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Summary The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following
cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting
the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general
feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are
induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com

British Journal of Cancer (2001) 85(12), 1813–1823
© 2001 Cancer Research Campaign
doi: 10.1054/ bjoc.2001.2128, available online at http://www.idealibrary.com on http://www.bjcancer.com
The p53 gene is frequently mutated in sporadic cancer (Hainaut
and Hollstein, 2000) and germline mutations in p53 result in
Li–Fraumeni syndrome, a hereditary cancer susceptibility syn-
drome predisposing individuals to sarcomas, lymphomas, breast,
brain and other tumours (Malkin et al, 1990; Srivistava et al,
1990). These findings are paralleled by the observation that mice
deficient for p53 are highly tumour susceptible, although p53 defi-
ciency does not prevent normal development (Donehower, 1996).
Malignancies that retain the wild-type p53 gene have often
acquired other mechanisms to compromise p53 function, and most
cancer cells show a defect either in p53 or in the pathway that
leads to activation of p53 in response to oncogenic stimuli
(Vogelstein et al, 2000). Taken together, inactivation of the p53
pathway seems to be a general mechanism in tumour development
and might be a common feature of all cancers. Thus understanding
the mechanisms that regulate p53 function has great importance
for cancer therapy. 

CONTROL OF p53 FUNCTION 

Since p53 is a powerful inhibitor of cell proliferation, control of
its activity is essential during normal growth and development.
Regulation of p53 has been described at the level of transcription,
translation, conformational change, and various covalent and non-
covalent modifications (Ashcroft and Vousden, 1999). However,
at present it seems clear that one of the key mechanisms by which
p53 function is regulated is through control of protein stability.
Integral to this is the function of the MDM2 protein, and multiple
forms of cellular stress activate p53 by countering the MDM2-
mediated degradation of p53. 

Regulation by MDM2 

MDM2 has been shown to inhibit p53 activity in several ways: by
binding to the transactivation domain of p53, by targeting p53 for
ubiquitination, by inhibiting acetylation of p53 and by shuttling
p53 to the cytoplasm. Since the MDM2 gene is a transcriptional
target of p53 (Barak et al, 1993), an autoregulatory feedback loop
exists in which p53 activates expression of its own negative
regulator (Wu et al, 1993). The importance of MDM2 in the regu-
lation of p53 activity is illustrated by the observation that MDM2
deficiency causes early embryonic lethality in mice which is
rescued in the p53-null background (Jones et al, 1995; Montes de
Oca Luna et al, 1995), indicating that in the absence of MDM2,
unrestrained p53 activity blocks normal growth and development.
Conversely, amplification of MDM2 is associated with the devel-
opment of tumours that retain wild-type p53 (Oliner et al, 1992),
suggesting that overexpression of MDM2 prevents the normal
p53-mediated response to oncogenic stress. 

MDM2 binds to p53 within the amino terminus of p53, (Figure
1) directly blocking the interaction of p53 with transcriptional
coactivators (Momand et al, 1992; Wadgaonkar and Collins, 1999)
and so inhibiting the ability of p53 to activate transcription of
target genes. However, a more comprehensive inhibition of p53
function is achieved by the ability of MDM2 to promote protea-
some-mediated degradation of p53 (Haupt et al, 1997; Kubbutat et
al, 1997). MDM2 contains a RING finger domain (Figure 1) and,
like many RING finger proteins, it can function in vitro as a ubiq-
uitin protein ligase (E3) (Joazeiro and Weissman, 2000). MDM2
targets both itself and p53 for ubiquitination, and RING finger
domain mutations lead to the stabilization of both proteins (Honda
et al, 1997, Fang et al, 2000). Interestingly, the transcriptional co-
factor, p300, that plays a role in acetylating and activating p53,
also participates in the degradation of p53 by MDM2, possibly by
functioning as a platform to allow efficient p53/MDM2 interaction
(Grossman et al, 1998). 

