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Abstract

PBRM1 is a novel tumor suppressor gene that can inhibit cancer cell proliferation and

predict the outcome of renal cell carcinoma (RCC), but its biological role needs further eluci-

dation. We examined expression of the PBRM1 gene in RCC cell lines and the effect of

PBRM1 on cell proliferation and cell cycle in RCC ACHN cells. Microarray processing and

analysis was used to explore novel pathways involved in tumorigenesis related to PBRM1

knockdown. PBRM1 was expressed at high levels in RCC ACHN cells and lentivirus-medi-

ated PBRM1 knockdown in these cells caused an increase in the proportion of cells in S

phase of the cell cycle and promoted in vitro proliferation and migration. In vivo experiments

showed that downregulation of PBRM1 promoted tumorigenesis in nude mice. In pathway

gene chip analysis, the chemokine/chemokine receptor interaction pathway showed the

greatest difference in gene expression upon PBRM1 knockdown. Protein levels of IL6ST

and CCL2 were increased, whereas levels of interleukin (IL)-8, IL-6, and CXCL2 were

decreased, in knockdown cells. Re-expression of IL-8 in PBRM1 knockdown ACHN cells

could significantly decrease cell proliferation/migration and induced cell arrest in the G2/M

phase. These findings indicate that PBRM1 alters cell cycle progression and inhibits prolifer-

ation and migration of ACHN cells through the chemokine/chemokine receptor pathway.

Introduction

Renal cell carcinoma (RCC) is the most common type of cancer in the kidney and accounts for

approximately 3% of all adult malignancies[1]. Among RCCs, clear cell RCC (ccRCC) is the

most common subtype, accounting for approximately 70%–75% of cases[2], and is more likely

to present with advanced T stage, metastatic disease, and higher grade[3]. Alteration in the

von Hippel-Lindau (VHL) gene is the hallmark of ccRCC; however, inactivation of VHL has

not been found to consistently correlate with prognostic features of ccRCC[4]. Recently,

exome sequencing has unveiled additional genes that are mutated in ccRCC, including
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PBRM1, BAP1, and SETD2[5]. As the second most frequently mutated gene after VHL, the role

of PBRM1 in ccRCC tumorigenesis is of great interest.

PBRM1 encodes the BAF180 protein, which is a subunit of the ATP-dependent chromatin

remodeling complex called SWI/SNF (SWItch/Sucrose NonFermentable). Mutations in SWI/

SNF, and the subsequent abnormal function of SWI/SNF complexes, are among the most fre-

quent gene alterations in cancer[6]. In ccRCC, the majority of PBRM1 mutations lead to loss

of the protein[7]. Clinical data indicated that negative expression of PBRM1 is correlated with

advanced tumor stage, low differentiation grade, and worse patient outcome[8,9]. However,

the biological role of PBRM1 and the molecular pathways through which downregulation of

PBRM1 promotes the growth of RCC needs further elucidation.

In this study we investigate the expression and function of PBRM1 in ccRCC cells in vitro

and in vivo, and present data suggesting that PBRM1 may be a regulator of chemokine/chemo-

kine receptor pathways.

Results

Downregulation of PBRM1 in RCC ACHN cells using lentivirus

Western blot analysis was performed to detect PBRM1 expression in the RCC cell lines ACHN

and 786–0. As shown in Fig 1A, the levels of PBRM1 expression were relatively high in the

metastatic RCC cell line ACHN. We knocked down PBRM1 in ACHN RCC cells using three

different PBRM1 RNAi sequences to study the biological functions of PBRM1. ACHN cells

were transfected with virus containing PBRM1 RNAi (KD1,2,3-PBRM1) or empty virus (EV)

and performed RT-PCR and western blotting to detect PBRM1 expression after transfection.

Fig 1. PBRM1 knockdown ACHN cells showed favorable infection efficiency. (A) Expression levels of PBRM1 were relatively high in the metastatic

RCC cell line ACHN compared with the primary RCC cell line, 786–0. (B, C, D) Downregulation of PBRM1 in RCC ACHN cells using lentivirus.

https://doi.org/10.1371/journal.pone.0180862.g001
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As shown in Fig 1B and 1C, the PBRM1 level was significantly lower in ACHN-KD1-PBRM1

compared with ACHN-EV. The infection efficiency was nearly 100% (Fig 1D).

