationship between gut bacterial
composition and resistance to immune checkpoint blockade (ICB)
in RCC patients. Fecal samples from 69 patients with advanced RCC
treated with nivolumab and 2994 healthy volunteers were collected.
The results show that recent antibiotic use significantly reduces the
objective response rates of ICBs and changes the composition of the
fecal microbiota, facilitating the dominance of distinct species such as
Clostridium hathewayi. To establish a cause-effect relationship
between gut bacterial composition and ICB efficacy, RCC-bearing
mice that received fecal transplant fromRCC patients resistant to ICB
were successfully compensated with fecal transplant from responding
RCC patients, leading to the conclusion that gut bacteria composition,
which is influenced by antibiotics, could impact the success of ICB
therapy in RCC patients.

Humanized mice with the immune system are newly
deve loped an ima l mode l s . The hematopo i e s i s o f
immunodeficient mice is destroyed by radiation of the bone
marrow. Then Hematopoietic stem cells (HSC) derived from
human are injected into the tail vein or bone marrow cavity to
reestablish a human immune system. Hu-PDX (humanized
patient-derived xenograft) model, which is established after
transplantations of human tumor tissues into humanized mice
with the immune system, can better simulate the interactions of
human tumors, tumor microenvironment and the human
immune system (112–114). The HU-PDX model shows great
advantages in cancer immunotherapy research and has been
used to research colorectal cancer, liver cancer, and triple-
negative breast cancer. However, this new model has not been
established in the immunotherapy research of RCC, which may
to be developed in the future.

2.3 Other Patient-Derived Models
However, due to the complicated procedures to establish primary
cultures and PDXs, most clinical drug-resistant samples from
RCC patients were used for investigations of gene expression
levels simply with some quantitative or semi-quantitative
techniques like qPCR, western blot, or immunohistochemistry.
Generally, the genes that are highly expressed in drug-resistant
RCC samples are more likely to function as drug resistance
genes, while those that are suppressed in drug-resistant RCC
samples may resist drug resistance. Immunotherapy is an
important treatment method for advanced RCC. Traditional
cytokines like ILs and interferons show very limited
therapeutic effects. Recently, cytokine-induced killer cells,
VEGF monoclonal antibodies like Bevacizumab, and immune
checkpoint inhibitors like PD1/PDL1 inhibitors have been
widely used in the treatment of advanced RCC. Despite the
promising therapeutic effects, immune responses may be
gradually attenuated by varies of adaptive mechanisms. Due to
the difficulties of establishing models resistant to varies of
immunotherapies, direct examinations of the tumor specimens
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from RCC patients may be an easy and effective way for
investigations of resistance mechanisms.