Besides direct ubiquitination of p53, MDM2 also plays a role in
regulating the subcellular localization of p53. MDM2’s ubiquitin
ligase activity contributes to the efficient nuclear export of p53
(Boyd et al, 2000; Geyer et al, 2000), which depends on the
nuclear export sequence (NES) identified in the C-terminus of
p53 (Stommel et al, 1999). It is possible that ubiquitination
of p53 reveals the NES, possibly by driving p53 into a monomeric
form (Stommel et al, 1999), allowing access to the nuclear export
machinery. Treatment of cells with leptomycin B, a drug that
blocks nuclear export, results in stabilization and nuclear accumula-
tion of p53 (Freedman and Levine, 1998; Lain et al, 1999; Tao and
Levine, 1999) and mutation of the NES in p53 reduces, but does not
abolish, the ability of MDM2 to target p53 for degradation (Yu et al,
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Figure 1 Domain structure of the p53 and MDM2 proteins. NLS, nuclear localization signal; NES, nuclear export signal; NoLS, nucleolar localization signal 
2000). Taken together, the results suggest that efficient degrada-
tion of p53 requires nuclear export, although some degradation can
also occur in the nucleus, and indicate that ubiquitination of p53
by MDM2 may serve to both target p53 to the proteasome and
allow export to the cytoplasm. In certain tumours, including
neuroblastomas, breast and colon cancer, wild-type p53 is consti-
tutively accumulated in the cytoplasm. Although this cytoplasmi-
cally sequestered p53 seems to be resistant to MDM2-mediated
degradation because of post-translational modification (Zaika et al,
1999), recent evidence suggests that MDM2-mediated nuclear
export might actually be responsible for the cytoplasmic accumula-
tion of p53 (Lu et al, 2000). However, other studies indicate that in
some tumours p53 may be sequestered in the cytoplasm through
interaction with the glucocorticoid receptor (Sengupta et al, 2000). 

In addition to its role in the regulation of p53, MDM2 has func-
tions that are independent of p53 (Lundgren et al, 1997), with
evidence that it can inhibit or promote cell growth depending on the
cellular environment (Freedman et al, 1999). These activities of
MDM2 are probably related to its interaction with other proteins,
including regulators of the cell cycle and cell fate such as MTBP
(Boyd et al, 2000), Numb (Juven-Gershon et al, 1998), the
retinoblastoma tumour suppressor protein (pRB) (Hsieh et al, 1999),
E2F1/DP1 (Loughran and La Thangue, 2000) and SMAD transcrip-
tion factors (Yam et al, 1999). E2F-1 has been shown to be suscep-
tible to proteasome-mediated degradation and, like p53, it can be
stabilized by various forms of cellular stress (Blattner et al, 1999;
O’Connor and Lu, 2000). However whether MDM2 participates in
these processes remains unclear (Kubbutat et al, 1999; Loughran and
La Thangue, 2000). MDM2 has been shown to bind ribosomal
proteins and RNA (Marechal et al, 1994; Elenbaas et al, 1996),
raising the question whether this contributes to the nucleolar localiza-
tion of MDM2 seen in some circumstances (see below). 

MDM2-independent regulation of p53 stability 

While MDM2 has been well established as the key regulator of
p53 abundance and activity, various additional mechanisms have
been described to regulate stability of p53. In cervical cancer cells,
p53 is degraded due to ubiquitination by the human papillo-
mavirus (HPV) E6 oncoprotein in complex with the cellular E6AP
protein (Scheffner et al, 1993). Although these HPV-associated
tumours usually retain a wild-type p53 gene (Crook et al, 1992),
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the p53 response is severely compromised due to an inability to
efficiently stabilize the p53 protein. However, E6AP does not
appear to participate in the degradation of p53 in normal cells.
Another cellular protein, JNK, was shown to bind p53 in normal,
non-stressed cells. Interference with the p53-JNK association
reduced p53 ubiquitination and increased p53 half-life, suggesting
that JNK might target p53 to ubiquitination and degradation
(Fuchs  et al, 1998). In addition to degradation by the proteasome,
p53 has been shown to be cleaved by another protease, calpain,
which may also serve to regulate p53 (Kubbutat and Vousden,
1997; Pariat et al, 1997; Zhang et al, 1997; Atencio et al, 2000). 