PBRM1 silencing promoted cell proliferation and migration/invasion

ability and significantly increased the S phase population of ACHN cells

The growth curve determined from an MTT assay showed that PBRM1 silencing increased the

proliferation rate compared with transfection with empty virus (P< 0.05, Fig 2A). Wound-

healing and Transwell cell invasion assays showed that the migration and invasion abilities of

ACHN-KD-PBRM1 were stronger than those of ACHN-EV (Fig 2B, 2C and 2D). PBRM1
knockdown ACHN cells exhibited fewer cells in G1 phase and more cells in S phase (Fig 2E).

These results indicate that artificial reduction of PBRM1 expression promotes the proliferation

of RCC cancer cells, suggesting that PBRM1 may play an important role in the progression of

renal cancer.

Downregulation of PBRM1 promoted tumorigenesis in nude mice

To determine whether PBRM1 expression is correlated with tumorigenesis in vivo, we estab-

lished a xenograft tumor model (Fig 3A). After subcutaneous injection of nude mice with

ACHN-KD-PBRM1 and ACHN-EV, tumor volume was measured with a Vernier caliper

twice a week. The volume of the PBRM1-knockdown tumors was larger than that of the mock-

transfected tumors (Fig 3B). Tumors harvested from ACHN-KD-PBRM1 treated mice were

larger than those from the mock-treated mice on day 45, p<0.05 (Fig 3C).

Fig 2. PBRM1 silencing regulates tumorigenic prosperities. (A) Proliferation capability of stable transfected cell lines by MTT assay.

(B, C, D) Wound-healing and Transwell cell invasion assays were used to examine migration and invasion abilities of ACHN-KD-PBRM1

cells. (E) Cell cycle alterations of stable PBRM1 knockdown cells were detected by flow cytometry.

https://doi.org/10.1371/journal.pone.0180862.g002
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Pathway gene chip analysis revealed that PBRM1 knockdown alters the

chemokine/chemokine receptor interaction pathway

To gain insights into the mechanisms of PBRM1 function we compared the transcriptomes of

cells transfected with KD-PBRM1 or EV. Gene expression profiling using the Affymetrix

Fig 3. Downregulation of PBRM1 promoted tumorigenesis in nude mice. (A) A xenograft tumor model was established. (B) The volume of the

PBRM1-knockdown tumors was larger than that of the mock-transfected tumors. (C) Tumors harvested from ACHN-KD-PBRM1 treated mice were larger

than those of the mock-treated mice on day 45, p<0.05.

https://doi.org/10.1371/journal.pone.0180862.g003
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Human Gene 1.0 ST platform identified 872 transcripts that were significantly differentially

expressed based on a p<0.05 threshold (Fig 4A). Functional analysis based on the KEGG path-

way database revealed that PBRM1 knockdown modulated key pathways, in particular cyto-

kine/cytokine receptor interaction, focal adhesion, pathways in cancer, NOD-like receptor

signaling pathway, and MAPK signaling pathway (Fig 4B). Pathway analysis revealed that

Fig 4. Pathway gene chip analysis after PBRM1 inhibition. (A) Gene expression profiling using the Affymetrix Human Gene 1.0 ST platform

identified 872 transcripts that were significantly differentially expressed(S1 File). (B) Pathways analysis revealed that chemokine/chemokine

receptor interaction was the top modulated canonical pathway following PBRM1 knockdown (p<10−12). (C) A gene co-expression network was

generated according to the differentially expressed genes. (D) Western blot analysis confirmed increased protein levels of IL-6ST and CCL2,

whereas the protein levels of IL-8, IL-6, and CXCL2 were decreased.

https://doi.org/10.1371/journal.pone.0180862.g004
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chemokine/chemokine receptor interaction was the top modulated canonical pathway follow-

ing PBRM1 knockdown (p<10−12) (Fig 4B). A gene co-expression network was generated

according to the differentially expressed genes (Fig 4C). Genes that showed significantly

altered expression are shown in Table 1. Based on a combination of statistical criteria and

pathways analysis, we validated the protein expression of several significant pathway-associ-

ated genes and confirmed increased protein levels of interleukin (IL)-6ST and CCL2 and

decreased protein levels of IL-8, IL-6, and CXCL2 after PBRM1 knockdown (Fig 4D).

