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Stimulation of antigen-specifi c CD4 T cells re-
quires the presentation of immunogenic pep-
tide epitopes in association with MHC class II 
molecules on the surface of professional APCs. 
The assembly and export of these class II–pep-
tide complexes is a regulated multistep process, 
culminating in the exchange of CLIP for pep-
tides derived from exogenous or endogenous 
sources. The class II–like protein DM plays a 
critical role in facilitating the endosomal ex-
change reaction. Because DM is a vital compo-
nent in the peptide exchange reaction, a 
signifi cant eff ort has been put forth to under-
stand the nature of the interaction between 
DM and class II and the consequences of this 
association upon peptide exchange. Initial stud-
ies indicated that DM does not bind peptides 
itself, probably due to a closed peptide binding 
groove (1, 2), but rather associates with class II 
molecules and promotes the release of peptides, 

such as CLIP, from the class II binding groove 
(3–5). DM associates with the class II molecule 
along the lateral face that accommodates the 
amino terminus of the antigenic peptide (6, 7). 
This interaction between class II and DM can 
prevent inactivation of the class II molecules 
(8) and sustains their capacity to bind peptides 
at a low pH (9). Further experiments demon-
strated that DM enhances peptide dissociation 
from class II molecules in a pH-dependent 
manner (3, 10, 11). Although the physical as-
sociation of DM with class II molecules is well 
documented, the underlying mechanisms that 
govern this interaction are still unknown, as are 
the factors infl uencing the subsequent peptide 
exchange reaction.

“DM editing” refers to the process by 
which the peptide repertoire presented by 
MHC class II molecules is modifi ed or “ed-
ited” by the DM protein. This biological activ-
ity of DM has been revealed by several 
independent assays. These assays include  elution 
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and sequencing of peptides bound to class II molecules 
 isolated from APCs that do or do not express DM (12, 13) 
through functional studies of the peptide repertoire presented 
by class II using peptide-specifi c T cells (14–19), the analysis 
of peptides that bind to class II in vitro in the presence or 
 absence of DM (20), or class II–peptide dissociation assays in 
vitro showing diff erential susceptibility of alternative com-
plexes to DM-promoted dissociation (10, 11, 21–24). That 
DM editing has important immunological implications was 
made clear by antigen presentation studies showing that pre-
sentation of immunodominant epitopes (those class II–pep-
tide complexes that elicit a robust CD4 T cell response) is 
enhanced by DM whereas presentation of cryptic peptides 
(those that do not elicit a response when they are contained 
in an intact complex protein) is antagonized by DM expres-
sion within APCs (25). Collectively, these studies have all 
suggested that DM editing is selective and have stimulated 
considerable research toward identifying the characteristics of 
the class II–peptide complex that can infl uence the suscepti-
bility to DM editing. Structural features, including peptide 
length (26), destabilizing amino acid residues (20), the rigid-
ity of the P1 pocket of the class II molecule (27), T cell con-
tact residues (23), and the peptide main chain hydrogen bond 
network (24), have all been shown to infl uence DM editing. 
Although the potential complexity of these overlapping in-
teractions suggests that algorithms to predict the eff ect of DM 
may be beyond experimental reach, early studies (10, 13, 21) 
suggested that the most salient feature that predicted suscep-
tibility to DM editing was the kinetic stability of the class II–
peptide complex, where stable peptides were resistant and 
unstable peptides were susceptible to removal by DM. Sub-
sequent work by Weber et al. (11) suggested that DM was 
acting as a catalyst for all complexes by accelerating dissocia-
tion of all complexes tested to a constant degree, termed the 
J factor. This direct relationship between kinetic stability and 
DM activity was challenged, however, in an extensive analy-
sis of nearly 40 independent class II–peptide complexes, rep-
resenting a diverse range of kinetic stabilities (22). These 
studies identifi ed a wide range in susceptibility to DM edit-
ing, even for class II–peptide complexes of similar off -rates. 
Furthermore, in analyzing all of their data, these authors 
found that the modest trend that was observed showed para-
doxically that the least stable class II–peptide complexes were 
the most resistant to negative editing, unlike earlier fi ndings 
by other groups (10, 13, 21).

The contradictory conclusions drawn from biochemical 
studies performed thus far made it seemingly diffi  cult to pre-
dict qualitative and quantitative relationships between class 
II–peptide complexes and DM editing. Moreover, within 
APCs, the complexities of the interaction between DM and 
class II molecules might additionally confound predictions 
derived from in vitro studies with purifi ed class II–peptide 
complexes. DM may participate at multiple stages during the 
transit time of class II through the endosomal loading com-
partment. Also, DM may interact both during formation and 
subsequent dissociation of the peptide from the class II com-

plex, and additionally, this interaction may be restricted tem-
porally or spatially. Despite the diffi  culty in deriving a clear 
relationship between the kinetic stability of class II–peptide 
complexes and DM editing from currently published in vitro 
studies using purifi ed class II and DM proteins, our labora-
tory recently uncovered a striking relationship between the 
kinetic stability of class II–peptide complexes and immuno-
dominance of CD4 T cell responses (28). Our data demon-
strated that a high kinetic stability conferred immunodominance, 
while conversely, low stability interactions with class II mol-
ecules led to crypticity. These recent results, together with 
our previous investigations discussed above showing that im-
munodominant and cryptic epitopes were readily distinguish-
able based on their susceptibility to DM editing within APCs 
in vitro (29), suggested the possibility that highly stable class 
II–peptide complexes are immunodominant due to the activ-
ity of DM within the endosomal loading compartments 
of APCs.