Berkers et al. (78) found that resistance to the multitargeted
receptor tyrosine kinase inhibitor sunitinib in metastatic clear
cell RCC (ccRCC) is associated with miR-141 downregulation-
induced hypoxia resistance and epithelial-to-mesenchymal
transition in vitro and in vivo. In this study, 20 freshly frozen
metastatic ccRCC tissue specimens were included according to
the following criteria. A) Patients underwent both first-line
sunitinib therapy (50 mg/d, 4 weeks on/2 weeks off) and
subsequent cytoreductive nephrectomy. B) Postoperative
pathology confirmed the diagnosis of ccRCC. C) There should
be at least one synchronous metastasis. Nine patients with
progressive disease within six months were included in the
poor response group, and eleven patients with at least one-year
progression-free survival were included in the good response
group. The expression of miR-141 decreased with epithelial-to-
mesenchymal transition promoted in the tumors of the poor
response group compared with those of the good response group,
as determined by immunohistochemistry and in situ
hybridization. A series of in vitro tests confirmed that miR-141
suppresses epithelial-to-mesenchymal transition and cell
proliferation under hypoxic conditions. Diamond et al. (79)
reported a patient with progressive papillary RCC with a
heterozygous MET mutation at M1268T. Palliative debulking
surgery was performed because of disease progression after two
months of sequential treatment with sunitinib, temsirolimus, and
ENMD-2076 (aurora and angiogenic kinase inhibitor), and the
tumor tissue was obtained during surgery. The heterozygous
MET mutation at M1268T results in a methionine-to-threonine
change in the MET kinase domain, leading to abnormal
activation of MET phosphorylation (115, 116). Thus, PF-
04217903, a small-molecule MET inhibitor, was administered
to the patient. Tumor size decreased by 35% after 53 weeks. The
patient was asymptomatic for 26 months during PF-04217903
treatment, but finally succumbed to rapid tumor progression.
Malignant cells from ascitic fluid were collected and conserved.
The tumor specimens before and after PF-04217903 treatment
were used for subsequent in vivo tests. They found that tandem
duplication of the mutated MET allele occurred in almost 50% of
the tumor cells, indicating that the acquired resistance to MET
inhibitor PF-04217903 might be related to an increase in the
copy number of the gene with the mutated MET allele. A total of
161 RCC patients receiving surgical resections were divided into
sorafenib-treated (51 patients), nonsorafenib-treated (44
patients), and another independent group (66 patients) to
evaluate PFS and response to sorafenib (85). The upregulation
of a sorafenib resistance-associated lncRNA (lncRNA-SRLR) was
identified in intrinsically sorafenib-resistant human RCC tissues.
LncRNA-SRLR induces the IL-6/STAT3 axis to induce sorafenib
resistance in RCC, and lncRNA-SRLR inhibition sensitizes
nonresponsive RCC cells to sorafenib treatment in vitro. Xu
et al. (89) compared the S1P levels in plasma from a small group
of ccRCC patients (n = 20) who received sunitinib treatment as
first-line therapy. The average S1P concentration was
significantly increased when sunitinib resistance was
Frontiers in Oncology | www.frontiersin.org 8
established compared to when sunitinib treatment was
performed (31.19 ± 10.13 nmol/ml vs. 22.89 ± 7.17 nmol/ml).
Sphk1 promotes the proliferation and migration of RCC via
activation of the AKT/mTOR pathway. Subsequent experiments
confirmed that Sphk1 suppression increases the sensitivity of
RCC to sunitinib in vitro and in vivo. Zhao et al. (92) used four
pairs of sunitinib-responsive and resistant patient RCC tissues to
analyze the methylation-differentiated CpG sites between the two
groups using an Illumina Human Methylation 850 K microarray;
a significant reduction in methylation degree was found in the
QPCT promoter region of the sunitinib-nonresponsive tumors.
Immunohistochemical assays, qRT-PCR, and western blotting
confirmed the upregulation of QPCT expression in sunitinib-
nonresponsive tumor tissues. Mechanistically, QPCT increased
the stability of HRAS in inducing sunitinib resistance in RCC in
vitro. PT2385 is a first-in-class HIF-2 inhibitor that treats ccRCC
by dissociating HIF-2 complexes and inhibiting HIF-associated
target gene expression. A prospective clinical study (96) involved
patients undergoing treatment with this new drug. The acquired
resistance to PT2385 was induced by prolonged treatment, and a
gatekeeper (G323E) mutation was recognized in the acquired
PT2385-resistant RCC tissues of patients. Mechanistically, the
G323E substitution prevents HIF-2 dissociation by PT2385 to
induce PT2385 resistance in renal metastasis. Braun et al. (101)
analyzed 592 tumor samples from patients with advanced ccRCC
treated with PD-1 inhibitors by whole-exome and RNA
sequencing, integrated with immunofluorescence analysis.
They found that the tumors resistant to PD-1 blockade were
highly infiltrated with CD8+ T cells, only 27% had a non-
infiltrated phenotype. Favorable PBRM1 mutations were
depleted and unfavorable chromosomal losses of 9p21.3 were
enriched in the infiltrated tumors compared with non-infiltrated
tumors, suggesting the therapeutic response may be impacted by
the potential interplay of immunophenotypes with somatic
alterations. Terry et al. (102) examined 316 ccRCC samples
from the advanced patients receiving the PD-1 inhibitor
nivolumab after failure of antiangiogenic therapy. They found
that AXL expression was strongly associated with PD-L1
expression and the RCC tumors with high levels of AXL and
PD-L1 were resistant to PD-1 blockade.
3 THREE-DIMENSIONAL CULTURE DRUG
RESISTANCE MODELS