IL-8 re-expression in KD-PBRM1 cells resulted in decreased

proliferation and migration and cell arrest in G2/M phase

PBRM1 re-expression in KD-PBRM1 cells showed favorable infection efficiency(Fig 5A). The

growth curves determined from MTT assays showed that re-expression of IL-8 decreased the

proliferation rate and migration ability of OE+KD-PBRM1 cells compared with KD-PBRM1

cells (P< 0.05, Fig 5B and 5C). KD-PBRM1 ACHN cells that re-expressed IL-8 exhibited

fewer cells in G1 phase and S phase, and more cells in G2/M phase (Fig 5D). These results

show that the over proliferation state of KD-PBRM1 cells could be reversed by re-expression

of IL-8, suggesting that the chemokine/chemokine receptor pathway might play an important

role in the progression of renal cancer.

Discussion

Clear cell renal cell carcinoma accounts for 70%–80% of all kidney cancers, and is known to

exhibit very frequent inactivation of the von Hippel-Lindau gene (VHL) as a result of either

somatic mutations or epigenetic alterations[10]. In addition to VHL, sequencing studies have

revealed that truncating mutations in PBRM1, which encodes a subunit of the ATP-dependent

chromatin remodeling complex of SWI/SNF, are present in more than 40% of ccRCCs[5].

Other frequently mutated genes in ccRCC are SETD2, TCEB1, BAP1, and KDM5C[11]. It is

Table 1. Gene expression profiling of significantly changed genes.

Gene Symbol Regulation Fold Change

CCL20 down 49.40524

IL8 down 48.246643

CSF2 down 9.922694

CXCL3 down 6.9511065

CXCL1 down 5.9785233

IL6 down 5.6783504

CCL2 down 4.0504875

CXCL5 down 3.9426293

TNF down 3.4657867

CXCL2 down 3.139261

IL11 up 2.1686192

PDGFA up 1.8415861

CLCF1 up 1.8080981

EGFR up 1.7747135

IL1R2 down 1.7700913

IL20RB down 1.7270195

CXCR4 down 1.6770942

IL6ST up 1.6687354

https://doi.org/10.1371/journal.pone.0180862.t001
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interesting that PBRM1, BAP1, and SETD2 are all located at chromosome 3p, close to the 3p25

locus, indicating that these tumor suppressors might be functionally linked. As PBRM1 is the

second most frequently mutated gene after VHL, its interaction with other mutated genes and

its role in ccRCC tumorigenesis and progression are areas of great interest.

In the current study we examined expression of the PBRM1 gene in RCC cell lines and

demonstrated that lentivirus-mediated PBRM1 knockdown in ACHN cells induces cell prolif-

eration, migration, and invasion. Silencing of PBRM1 also resulted in an increase in the num-

ber of cells in S phase of the cell cycle. In a mouse model of renal cell carcinoma, PBRM1

influenced the growth of tumors in nude mice subcutaneously injected with ACHN cells.

Finally, pathway gene chip analysis revealed that PBRM1 knockdown predominantly alters the

cytokine/cytokine receptor interaction pathway. Increased protein levels of IL-6ST, and

decreased levels of IL-8, IL-6, and CXCL2, were observed following PBRM1 knockdown.