In the studies described here, we sought to rigorously 
evaluate whether the kinetic stability of the class II–peptide 
complex controlled DM editing in the context of APCs dur-
ing processing and presentation of exogenous antigen. To 
explore the activities of DM upon peptide presentation on 
class II molecules within APCs, we examined a diverse set of 
peptides and encoded them or their variants within a protein 
vector, thus allowing us to manipulate their kinetic stability 
with class II. These recombinant proteins were then used in 
antigen presentation experiments to sensitize APCs that did 
or did not express DM. The effi  ciency of antigen presenta-
tion was monitored via stimulation of antigen-specifi c T cell 
hybridomas. Our experiments demonstrate that the intrinsic 
kinetic stability of class II–peptide complexes indeed corre-
lates with their presentation in the presence of DM. The 
contribution of kinetic stability to survival and export of the 
class II–peptide complex occurs independently of processing 
requirements or sequence origin. Most importantly, we dem-
onstrate that the magnitude of DM enhancement or antago-
nism can be rationally modulated through conservative 
changes in the peptide, leading to the desired changes in the 
kinetic stability of class II–peptide complexes.

RESULTS

A peptide’s susceptibility to DM editing in APCs depends 

upon its spontaneous kinetic stability with MHC 

class II molecules

In our initial study on the consequence of DM expression 
upon the display of class II–peptide complexes, we found a 
consistent correlation between DM’s eff ect on presentation 
of epitopes from the model antigens hen egg lysozyme (HEL) 
and sperm whale myoglobin (SWM) and the immunodomi-
nance and crypticity in vivo (29). The effi  ciency of antigen 
presentation and surface display of class II–peptide complexes 
was estimated through comparative dose response curves 
 using DM+ or DM− APCs and assessment of activation of 
epitope-specifi c T cell hybridomas via IL-2 production. 
 Presentation of the cryptic epitopes HEL [11–25] and HEL 
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[20–35] was antagonized by DM expression, whereas presen-
tation of the immunodominant HEL [102–116] and immuno-
dominant SWM [102–118] epitopes was enhanced by DM 
expression. We have since expanded on these earlier pub-
lished fi ndings and examined the eff ects of DM expression 
in APCs on the effi  ciency of presentation of a larger set of 
 independent, structurally unrelated epitopes. Table I shows 
a summary of these results demonstrating that presentation of 
the immunodominant epitopes HEL [102–116], OVA [273–
288], SWM [102–118], and LACK [156–173] derived from 
exogenous native protein was enhanced by DM expression in 
APCs. When measured for their spontaneous off -rate from 
class II molecules using purifi ed I-Ad molecules (30), we 
found that each of these complexes also displayed exceed-
ingly long half-lives (t1/2 > 150 h) at endosomal pH. Con-
versely, the presentation of the cryptic epitopes HEL [11–25], 
HEL [20–35], and OVA [327–339] from native exogenous 
antigen, as well as the endogenous H-2Ld [69–81], was inhib-
ited by DM expression in APCs. Measurements of the kinetic 
stability of these DM-antagonized epitopes revealed ex-
tremely short half-lives of association with I-Ad (t1/2 < 10 h). 
These results suggested that the half-life of class II–peptide 
complexes is a critical parameter that dictates the eff ect of 
DM-regulated class II–restricted antigen presentation.

The effi ciency of presentation by DM-expressing APCs can 

be up- or down-modulated by altering the kinetic stability 

of class II–peptide complexes

To more rigorously examine the linkage between kinetic sta-
bility and DM editing in APCs, we selected the MalE protein 
vector to encode peptides that could be used for presentation 
by APCs that either did or did not express DM. The MalE 
protein vector was previously demonstrated to accommodate 
long peptide inserts without perturbation of its structure and 
could maintain the pattern of immunodominance or cryptic-
ity of the peptide that was previously observed within the 
native protein (28, 31). As a protein antigen, epitopes en-
coded within MalE will require endosomal processing to be 
liberated for presentation. Importantly, potential diff erences 

in context between independent peptides, such as proteolysis 
and competing peptides within the antigen, will be mini-
mized, as all peptides are placed within the same insertion site 
of the same protein. Thus, the MalE system unifi es the deliv-
ery of the encoded peptide epitopes that are being evaluated, 
making it an effi  cient tool for identifying the infl uence that 
kinetic stability has upon presentation.