Mechanisms to stabilize p53 in response to stress 

1. Phosphorylation 
Many stress signals, including some DNA-damaging agents,
modulate p53 and MDM2 activity through induction of kinases
(Lakin and Jackson, 1999). Numerous phosphorylation sites
within or near the N-terminal MDM2-binding region of p53 have
been described (Meek, 1999; Ljungman, 2000) and phosphoryla-
tion at many of these sites can attenuate binding of p53 to MDM2
in vitro, potentially leading to stabilization of p53 in vivo (Unger
et al, 1999; Chehab et al, 2000; Sakaguchi et al, 2000; Shieh et al,
1997, 2000). The kinases signalling to p53 include casein kinase 
1 and 2, ATM (ataxia telangiectasia mutated), ATR (ATM/Rad3
related kinase) CHK1 and 2, JNK (jun N-terminal kinase) and
DNA-PK (DNA-dependent protein kinase) (Jayaraman and
Prives, 1999). Many of the same kinases also phosphorylate
MDM2 in vitro, (Guerra et al, 1997; Mayo et al, 1997; Gotz et al,
1999; Khosravi et al, 1999) and MDM2 is heavily phosphorylated
in vivo (Hay and Meek, 2000). Phosphorylation of MDM2 within
the p53 binding domain, around the NLS, NES and in the acidic
domain strongly suggests a regulatory role for these modifications
(Hay and Meek, 2000; Maya and Oren, 2000). 

Genetic evidence from both mice and humans suggests that
ATM and CHK2 are key players in the pathway of response to
ionizing radiation. The ATM gene is mutated in the genetic
disorder ataxia telangiectasia, which is characterized by hypersen-
sitivity to ionizing radiation and predisposition to cancer (Meyn,
1999), while Chk2 was found to be mutated in patients with
Li–Fraumeni syndrome who do not carry mutations in p53 (Bell 
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et al, 1999). Cells deficient for ATM or Chk2 show a defect in their
ability to stabilize p53 following exposure to IR (Kastan et al,
1992; Hirao et al, 2000), strongly supporting a role for these
kinases in this damage response. 

2. Regulation of MDM2 expression 
Although phosphorylation probably plays an important role in
some pathways leading to the stabilization of p53, other forms of
stress can signal without a requirement for p53 phosphorylation
(Ashcroft et al, 1999; Blattner et al, 1999). Several DNA-
damaging agents including UV, topoisomerase inhibitors and non-
genotoxic stress such as hypoxia, induce a p53 response by
specific inhibition of MDM2 transcription (Wu and Levine, 1997;
Arriola et al, 1999; Ashcroft et al, 2000; Ma et al, 2000; Zeng et al,
2000; Koumenis et al, 2001). Down-regulation of MDM2 was
shown to be p53-independent, but the exact mechanisms are yet 
to be elucidated. 