Finally, we showed that the overproliferation state of KD-PBRM1 cells could be reversed by

re-expression of IL-8. Above all, we identified a critical role for the chemokine/chemokine

Fig 5. Overproliferation state of KD-PBRM1 cells could be reversed by re-expression of IL-8. PBRM1 re-expression in KD-PBRM1 cells showed

favorable infection efficiency. (B) Re-expression of IL-8 decreased the proliferation rate. (C) Re-expression of IL-8 decreased the migration ability. (D) Re-

expressed IL-8 cell caused cell arrest in G2/M phase.

https://doi.org/10.1371/journal.pone.0180862.g005
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receptor pathway in PBRM1-induced growth inhibition in RCC. This result enhances our

understanding of PBRM1-induced tumorigenesis.

Previous in vitro and in vivo studies revealed other biological functions of PBRM1. PBRM1
deletion was shown to cause a deficiency in mice leading to embryonic lethality[12], and may

also enhance Th2 differentiation and increase IL-10 expression[13]. Other studies reported

that PBRM1 is required for cohesion and prevention of genomic instability[14], and is impor-

tant for DNA double-strand break–induced transcriptional silencing and promotes repair of a

subset of DNA damage[15]. PBRM1 was shown to be a critical transcriptional regulator of p21

during tumorigenesis in breast cancer[16], and also regulates p53 function by influencing p53

transcriptional activity and is required for p53-induced replicative senescence[17]. A recent

study indicated that PBRM1 knockdown leads to dysregulation of chromosomal instability

and cellular proliferation, indicating that the loss of PBRM1 in RCC may give rise to a chromo-

somal instability/spindle checkpoint expression phenotype. Notably, Chowdhury et al. re-

expressed PBRM1 in the Caki2 RCC cell line and observed upregulation of chemokine recep-

tors such as CCL20 (0.46-fold) and CXCL5 (0.61-fold). Clinical data indicate that PBRM1

mutation can also lead to alterations in chemotaxis[18].

How PBRM1 influences the expression of chemokines and their receptors is of great inter-

est; however, to date only indirect linkages have been found. A study of Th2 cells suggested

that PBRM1 might function as a repressor of IL-10 by binding directly to regulatory elements

in the IL10 locus. In the absence of PBRM1, enhanced Th2 differentiation and IL-10 expres-

sion was observed, and BAF recruitment and histone acetylation at the IL10 locus was

increased13. IL-10 may inhibit chemokine expression and neutrophil accumulation through

mRNA destabilization and NF-kappaB inhibition, in addition to polymorphonuclear leuko-

cyte (PMN)–derived chemokine expression[19]. In another study, Jeong et al. found that the

SWI/SNF chromatin-remodeling complex modulates peripheral T-cell activation and prolifer-

ation by controlling activator protein-1 (AP-1) expression[20], and AP-1 may modulate the

expression of certain chemokines such as IL-8[21] and CXCL2[22]. Further investigations

should be performed to elucidate the association between PBRM1 and chemokine pathways.

Chemokines are small secreted proteins that function in leukocyte recruitment to inflam-

matory sites and secondary lymphoid organs[23]. They have been classified into four main

subfamilies: CXC, CC, CX3C, and XC. All of these proteins exert their biological effects by

interacting with G protein-linked transmembrane receptors called chemokine receptors[24].

Research has shown that they have direct impacts on the biology of RCC by promoting angio-

genesis and metastasis or by activating the hypoxia-inducible factor (HIF)-α pathway. CXC

chemokines that contain the ELR motif (ELR-CXC chemokines) were found to be potent

angiogenic factors through CXCR2[25], whereas members that lack the ELR motif inhibit

angiogenesis through CXCR3[26]. CXCR2 and CXCR3 and their ligands are highly expressed

in RCC tumors[27,28] and may be associated with a favorable prognosis of RCC[29]. CXCR4,

another chemokine receptor, functions in a major mechanism for RCC metastasis via interac-

tion with its ligand CXCL12[30]. Other studies showed that CXCR4 is associated with the HIF

pathway in RCC. Staller and colleagues found that the von Hippel-Lindau tumor suppressor

protein pVHL negatively regulates CXCR4 expression through its capacity to target HIF for

degradation under normoxic conditions. ccRCC patients with VHL gene mutations revealed

an association between strong CXCR4 expression and poor tumor-specific survival[31]. There