Several independent peptides, including LACK [156–
173], HA [126–138], and HEL [11–25], were inserted into 
MalE at amino acid position 133. LACK [156–173] is the 
immunodominant peptide derived from the parasite Leishma-
nia major. This peptide, which induces a strong CD4 response 
in infected mice (32, 33), displays a correspondingly high ki-
netic stability in association with I-Ad (t1/2 = 170 h; reference 
28). HA [126–138] is derived from the infl uenza hemagglu-
tinin molecule, and the I-Ad–HA [126–138] complex has 
been crystallized (34). HA [126–138] displays moderate sta-
bility in association with I-Ad (t 1/2 = 26 h), and several ki-
netic stability variants of HA [126–138] have already been 
characterized (28, 35, 36). HEL [11–25] is a cryptic epitope 
derived from HEL, which has an unstable interaction with 
class II molecules (t 1/2 = 6 h), the presentation of which has 
been demonstrated to be antagonized by DM expression 
within APCs when it is contained in the native HEL protein 
(29). The effi  ciency of antigen presentation and surface dis-
play of class II–peptide complexes was estimated through 
comparative dose response curves using DM+ or DM− APCs, 
peptide–MalE constructs, and assessment of activation of the 
epitope-specifi c T cell hybridomas via IL-2 production. 
These studies revealed that MHC class II–restricted presenta-
tion of epitopes that displayed a high intrinsic stability with 
I-Ad was enhanced by DM expression within APCs, whereas 
the presentation of epitopes that displayed a low intrinsic sta-
bility was antagonized by DM expression within APCs.  Using 
LACK-specifi c T cells, we found a dramatic enhancement 
in LACK [156–173] presentation by APCs expressing DM 
compared with DM− APCs (Fig. 1 A). DM expression facili-
tated nearly a 10-fold shift in the effi  ciency of antigen presen-
tation by APCs. Conversely, presentation of HEL [11–25] 

Table I. Presentation of immunodominant and cryptic epitopes by APCs expressing DM

Epitope t1/2 (h) Response in vivo Presentation by APCs 

expressing DM

H-2Ld [69-81] 0.2 cryptic antagonized

OVA [327-339] 0.3 cryptic antagonized

HEL [20-35] 4 cryptic antagonized

HEL [11-25] 6 cryptic antagonized

HEL [102-116] ND immunodominant enhanced

OVA [273-288] 160 immunodominant enhanced

LACK [156-173] 170 immunodominant enhanced

SWM [102-118] 260 immunodominant enhanced

The patterns of presentation of protein antigens encoding the listed epitopes was determined by comparative IL-2 production of antigen-specifi c T cells stimulated by APCs 

expressing DM and graded doses of native protein antigen. The half-life was calculated from the exponential equation fi tted to the fl uorescence decay curve as a function of 

the incubation time and described as the time required to dissociate 50% of the FITC peptide initially bound to sI-Ad. Data are representative of at least three independent 

experiments.
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was antagonized in APCs expressing DM compared with 
DM− APCs. HEL-specifi c T cells required nearly 10-fold 
more protein to stimulate equivalent production of IL-2 on 
APCs that were expressing DM (Fig. 1 B). Table II summa-
rizes the eff ects of DM upon presentation seen with the WT 
LACK and HEL peptides and their respective variants in-
serted within MalE. We further compared the presentation of 
HEL and LACK peptides when encoded within native pro-
tein or within MalE to determine whether the protein con-
text infl uenced presentation (Fig. S1, available at http://www.
jem.org/cgi/content/full/jem.20060058/DC1). These data 
suggested that the pattern of DM-mediated presentation of a 
class II–peptide complex appeared to be independent of the 
protein context that the peptide epitope was derived. Thus, 

competing peptides liberated during processing of the protein 
antigen do not appear to play a signifi cant role in regulating 
the eff ect of DM upon antigen presentation.

If kinetic stability infl uences DM activity, we reasoned 
that decreasing the kinetic stability of the highly stable LACK 
[156–173] epitope might lead to a corresponding change in 
the eff ect of DM upon antigen presentation. Similarly, we 
hypothesized that increasing the kinetic stability of the HEL 
[11–25] epitope would lead to a corresponding increase in 
the effi  ciency of presentation by APCs expressing DM. To 
test these predictions, two kinetic stability variants of LACK 
[156–173] and two kinetic stability variants of HEL [11–25] 
were selected for further investigation. The P1 mutant E163T 
and P4 mutant I166A of the LACK peptide both display sig-
nifi cantly reduced kinetic stability (t1/2 = 14 h and t1/2 = 2 h, 
respectively) in association with I-Ad compared with WT 
LACK [156–173] (t1/2 = 170 h). When these antigens were 
incorporated into MalE and processed and presented by DM-
expressing APCs, we found that reducing the kinetic stability 
of LACK [156–173] to under 15 h completely eliminated the 
DM enhancement previously observed for the WT LACK 
[156–173] epitope (Fig. 1, C and E, and Table II). Although 
single amino acid substitutions were suffi  cient to reduce the 
kinetic stability of LACK [156–173], multiple substitutions 
were found to be necessary to improve the relatively poor fi t 
of the HEL [11–25] peptide in association with I-Ad. Increas-
ing the kinetic stability of HEL [11–25]–I-Ad to 11 h with P1 
and P9 substitutions, R14Q and G22S, respectively, revealed 
no statistically signifi cant change in DM-mediated presenta-
tion (Fig. 1 F), although a summary of all experiments with 
MalE–R14Q, G22S (Table II) indicates a small attenuation 
in DM-mediated antagonism. However, an additional amino 
acid substitution (N19A), which increased the stability of 
R14Q, G22S by a factor of 3 (t 1/2 = 33 h), led to a striking 
increase in presentation of MalE–HEL RQNAGS by DM-
expressing APCs as compared with APCs lacking DM (Fig. 
1 D and Table II). Pulsing APCs with peptide indicated no 
signifi cant diff erence in the presentation by the two sets of 
APCs (Fig. 1, G and H). We further examined the stimulation 
of two additional independently derived HEL [11–25]–
specifi c T cell hybridomas and one additional LACK 
[156–173]–specifi c T cell hybridoma to determine whether 
diff erential T cell reactivity may have infl uenced our esti-
mates of DM editing (Fig. S2, available at http://www.jem.
org/cgi/content/full/jem.20060058/DC1). Our data dem-
onstrate that these additional T cells identify a similar degree 
of DM-mediated enhancement or antagonism in presenta-
tion compared with our original T cells, and thus off er a 
consistent measure of class II–peptide complex presentation.