3. ARF 
The alternative reading frame product of the INK4A locus, called
p14ARF (mouse p19ARF) binds directly to MDM2, inhibiting the
ubiquitin ligase activity of MDM2 and blocking the inhibition of
p53 acetylation by MDM2 (Bates et al, 1998; Kamijo et al, 1998;
Pomerantz et al, 1998; Stott et al, 1998; Zhang et al, 1998; Honda
and Yasuda, 1999; Midgley et al, 2000; Ito et al, 2001). In some
systems, ARF also leads to the relocalization of MDM2 from the
nucleoplasm to the nucleolus (Weber et al, 1999) utilizing nucle-
olar localization signals in both ARF and MDM2 (Lohrum et al,
2000; Weber et al, 2000), and the consequence of ARF expression
is the efficient stabilization and activation of p53. ARF plays an
important role in the induction of p53 in response to oncogene
activation, a critical fail-safe mechanism that eliminates cells with
proliferative abnormalities. For example, deregulated E2F1
activity, which is seen in almost all cancers following disruption of
the pRB tumour suppressor pathway, sends a strong apoptotic
signal. Although part of this E2F1-induced apoptotic response is
p53 independent (Phillips et al, 1999; Irwin et al, 2000), E2F1
transcriptionally activates ARF and the subsequent induction of
p53 in response to deregulated E2F1 activity is an important
component of the response. Similarly, the growth suppressive
effects of activated Ras or Myc depend, in part, on the induction of
p53 through ARF (Sherr and Weber, 2000). Other oncogenic
events that induce a p53 response and might function through ARF
include activation of the c-Abl protein-tyrosine kinase (Radfar 
et al, 1998; Sionov et al, 1999) and deregulation of beta-catenin, a
frequent early event in colon carcinogenesis (Damalas et al, 1999).
The importance of the ARF/p53 pathway is illustrated in mice,
where deletion of ARF results in tumour development (Kamijo 
et al, 1997). Although mutations specific to ARF are rarely found
in human tumours, loss of ARF expression resulting from methy-
lation of the ARF promoter (Esteller, 2000), or overexpression of
transcriptional repressors of ARF such as Twist (Maestro et al,
1999), Bmi-1 (Jacobs et al, 1999) or TBX2 (Jacobs et al, 2000) is
associated with human cancer development. 

4. Other regulators of p53 stability 
MDMX, a protein related to MDM2, also possesses a p53-binding
domain and a RING finger domain. Binding of MDMX inhibits
p53 transactivation function (Shvarts et al, 1996), although
MDMX does not appear to target p53 for degradation. It is
possible that MDMX does not show ubiquitin ligase activity, and
© 2001 Cancer Research Campaign
hetero-oligomerization of MDMX with MDM2 through their
RING finger domains results in the stabilization of MDM2 (Sharp
et al, 1999; Tanimura et al, 1999). Furthermore, when overex-
pressed, MDMX protected p53 from MDM2-mediated degrada-
tion while still maintaining suppression of p53 transactivation
(Jackson and Berberich, 2000). The role of MDMX in tumour
development remains to be determined, although there is evidence
that amplification of MDMX may substitute for p53 mutation or
amplification of MDM2 in some tumours (Riemenschneider et al,
1999). Alternatively spliced forms of MDM2, lacking the N-
terminal p53-binding domain, have also been described in human
cancers and may play a role in regulating full-length MDM2
activity (Sigalas et al, 1996; Perry et al, 2000). 

Several other proteins have been reported to interfere with the
MDM2-mediated degradation of p53, although their mechanism of
function is not well understood. pRB binds MDM2 and inhibits
MDM2-dependent degradation of p53, with selective restoration
of p53’s apoptotic function (Hsieh et al, 1999). Other proteins that
regulate p53 stability, and so potentially inhibit MDM2, include
HIF1α (An et al, 1998) ING1 (Garkavtsev et al, 1998), WRN
(Blander et al, 2000) and WT1 (Maheswaran et al, 1995). 

Regulation of p53 activity 

In addition to the regulation of protein stability, there are mecha-
nisms that regulate the activity of p53. The extreme C terminus of
the protein controls its sequence-specific DNA binding and tran-
scriptional activity, and these functions can be influenced by a
multitude of covalent and non-covalent modifications within the C
terminus. Modifications suggested to be involved in activation of
p53 include sumoylation (Gostissa et al, 1999; Rodriguez et al,
1999; Muller et al, 2000), phosphorylation, dephosphorylation,
acetylation, glycosylation (Shaw et al, 1996), ribosylation (Vaziri
et al, 1997; Wang et al, 1998; Simbulan-Rosenthal et al, 1999) and
redox regulation. 