is a lack of articles discussing CCL2 and CXCL2 in the context of tumorigenesis of RCC; how-

ever, these chemokines were found to be associated with tumor growth and progression of

melanoma and breast cancer[32,33]. Chemokines may also induce resistance to targeted ther-

apy. Huang and colleagues observed an increase in the secretion of IL-8 in sunitinib-resistant

tumors, and coadministration of IL-8 neutralizing antibodies resulted in resensitization to
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sunitinib[34]. Understanding the mechanisms of chemokine-induced tumorigenesis may pro-

vide novel insights into RCC, which may in turn lead to improved therapies.

Our experimental study presented some limitations. First, experiments were mainly per-

formed using the ACHN cell line, and more cell lines should be used in further investigations

to establish a comprehensive conclusion. Second, we did not demonstrate how PBRM1 acts on

the chemokine/chemokine receptor pathway. Further research is needed to provide insights

into the mechanism underlying the tumor-suppressive action of PBRM1 and the chemokine/

chemokine receptor pathways.

Conclusion

PBRM1 may alter cell cycle progression and inhibit proliferation and invasion of ACHN cells

through the chemokine/chemokine receptor pathway. Understanding the contribution of

PBRM1 dysregulation and its associated pathways to clinical disease progression and outcome

are important future areas of renal cancer research.

Methods

All experimental protocols were approved by the Review Committee for the Use of Human or

Animal Subjects of Fudan University and the experimental methods were performed in accor-

dance with relevant guidelines and regulations.

Cell culture and lentivirus transduction

Human RCC ACHN cells were cultured in Eagle’s minimum essential medium (MEM) sup-

plemented with 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) at 37˚C under 5%

CO2. To construct the KD-PBRM1 vector, the coding sequence of the PBRM1 RNAi was

inserted into pGC-LV-GFP vector (Genechem, Shanghai). Lentiviral particles were produced

in HEK293T cells by co-transfection of KD-PBRM1 or mock vector with psPAX2 and pMD2.

G packaging vectors. The ACHN cells were infected at a multiplicity of infection (MOI) of 5

with either lentivirus containing the PBRM1 RNAi (KD-PBRM1) or empty virus (EV) with

6 μg/mL of polybrene according to the manufacturer’s instructions. Western blot analysis was

performed to examine protein expression in ACHN cells infected with KD-PBRM1. The fol-

lowing primers were used for RT-PCR: PBRM1 sense 5´-AGCTGCTGCACGCTATGAAG-3´,

PBRM1 antisense 5´-CCTTGGTTATTCCGACAACTCC-3´, GAPDH sense 5´- TGACTTCA
ACAGCGACACCCA-3´, and GAPDH antisense 5´- CACCCTGTTGCTGTAGCCAAA-3 .́ The

KD-PBRM1 cells were infected with lentivirus LVKL7166-3 containing CXCL8 overexpres-

sion vector (KD+OE-PBRM1 cells) and IL-8 expression was examined by western blotting.

Cell proliferation assay

To examine the effect of PBRM1 on cell growth, ACHN cells were infected with lentivirus

containing either the PBRM1 gene (KD-PBRM1) or empty virus (EV). The infected cells

were seeded into 96-well plates and incubated for 1 to 5 days. Subsequently, 20 μL of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma) solution (5 mg/mL,

Sigma) was added to each well, and the plates were further incubated for 3 h. Crystals were dis-

solved in 0.04 M HCl in isopropanol and the absorbance at 490 nm was measured with a

microplate reader (Bio Rad, Hercules, CA, USA). The experiments were independently

repeated three times.
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Western blot analysis

Cell extracts were obtained using lysis buffer containing 5 mmol/L EDTA, 1 mmol/L phenyl-

methylsulfonyl fluoride, 1 mmol/L dithiothreitol, 0.1 mmol/L leupeptin, 75 μmol/L pepstatin

A, 150 mmol/L NaCl, and 0.1% Triton X-100. The lysate was centrifuged for 30 min (15,000

rpm, 4˚C) and the supernatant was collected for western blot analysis. Samples (20 μg) were

electroblotted onto nitrocellulose membranes. Antibodies against human PBRM1, IL-6,

IL6ST, IL-8, CXCL2, CCL2, and GAPDH (Abcam) were used as the primary antibodies and

peroxidase-conjugated goat anti-rabbit or anti-mouse antibodies (Santa Cruz Biotechnology)

were used as the secondary antibodies. Protein bands were visualized using the SuperSignal

West Pico Chemiluminescent Substrate (Pierce).