The experiments described above indicated that kinetic 
stability of class II–peptide complexes could profoundly alter 
the qualitative infl uence of DM expression upon antigen 
 presentation. We sought to further test this relationship by 
examining a class II–peptide epitope of moderate stability. 
Presentation of WT HA [126–138] inserted in MalE was mod-
estly antagonized by the presence of DM in APCs (Fig. 2 A), 

Figure 1. Modulating the kinetic stability correspondingly modifi es 

presentation by DM-expressing APCs. WT and kinetic stability variants 

of LACK [156–173] and HEL [11–25] were encoded within MalE and tested 

for their ability to sensitize APCs that did (fi lled symbols) or did not (open 

symbols) express DM for stimulation of LMR 7.5 hybridoma cells (left 

panels) or HEL-25 hybridoma cells (right panels). IL-2 production by the 

antigen-specifi c hybridoma cells in response to the indicated dose of the 

antigen indicated in each panel was assayed as described in  Materials 

and methods. Data are representative of at least three  independent 

experiments.
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whereas peptide presentation was equivalent (Fig. 2 B). 
 Substitutions in the peptide that increased the kinetic stability 
of this class II–peptide complex enhanced the positive eff ects 
of DM editing upon presentation (Fig. 2, D, F, and H), 
whereas substitutions that decreased kinetic stability of the 
epitope magnifi ed the negative eff ects of DM editing upon 
presentation (Fig. 2, C, E, and G). For example, Fig. 2 D 
shows that the HA [126–138]–specifi c T cells required only 
90 nM MalE–T128M protein for detectable IL-2 production 
when processed by APCs expressing DM, as compared with 
650 nM by APCs lacking DM, representing a sevenfold en-
hancement in the effi  ciency of antigen presentation. Collec-
tively, these results with three independent MHC class 
II–peptide epitopes demonstrate that the eff ect of DM activ-
ity upon the effi  ciency of presentation by APCs is determined 
by the spontaneous kinetic stability of the peptide epitope in 
association with class II molecules.

The relationship between the half-life of class II–peptide 

complexes and DM editing in APCs

One of the questions that arises from this type of study is how 
strict the correlation is between kinetic stability and DM ed-
iting and the accuracy with which this correlation can predict 
the eff ect of DM on presentation of new class II–peptide 
complexes. To address this question, data from T cell assays 
involving many diff erent class II–peptide complexes and in-
dependent replicate T cell assays were consolidated, and we 
calculated the impact of DM editing on presentation from 
the quantity of protein that was required to stimulate com-
parative IL-2 production from T cells using APCs that did or 
did not express DM (Table II). As an example, presentation 
of the high stability HA variant T128M (t1/2 = 165 h) was 
6.2-fold enhanced by DM expression after averaging four in-
dependent experiments. DM’s eff ect upon presentation of 
the WT and kinetic stability variants of HA [126–138], 

LACK [156–173], and HEL [11–25], as well as OVA [273–
288], SWM [102–118], and MalE [69–84], was arranged 
 according to the log (t1/2 [h]) versus the log (DM eff ect).

This analysis, shown in Fig. 3, demonstrated that intrinsic 
stability was a good predictor of presentation by APCs that 
express DM, as the correlation coeffi  cient was strong (r = 
0.921). The slope of the best-fi t line through the data (slope = 
0.849) predicts that a 10-fold increase in kinetic stability of 
a class II–peptide complex corresponds to a 7.1-fold increase 
in presentation of that complex by DM-expressing APCs. 
The triple substitution HEL [11–25] variant was considered 
an outlier in these analyses; however, the slope of the best-fi t 
line was not signifi cantly diff erent when this complex was 
included (slope = 0.864). Thus, although there are occa-
sional class II–peptide complexes that appear to be unusually 
sensitive to either the positive eff ects of DM editing (Fig. 1 
D) or its negative eff ects, the consistent trend demonstrates 
that modifying the kinetic stability of class II–peptide com-
plexes reliably infl uences the overall susceptibility to DM 
 editing in a qualitative and quantitative manner.