3.1 Advantages and Disadvantages of 3D
Culture Models
Three-dimensional culture is a novel cell culture method that uses a
variety of biochemical and tissue engineering techniques to grow
cells into aggregates or spheroids rather than monolayers that
adhere to the wall. Compared to traditional 2D culture, 3D
culture better mimics in vivo cell growth patterns, providing a
more physiological approach. The 3D spheroids present both
metabolic and proliferative gradients influenced by the gradients
of blood, oxygen, and nutrient supply, as well as the gradient of pH
May 2022 | Volume 12 | Article 870396
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and metabolic-production accumulation across their geometry
(117). The blood, oxygen, and nutrient supplies gradually
decreased, with an increase in acidic metabolic products from the
spherical surface to the center. Spherical tumors of approximately
500 µmmay undergo central necrosis, with a viable layer of 200 µm
surrounding the outer surface of the necrotic core (118, 119). Cells
near the center adapt to the hypoxic microenvironment and exhibit
decreased metabolism and proliferation, whereas the well-supplied
outer layer cells grow faster (120). Changes in nutrient availability
and cell contacts may alter the expression of genes associated with
metabolism, proliferation, migration, invasion, differentiation, and
communication (121–123). In addition, the drug concentration
inside the spheroids may be affected by their different permeation
capacities. The gene expression patterns of 3D cultured tumor
spheroids are more similar to those in native tissues or primary
tumor samples (117, 124, 125). Because intercellular
communication and hypoxia are important factors influencing the
therapeutic effects, toxicities, and resistance of drugs (126–129), 3D
culture models seem to be a better choice for the investigation of
drug resistance mechanisms.

However, the relatively high costs, difficulties in generating
standard and uniform spheroids, and difficulties in developing
co-culture models combining tumor cells with endothelial cells
or cancer-associated fibroblasts, have limited the widespread
application of 3D culture (121, 130, 131). 3D models cannot
substitute in vivo models because complex in vivo tumor
microenvironments are not completely recapitulated by 3D
culture (117). Different types of cells, such as ECs, fibroblasts,
and immune cells, may influence tumor genesis and
development via communication with tumor cells. EC-induced
vasculature can promote tumor growth and metastasis in vivo by
providing nutrient and oxygen supply and increasing tumor
adaptation and invasiveness (132–135). Three-dimensional co-
cultures combining tumor cells with stromal cells have been
developed to better mimic the in vivo microenvironment.

3.2 Establishment Methods of 3D
Culture Models
There have been a variety of 3D-spheroid culture techniques, as
listed below.

(1) Hydrogels
Hydrogels are natural or synthetic polymers that possess elevated
water content. Natural hydrogels are originated from extra cellular
matrix (ECM) and contain large amounts of endogenous bioactive
molecules for cell growth and metabolism. But sometimes the
unwanted or unknown components from natural hydrogels might
be interference factors for mechanism researches. Synthetic
hydrogels can overcome this defect due to their simple and
specific components, but the cell function within synthetic
hydrogels may be influenced perhaps due to lack of some
beneficial endogenous components (136).

(2) Cell-Aggregating Methods

a. Hanging drop method This method utilizes a specially
designed culture plate with a small hole at the bottom of
Frontiers in Oncology | www.frontiersin.org 9
each well. The geometrical structure can guide cells along
with culture medium to pass through the hole and form a
stable droplet. The method can produce spheroids with a
similar size, but the culture medium cannot be replaced.

b. Ultra-low attachment method This scaffold-free method
utilizes agarose or other specially synthesized materials to
prevent cell attachment to the surface, promoting
spontaneous aggregation of the suspended cells (137). an
Ultra low attachment 96-well round bottom plate from
Corning were used in a 3D culture monitoring tumor
growth (138). Untreated polystryrene is hydrophobic and
neutral. Cell adhesion proteins cannot properly adhere to this
surface, and cell growth on this surface is asymmetrical and
not well. Tissue-culture (TC) treated polystryrene presents a
negative, hydrophilic surface. Cell adhesion proteins can
properly adhere to this surface, providing a good condition
for cell adhesion and growth. The ultra low attachment
surface is a neutral, hydrophilic hydrogel covering. This
surface minimizes the adherence and extension of cells by
greatly inhibiting the adhesion of adhesion proteins.

c. Magnetic levitation Cells are incubated with magnetic
nanoparticles to acquire magnetism, then suspended and
aggregated at the air-liquid interface of the culture medium
by a magnetic field (117).