Cell cycle analysis

Cells grown in regular growth media or serum-free media for 36 h were collected, fixed in

methanol, and stained with PBS containing 10 μg/mL propidium iodide and 0.5 mg/mL

RNase A for 15 min at 37˚C. The DNA content of the labeled cells was measured using the

FACSCalibur flow cytometry system (BD Biosciences). Each experiment was performed in

triplicate.

Migration and invasion assays

Qualitative assessment of cell migration was conducted by the wound-healing assay in which a

monolayer of cells was scratched with a 200-μL pipette tip and the wound was monitored for

closure. Transwell cell invasion was quantified by seeding cells (8×104 cells) in serum-free

medium onto the top layer of 24-well BD BioCoat 8.0-mm PET membrane inserts (BD Biosci-

ences). After 48 h, migrating or invading cells were washed with PBS, fixed with 10% formalin,

stained with 0.5% crystal violet, and counted using bright-field microscopy. All conditions

were conducted with three replicates.

In vivo tumorigenesis study

All experimental protocols were approved by the Review Committee for the Use of Human or

Animal Subjects of Fudan University and experimental methods were performed in accor-

dance with relevant guidelines and regulations. Housing and husbandry was according to the

standard guideline and cleaning was performed every 3 days. If the drugs or tumors induced

significant illness, euthanasia was performed by 2% nembutal injection. For power analysis cal-

culation, the principle is to reduce the number of mice required without influencing the statis-

tical significance. For this research we needed at least six mice for each group. To account for

unexpected death we increased this number to 10. ACHN-KD-PBRM1 and ACHN-EV cells

were collected and injected subcutaneously into the right and left flanks (5 × 106 cells/site) of

nude mice (10 mice/group). To monitor tumor growth, the tumor was measured using Ver-

nier calipers and volume was calculated according to the formula volume = W2 × L × 0.5

(where W and L represent the largest and second largest tumor diameters [cm]) and then

plotted. Mice were humanely sacrificed on day 45, and the tumors were weighed and

photographed.

Microarray processing and analysis

Total RNA was isolated from ACHN-KD-PBRM1 and ACHN-EV cells. RNA samples were

analyzed by microarray expression profiling using the Affymetrix Human Gene 1.0 ST plat-

form according to the manufacturer’s instructions. A total of 2.5 mg of fragmented and labeled
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cDNA was generated using the Affymetrix GeneChip WT Terminal Labeling and Controls Kit

and hybridized to Human Gene 1.0 ST arrays according to the manufacturer’s instructions

(Affymetrix). Arrays were washed, stained, and processed using Affymetrix GeneChip Fluidics

Station 450 systems, and then imaged using Affymetrix GeneChip Scanner 3000 7G for subse-

quent generation of raw data (�CEL files). Genes that were significantly differentially expressed

between ACHN-KD-PBRM1 and ACHN-EV were selected on the basis of P value<0.05.

Functional analysis based on the KEGG pathway database was performed.

Statistical analysis

Experiments were repeated three times and the results were expressed as the mean ± standard

deviation (SD). Student’s t-test or ANOVA followed by a post hoc test was used to compare

the values of the tumor samples with those of the control samples. A value of P<0.05 was con-

sidered to be statistically significant.

The study protocol was approved by the Institutional Review Board of our hospital. All

methods were carried out in accordance with approved guidelines.

Supporting information

S1 File. Gene expression profiling and pathway analysis. Link: https://figshare.com/s/

c3310e91026bb2b15e4a.

(XLSX)
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