The effi ciency of antigen presentation by APCs expressing 

DM is directly related to immunodominance in vivo

Once we established that the kinetic stability of class II–pep-
tide complexes determines the consequences of DM activity 
within APCs, we analyzed our previously published data on 
immunodominance (28) and compared these data to the 
studies described here. These analyses revealed a striking 
agreement between the effi  ciency of antigen presentation by 
DM-expressing APCs in vitro and the in vivo patterns of im-
munodominance (Fig. 4). Within the set of variants for each 
individual peptide, the presentation of immunodominant 
high stability epitopes on DM+ APCs was signifi cantly more 
effi  cient than presentation of cryptic low stability epitopes. 
We calculated the amount of MalE protein necessary for 

Table II. Presentation of kinetic stability variants of LACK [156-173], HEL [11-25], and HA [126-138]

Epitope inserted in MalE t1/2 (h) DM enhancement DM antagonism n

I166A 2 1.8 ± 0.5 7

E163T 14 2.1 ± 0.8 8

LACK WT 170 9.9 ± 2.5 8

HEL WT 4 9.7 ± 3.8 3

R14Q, G22S 11 6.6 ± 1.3 5

R14Q, N19A, G22S 33 29.7 ± 7.6 4

V131A 0.9 14 ± 1.6 3

T128G 1   4 ± 1.8 2

T128V, S136T 9 1.8 ± 0.7 2

HA WT 26 1.2 ± 0.4 5

T128Q 63 3.5 ± 0.7 3

T128V 85     3 ± 0.8 4

T128M 165 6.2 ± 1.4 4

MalE protein, which encoded either WT or kinetic stability variants of the indicated antigen, was tested for its ability to sensitize APCs that did or did not express DM for 

stimulation of antigen-specifi c T cells. The fold DM effect was determined by comparing the amount of protein suffi cient for equivalent IL-2 production and averaged over 

the indicated number of experiments ± SD. The half-life was calculated from the exponential equation fi t to the fl uorescence decay curve as a function of the incubation 

time and described as the time required to dissociate the 50% of the FITC peptide initially bound to sI-Ad.
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 detectable IL-2 production on DM-expressing APCs, arranging 
the epitopes according to their kinetic stability in association 
with I-Ad, and plotted this versus the relative magnitude of 
the in vivo response to the peptide variant when it was en-
coded in the complex antigen MalE. Fig. 4 A shows that the 
immunogenic variants of HA (T128M, T128V, and T128Q) 
were up to 10-fold more effi  cient at sensitizing APCs for 
recognition in vitro by DM+ APCs as compared with cryptic 
variants (T128G, V131A and T128V, S136T) and WT HA 
[126–138]. A similar relationship was uncovered comparing 
presentation of immunogenic and nonimmunogenic variants 
of LACK [156–173] and HEL [11–25] (Fig. 4, B and C).

Finally, we investigated the presentation of several MalE-
encoded kinetic stability variants of HA [126–138] by splenic 
APCs to determine whether freshly isolated, naturally oc-

curring DM+ APCs would display the same hierarchy of 
presentation as observed with transfected fi broblasts. Fibro-
blasts transfected with DM may not fully reconstitute all 
physiological loading compartments or the stoichiometric 
relationship between class II and DM within native APCs. 
HA [126–138]–specifi c T cell hybridoma cells were incu-
bated with splenic APCs and graded doses of MalE- encoded 
protein antigen, and IL-2 production by the T cells was 
measured by CTLL proliferation (Fig. 5). These experi-
ments revealed that the high kinetic stability variants of HA 
[126–138] (T128V: t1/2 = 86 h; T128Q: t1/2 = 65 h) were 
signifi cantly more  effi  cient at sensitizing the APCs for recog-
nition by the T cells than WT HA [126–138] (t1/2 = 26 h; 
Fig. 5). Similarly, the lower kinetic stability variants T128G 
and V131A were unable to sensitize splenic APCs for T cell 
recognition at even the highest dose of protein used (Fig. 5). 
The same pattern was observed with bone marrow– derived 
dendritic cells (not depicted). These data suggest that the hi-
erarchy of presentation of epitopes by APCs expressing DM 
correlates with the kinetic stability of class II–peptide com-
plexes, which furthermore is refl ective of the immunodomi-
nance of these complexes.

DISCUSSION

These experiments were initiated to determine whether it is 
possible to modulate the qualitative and quantitative eff ects of 
DM editing in APCs by altering the kinetic stability of the 

Figure 2. The kinetic stability of HA [126–138] with I-Ad determines 

the pattern of presentation by APCs that express DM. WT and kinetic 

stability variants of HA [126–138] cloned into MalE and indicated in each 

panel were tested for their ability to sensitize APCs that did (fi lled circles) 

or did not (open circles) express DM for stimulation of TS2 hybridoma 

cells. IL-2 production in response to the indicated dose of protein or HA 

[126–138] peptide was assayed as described in Materials and methods. 

Data are representative of at least two independent experiments.

Figure 3. Kinetic stability predicts the activity of DM. The fold 

enhancement or antagonism of presentation of the indicated class II–

peptide complexes was quantifi ed across experiments by comparing the 

amount of protein necessary for detectable IL-2 production by specifi c 

T cell hybridomas on APCs that did or did not express DM. The log (DM 

effect) was then plotted against the log (t1/2) of the complex in  question. 