d. Non-stagnant methods Non-stagnant methods use physical
means like shaking or rotation to prevent cell adhesion to the
surface of culture dishes. Cells lacking a substrate will
spontaneously aggregate to establish intercellular
communications.
3.3 Drug-Resistant Mechanisms Based on
3D Culture Models
Recently, 3D culture has been reported as a means of
investigating RCC drug resistance. Brodaczewska et al. (139)
established 3D spheroid RCC models. The RCC cell lines Caki-1
and ACHN were cultured in serum/growth-factor-deprived
medium on laminin-coated or poly D-lysine-coated plates.
Small spheroids of ACHN cells and large spheroids with Caki-
1 cells exhibiting reduced central cell viability were formed in the
ECMs. The expression levels of stem cell markers (CD105 and
CD133) and stem cell transcription factors (OCT4, SOX2, and
NES) were higher in 3D spheroids than in adherent 2D cultures.
In addition, epirubicin, sunitinib, and doxycycline presented
better sensitivities in RCC cell monolayers than 3D spheroids.
The results demonstrate that 3D-cultured RCC cells present a
stem−like phenotype and stronger drug resistance than
traditional 2D-cultured cells.

As previously mentioned, 3D models can better mimic both
low-oxygen-tension-related pathways and cell-cell dynamics in
tumor-like spatial structures. To investigate the relationship
between hypoxia and TKI resistance in RCC, Bielecka et al.
(140) established hypoxic 3D in vitro RCC models with human
papillary kidney cancer stem-like cells (HKCSCs) in soft agar
and suspension culture. Hypoxic HKCSCs have an increased
ratio of quiescent cells. Hypoxia also induces map2k1
overexpression and sorafenib resistance in pRCC. 3D spheroid
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cultures of patient-derived tumors are useful for investigating the
mechanisms of tumor stemness because this technique promotes
the increase of tumor cells with stemness properties (141–143).
Dipeptidyl peptidase IV (DPP4) has recently been regarded as a
new tumor stemness-related protein. Kamada et al. (144)
established patient-derived RCC spheroids and found a
positive correlation between DPP4 and other stemness-related
genes. DPP4 inhibition reverses the sunitinib resistance of RCC
in vitro and in vivo. Rausch et al. (145, 146) established a 3D
heterotypic spheroid co-culture model to assess the therapeutic
effect of an optimized low-dose synergistic drug combination
(ODC) consisting of four tyrosine kinase inhibitors, namely
osimertinib, pictilisib, AZD4547, and AZD8055. Scaffold-free
heterotypic spheroidal cultures of 700 sunitinib-resistant Caki-1
cells, 200 human fibroblasts NHDFa, and 100 human
endothelial cells ECRF24 were prepared in 96-well low-
attachment U-bottom plates to mimic the physiological
characteristics of ccRCC. The cell metabolic activity in the 3D
heterotypic co-cultures decreased by >80%, remaining inactive in
non-cancerous cells after the ODC treatment, showing the
efficacy of this low-dose combination in sunitinib-resistant RCC.
4 TRANSGENIC DRUG
RESISTANCE MODELS

4.1 Establishment Methods of Transgenic
Drug Resistance Models
The drug resistance of RCC is usually related to the abnormal
expression of related signal pathways. Intervening the expression
of key molecules of related pathways through transgenic
technology to affect the drug sensitivity of RCC has become an
important tool to study its drug resistance mechanism. Clustered
regularly interspaced short palindromic repeats (CRISPR)-
associated protein 9 (Cas9) is an RNA-guided DNA
endonuclease derived from the type II CRISPR bacterial
immune system. CRISPR/Cas9 has been widely used as an
efficient gene-editing system based on the ability to target new
genes simply by altering the sequences of single guide RNAs
(sgRNAs) (147, 148). The targeted-sequence specificity of Cas9
depends on both accurate Watson–Crick base pairing between
its guide RNA and the target DNA site, and a direct interaction
between Cas9 and a short protospacer adjacent motif (PAM) of
DNA (149–153). The double-stranded DNA is catalytically
cleaved by the two nuclease domains HNH and RuvC of Cas9
(152, 153). Mutations at the targeted sites may occur owing to a
shift in the reading frame induced by random insertions or
deletions (147). Homology-directed repair can also be achieved
by homologous recombination with an introduced homologous
donor DNA (154, 155).