The solid best-fi t straight line excluding the triple substitution variant 

of HEL [11–25] was overlaid on the dataset (slope = 0.849), as well as 

the dashed straight line representing the best-fi t line that included the 

triple substitution variant (slope = 0.864). The DM effect of native SWM 

[102–118] was derived from our previous publication (reference 29), 

whereas the DM effect of OVA [273–288] inserted within MalE and the 

MalE [69–84] epitope was determined from three independent experi-

ments (not depicted).
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presented MHC class II–peptide complex. We used a  bacterial 
protein expression system to incorporate a set of peptides that 
possesses a range of kinetic stabilities in association with the 
I-Ad class II molecule. These antigens were tested for their 
ability to sensitize APCs with or without DM expression for 
recognition by antigen-specifi c T cells. Our results presented 
here provide strong evidence that the kinetic stability of the 
class II–peptide complex has a direct and causative infl uence 
on DM-mediated presentation within APCs. Class II–re-
stricted presentation of low kinetic stability variants is antago-
nized by DM expression, whereas presentation of high kinetic 
stability variants is enhanced by DM expression. Finally, we 
show that the effi  ciency of class II–peptide presentation from 
complex antigens by DM+ APCs can be modifi ed by altering 
its spontaneous kinetic stability, and that such a change is di-
rectly related to alterations in immunodominance in vivo. 
Collectively, our data suggest that the effi  ciency of antigen 
presentation on DM+ APCs is a critical parameter of MHC 
class II–peptide complexes that determines their relative abil-
ity to recruit T cells during an in vivo immune response.

The peptide variants investigated here included substitu-
tions at each of the four major pockets for I-Ad. In each case, 

a substitution that increased kinetic stability resulted in en-
hanced presentation by DM-expressing APCs, and substitu-
tions that decreased kinetic stability caused a corresponding 
decline in presentation by DM-expressing APCs. This result 
has several important implications. First, in terms of improv-
ing strategies in vaccine design, this fi nding suggests that for 
a given class II–peptide complex, there are multiple sites that 
can be modifi ed in the peptide that can lead to the desired 
change in DM editing within APCs. This is important be-
cause it allows considerable fl exibility in designing variants 
that maintain T cell reactivity while altering interactions with 
class II molecules. Second, these data argue in favor of the 
idea that DM recognizes a feature characteristic of the overall 
structure of the class II binding pocket rather than a specifi c 
site on the class II–peptide complex.

In general, there was a strong predictive relationship be-
tween the induced changes in the kinetic stability of class II–
peptide complexes and changes in DM editing in APCs. For 
a given peptide, modulation of its interaction with class II 
caused a predictable change in DM editing. We did not ob-
serve any examples of high stability complexes (i.e., t1/2 > 50 h) 
that were not enhanced by DM expression in APCs nor 
any examples of low stability complexes (i.e., t1/2 < 10 h) 
that were not antagonized by DM. There were, however, 
some interesting exceptions to the largely linear nature of the 
data, where a few peptide complexes seem to fall signifi cantly 
off  the diagonal line one generates when plotting kinetic sta-
bility of class II–peptide complexes versus DM editing. The 
HEL variant with substitutions at P1 (R14Q) and P9 (G22S) 
possessed a half-life of 11 h with I-Ad. With regard to DM 
editing, presentation of this class II–peptide complex is an-
tagonized sixfold by DM expression within the APCs. Strik-
ingly, however, when one further modifi es this peptide, 
enhancing interactions via the P6 pocket (N19A) and pro-
moting a modest increase in kinetic stability (t1/2 = 33 h), 
presentation of this complex is remarkably (30-fold) enhanced 
by DM expression in APCs. Therefore, a threefold change in 
kinetic stability causes almost a 200-fold shift in the eff ects 

Figure 4. The effi ciency of presentation in vitro correlates with 

immunodominance in vivo. The average amount of protein (left axis, 

fi lled bars) suffi cient for detectable IL-2 stimulation by WT and kinetic 

stability variants of (A) HA [126–138], (B) LACK [156–173], and (C) HEL 

[11–25] was averaged across experiments ± SD in comparison to the 

published (reference 28) immunodominance (right axis, open bars) of the 

protein in question. 

Figure 5. The kinetic stability predicts the hierarchy of presenta-

tion by splenic APCs. WT and kinetic stability variants of HA [126–138] 

encoded within MalE were tested for their ability to sensitize 5 × 105 

BALB/c spleen cells for stimulation of 5 × 104 TS2 hybridomas. Cells were 

incubated with the indicated doses of protein overnight, and IL-2 produc-

tion was assayed as described in Materials and methods. Data are repre-

sentative of three independent experiments.
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of DM. We confi rmed this eff ect on the effi  ciency of presenta-
tion pattern with two additional, independently derived HEL 
[11–25]–specifi c hybridomas (not depicted). One possibility 
to explain dramatic changes in DM editing is that the triple-
substituted HEL complex has unique conformational features 
that have altered its interaction with DM or the consequences 
of that interaction, perhaps making it completely resistant to 
DM-mediated dissociation. The possibility that this class II–
peptide complex has altered conformational features relative 
to the complex made with the WT peptide is supported by 
our previous studies on T cell recognition of the HEL pep-
tide complexes (28). These studies showed that T cells display 
a strong discrimination between WT HEL and the P1, P6, 
and P9 variant. Another example of atypical DM eff ects was 
observed with a variant of the HA [126–138] peptide com-
plex. In general, substitutions in this peptide that increased 
kinetic stability enhanced positive DM editing, whereas sub-
stitutions that diminished the kinetic stability with I-Ad led to 
a conversion to negative DM editing. However, two of the 
low stability variants diff ered signifi cantly from each other. 
The P1 substitution (T128G) and the P4 substitution (V131A) 
each caused a 20-fold drop in kinetic stability compared with 
the WT peptide complexed to I-Ad, and each showed accen-
tuated sensitivity to negative DM editing compared with the 
WT or higher stability variants of HA. However, the change 
at P4 led to signifi cantly more sensitivity to negative DM ed-
iting (14-fold) compared with the substitution at P1 (four-
fold). Therefore, equivalent destabilization of class II–peptide 
complexes, but at diff erent sites or through diff erent substitu-
tions in the peptide, can lead to quantitative diff erences in 
DM editing within APCs. In general, the quantitative eff ect 
of DM editing was less predictable with low stability class II–
peptide complexes. Although the presentation of each of 
these complexes was antagonized by DM, there was consid-
erable scatter in the magnitude of DM eff ects. We hypothe-
size that some of the variability of DM’s cumulative eff ects 
for very low stability complexes (e.g., t1/2 < 5 h) may be due 
to the combined eff ect of DM antagonism during peptide 
loading and after formation of the complex, which will then 
be subject to accelerated dissociation due to the continued 
interaction with DM. Recent publications have proposed 
that DM may diff erentially aff ect loading onto class II mole-
cules, depending on the peptide sequence (22, 37, 38). Reso-
lution of this possibility will require detailed biochemical 
assessment of DM’s eff ect at these discreet events in vitro 
with purifi ed DM and class II proteins.

We predict that DM’s ability to edit peptides is a major 
mechanistic link that eff ectively favors the cell surface presen-
tation of class II–peptide complexes displaying high kinetic 
stability. This epitope hierarchy expressed on the priming 
APC likely plays a key role in the establishment of the well-
described patterns of immunodominance observed with for-
eign-derived exogenous antigens (for review see references 
39–41). Accumulated evidence suggests that maturation of 
dendritic cells enhances the accumulation of class II–peptide 
complexes on the cell surface while concomitantly reducing 

endocytosis, eff ectively presenting a snapshot of the antigens 
available during exposure to the maturation signal (42, 43). 
For low stability epitopes, the susceptibility to DM editing is 
a barrier that must be overcome and may in fact prove insur-
mountable in such instances of limiting antigen dose or expo-
sure time. Additionally, at stabilities of below 1 h, the inability 
of a peptide to form any meaningful association with class II 
may prove the ultimate antagonist for detectable presenta-
tion. For high stability epitopes, the activity of DM results in 
a signifi cant boost to the effi  ciency of presentation. Recent 
data suggest that the persistence of antigen presentation is 
necessary for continued proliferation and diff erentiation of 
CD4 cells (44–47). The initial advantage high stability com-
plexes possess in epitope density that should promote the 
priming of high numbers of CD4 T cells may thus further 
extend to daughter T cells arising from initial antigen-depen-
dent proliferation. It should now be possible to design pep-
tides that can take advantage of these observed preferences 
exhibited by DM to elicit a maximal level of immunogenic-
ity toward the desired epitopes at a minimum dose.

MATERIALS AND METHODS
Purifi cation of soluble I-Ad proteins
Production and purifi cation of class II molecules were performed as de-

scribed previously (28, 30). In brief, transfectants expressing the phosphatidyl-

inositol–linked class II molecules were solubilized with 50 mM Tris, 150 mM 

NaCl, and 6.5 mM CHAPS containing protease inhibitors at pH 7.8 for 1 h 

at 4°C. I-Ad phosphatidyl-inositol molecules were purifi ed by class II mAb 

affi  nity chromatography and treated with 0.1 U/ml of phosphatidy-linositol–

specifi c phospholipase C (Sigma-Aldrich) in 50 mM Tris, pH 7.4, containing 

1% BSA at room temperature for 1.5 h to remove the phosphatidyl-

inositol linker. The soluble I-Ad protein (sI-Ad) was then eluted from the 

column at pH 11.0 with a buff er containing 1 mM n-dodecyl maltoside 

(n-dodec; Sigma-Aldrich), 100 mM sodium carbonate, and 500 mM NaCl 

at 4°C. After neutralization, dialysis, and concentration, the purifi ed sI-Ad 

proteins were analyzed by SDS-PAGE, Western blot, and peptide binding.

Antigens
Peptides. Synthetic, unlabeled, and fl uorescein-labeled peptides were ob-

tained from commercial sources. Fluoresceinated peptides were purifi ed by 

HPLC to >90% purity.

MalE protein purifi cation. MalE protein was purifi ed as described previ-

ously (28). In brief, PAGE-purifi ed synthetic oligonucleotides encoding the 

desired peptide were ligated into MalE133 vector, and sequenced clones 

were transformed into MalE (−/−) ER2507 Escherichia coli for overnight 

culture. Protein was isolated from periplasmic extracts of bacterial cultures 

expressing the MalE construct. Periplasmic shock fl uid was fi ltered over a 

0.45-μM membrane and added to an amylose column (48) for purifi cation 

and elution. Collected fractions containing MalE were pooled, dialyzed 

against 1× PBS, and concentrated with a Centricon ym-10 KD cutoff  fi lter 

to 
1 ml fi nal volume. Concentrated MalE in PBS was sterile fi ltered 

through a 0.2-μM syringe fi lter, quantifi ed by Bradford assay and SDS-

PAGE, and stored at 4°C.