4.2 Drug-Resistant Mechanisms Based on
Transgenic Drug Resistance Models
Sunitinib, a multi-targeted receptor tyrosine kinases inhibitor,
can prevent the progression of RCC by blocking VEGFR and
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PDGFR-b. However, the crosstalk between EGFR, PDGFR and
VEGFR may induce drug resistance. Liu et al. used two gRNAs
targeting exon 2 of EGFR with the homology-directed DNA
repair (HDR) templates specific to the cut sites of EGFR,
generating RC21 EGFR knockout cell line. They found that
CRISPR-mediated ablation of overexpressed EGFR in
combination with sunitinib could significantly improve the
therapeutic effect of sunitinib. Interestingly, the loss of EGFR
eventually induced resistance to SAHA and cisplatin (156).
Several studies have also shown that the EGFR status is
associated with drug resistance in cancer, which suggests that
EGFR knockout RC21 cells could be a cisplatin-resistant cell
model. To investigate the role of PTEN in TKI resistance to RCC,
SEKINO et al. developed PTEN knockout cells in RCC cell lines
using the CRISPR-Cas9 technique. They found that PTEN
knockout promoted the spheroid formation and sunitinib
resistance in RCC cells (97). Statistical analysis showed a
significant association of negative PTEN expression with poor
PFS in metastatic RCC treated with sunitinib and sorafenib or
sunitinib alone. The PTEN knockout RCC cell lines may be a
sunitinib-resistant cell model. Makhov et al. (157) used CRISPR/
Cas9-based high-throughput loss of function (LOF) screening to
identify sunitinib-resistant cell factors. The procedures were
described by Makhov et al. (157). Briefly, 786-O cells were
transfected with lentiviruses carrying the Cas9 gene, and
successfully transfected cells were selected using puromycin.
Then, 786-O cells were infected with lentiviruses carrying a
human CRISPR sgRNA library targeting 18,000 genes with
90,000 individual sgRNAs (5 sgRNAs per gene) with MOIs < 1
and selected by blasticidin. Multiple genes were knocked out
after doxycycline-induced Cas9 expression. Some of the
knockout 786-O cells were further cultured with 10 mM
sunitinib for 12 days (approximately six passages). The 786-O
cells without Cas9 induction and the knockout 786-O cells with
or without sunitinib were cultured and conserved for
chromosomal DNA purification and deep sequencing of
sgRNAs to identify the sgRNAs underrepresented in the
surviving cell population. Cells with essential genes knocked
out would be eliminated after induction of Cas9 expression,
whereas the cells with their non-essential genes knocked out
would remain. Likewise, cells with knocked out genes that
contribute to sunitinib resistance, should be eliminated from
the population when incubated with sunitinib. Based on this, a
large number of sunitinib-resistant genes were identified with
farnesyltransferase (FTase) among the top hits. Subsequent in
vitro and in vivo experiments demonstrated that inhibition of
FTase with lonafarnib significantly increases the anti-tumor
efficacy of sunitinib. In conclusion, CRISPR/Cas9 LOF
screening may be a promising method for the identification of
genes involved in resistance to anti-tumor therapies.
5 SUMMARY

Developing effective models is essential for investigating drug
resistance mechanisms in RCC. Therefore, we summarized the
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advances in renal cell carcinoma drug resistance models
(Figure 1). Compared to traditional commercial and mature
RCC cell lines, patient-derived models present and retain better
individual characteristics, which are vital for the investigation of
the different drug resistance mechanisms with respect to different
unique cancer pathological subtypes. Three-dimensional models
better mimic the tumor microenvironment solely through simple
and stable in vitro cultures, providing a better method for testing
drug effectiveness and resistance. In addition, gene-editing
techniques can be used to establish genetically modified cell
lines or animal models that are resistant to specific drugs. It has
to be admitted that none of the above mentioned methods are
perfect. From our perspective, PDXs seem to be the optimal drug
resistance models for researches on tumor mechanisms. There
may be two reasons. First, patient-derived tumor xenografts
preserve the molecular characteristics of patient tumors.
Moreover, subcutaneous or orthotopical transplantations in
animals provide more physiological in-vivo environments. It is
expected that more PDX models and cutting-edge techniques
Frontiers in Oncology | www.frontiersin.org 11
will be applied in the future for further exploration of drug
resistance mechanisms in RCC.
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