LACK protein synthesis. The LACK protein, originally derived by 

Mougneau et al. (32), and LACK–I166A proteins were purifi ed as described 

previously (28). In brief, BL21(DE3λ) bacteria (Novagen) were transfected 

with LACK or LACK–I166A constructs, and protein was isolated from 

IPTG-induced cultures via Ni-NTA affi  nity column and assayed for quan-

tity and purity via SDS-PAGE analysis. Protein was dialyzed in PBS and 

sterile fi ltered through a 0.2-μM syringe fi lter.
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Protein antigens. Purifi ed HEL, SWM, and OVA were purchased from 

Sigma-Aldrich. Protein was resuspended in PBS and sterilized by passage 

through a 0.2-μM syringe fi lter.

Dissociation experiments
Dissociation assays were performed as described previously (30). In brief, an 

aliquot of 25 μl of 100 nM sI-Ad molecule was mixed with 1 μl of 250 μM 

FITC peptide plus 5 μl of McIlvaines buff er, pH 5.3 (0.2 M citric acid, 0.5 M 

Na2HPO4), 0.2 mM n-dodec, and 0.025% NaN3 in the presence of pro-

tease inhibitors. The association mixture was incubated at 37°C and pH 5.3 

to allow formation of complexes, and the sI-Ad–FITC peptide complex was 

separated from free FITC peptide by passage over a Micro Bio-Spin 30 col-

umn (Bio-Rad Laboratories). Complexes were incubated at 37°C and pH 

5.3 in the presence of 5 μM unlabeled Eα.  [52–68] peptide to avoid rebind-

ing of the fl uorescinated peptide. After increasing periods of time, a sample 

was injected into a LC-10AT HPLC (SHIMADZU Corporation) equipped 

with a Bio-Sep-SEC-S 3000 column (300 × 7.8 mm; Phenomenex Inc.) 

and passed through the column with PBS containing 0.2 mM n-dodec plus 

0.025% NaN3 at room temperature and pH 7.4 at a fl ow rate of 0.8 ml/min. 

The complex was detected with an RF-10AXL fl uorescence detector 

(SHIMADZU Corporation) by measuring the emission intensity at 525 nm. 

The emission intensities were normalized with respect to the intensity of the 

fi rst sample, taken right before the complex incubation.

Generation and maintenance of transfected fi broblasts
Ltk− cells were transfected by calcium phosphate with genes encoding the 

I-Ad α and β chains plus the neomycin resistance gene. MHC class II+ cells 

were subcloned and supertransfected either with the murine genomic Ii gene 

and pSV2gpt for resistance to MXH (49), or the murine genomic Ii gene 

and DM α and β genes along with the pSV2bsr2 for resistance to blasticidin 

(14). Transfected cells were maintained in selection media and stained for 

class II expression every 3–6 wk but were removed from selective drug for 2 d 

before T cell assays.

Hybridoma stimulation assays
The HEL-specifi c hybridoma (HEL 25) was created by a fusion of peptide-

activated LN cells from a BALB/c mouse immunized 10 d prior in the foot-

pad with 50 μl of 5 nmol of HEL [11–25] peptide emulsifi ed in PBS–CFA. 

The HA-specifi c hybridoma (TS2) was created by the fusion of peptide-

 activated LN cells from a HNT-TCR mouse (TS2; reference 50) with 

BW5147 lymphoma cells. For assays, 5 × 104 specifi c T cell hybridomas 

were mixed with 4 × 104 APCs expressing DM, class II, and invariant chain 

(DMI), or 4 × 104 APCs expressing class II and invariant chain (gIi) as de-

scribed previously (51), and peptide or protein at the specifi ed dose in a fl at-

bottom 96-well dish. After overnight culture, plates were frozen and thawed, 

and 50 μl supernatant was removed and added to 3 × 104 CTLL cells. After 

16–20 h, CTLLs were incubated with 0.4 mg/ml MTT for 6 h, followed by 

100 μl 10% SDS/0.01 N HCl overnight. OD was calculated from measure-

ments at 570–630 nm.

Online supplemental material
To address whether protein context of the peptide epitope and thus com-

peting peptides within the antigen infl uence the presentation of high ver-

sus low affi  nity peptides, Fig. S1 compares the presentation of the highly 

stable LACK [156–173] epitope and the unstable LACK–I166A and HEL 

[11–25] epitopes when presented within either native protein or within 

MalE. Our data demonstrate that the pattern of DM-mediated presenta-

tion of a class II–peptide complex appears to be independent of the protein 

context from which the peptide epitope is derived. To address whether 

the use of T cells as a measure of class II–peptide complex presentation 

introduces bias according to unique aspects of the individual T cells used, 

Fig. S2 compares the presentation of class II–peptide complexes as detected 

by the activation of additional T cell hybridomas. These data demonstrate 

that these additional T cells detect a similar degree of DM-mediated en-

hancement or antagonism of presentation as compared with our original 

T cells. Figs. S1 and S2 are available at http://www.jem.org/cgi/content/

full/jem.20060058/DC1.
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