Transcriptional coactivators p300, CBP and PCAF have been
shown to enhance p53-mediated transcription, and are important
for p53 growth arrest and apoptotic functions. These coactivators
bind to the N terminus and acetylate p53 at C-terminal lysine
residues, thereby enhancing its sequence-specific DNA binding
(Gu and Roeder, 1997). Phosphorylation of the N terminus of p53
enhances acetylation of the C terminus (Sakaguchi et al, 1998),
and these modifications are DNA damage inducible (Sakaguchi 
et al, 1998; Liu et al, 1999). MDM2 can prevent this acetylation of
p53 (Kobet et al, 2000; Ito et al, 2001), and association of p53 with
deacetylating complexes provides further levels of control on p53
function (Juan et al, 2000; Luo et al, 2000). Acetylation of p53 is
regulated by interaction with the promyelocytic leukaemia protein
(PML), a RING domain containing tumour suppressor protein.
Overexpression of PML relocalizes p53 into nuclear bodies and
induces phosphorylation and acetylation of p53, thereby stimu-
lating its transcriptional activity (Ferbeyre et al, 2000; Fogal et al,
2000; Guo et al, 2000; Pearson et al, 2000). Both DNA damage-
induced apoptosis and oncogenic ras-induced senescence are
impaired in PML-deficient cells, indicating an important role for
PML in various p53-mediated stress responses. 

Phosphorylation has also been shown to regulate p53 transcrip-
tional activity. For example, the rapid phosphorylation on the C
terminus on serine 392 in response to UV (Kapoor and Lozano,
1998) may stimulate sequence-specific DNA-binding activity
of p53 (Hupp et al, 1992). A role for phosphorylation is also
British Journal of Cancer (2001) 85(12), 1813–1823
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implicated in changing the oligomerization state of p53, or regu-
lating its promoter specificity and the choice between apoptosis or
cell cycle arrest (Lohrum and Scheidtmann, 1996; Sakaguchi et al,
1997; Oda et al, 2000). An ATM-dependent dephosphorylation of
p53 at Ser376 has been described, creating a binding site for 14-3-
3 proteins which, in turn, activate sequence-specific DNA binding
of p53 (Waterman et al, 1998). 

Non-covalent interaction with proteins such as Ref-1 and HMG-
1 have also been shown to activate p53 DNA binding. Ref-1 is 
a multifunctional protein that participates in DNA repair through
its abasic endonuclease activity and regulates the activity of
several transcription factors by changing their redox state.
Presumably by regulating the redox state of p53, it enhances trans-
activation of p53 target promoters and increases p53-induced
apoptosis (Jayaraman et al, 1997; Gaiddon et al, 1999). HMG-1
(high mobility group protein-1), a chromatin-associated non-
histone protein, also increases the transcription of p53-dependent
promoters, probably by inducing bending of the DNA (Jayaraman
et al, 1998). 

THE p53 RESPONSE 

The tumour suppressor function of p53 depends principally on its
ability to prevent cellular proliferation in response to stress stimuli
that are encountered during tumourigenic progression. Activated p53
leads to cell cycle arrest and apoptosis, and can play a role in the
induction of differentiation and cellular senescence (Almog and
Rotter, 1997; Lundberg et al, 2000). Wild-type p53 has been shown
to inhibit angiogenesis in tumours, by activating or repressing genes
that regulate new blood vessel formation (Dameron et al, 1994;
Nishimori et al, 1997; Bouvet et al, 1998). p53 can also play a direct
role in the repair of DNA damage, both through nucleotide excision
repair and base excision repair (Ford and Hanawalt, 1995; Wani et al,
1999; Offer et al, 2001; Zhou et al, 2001). 

Cell cycle arrest 

The cell cycle arrest function of p53 correlates well with its ability
to function as a transcription factor (Crook et al, 1994; Pietenpol 
et al, 1994). Of the myriad of p53 target genes identified to date
p21Waf1/Cip1 stands out as playing a critical role in the induction of
cell cycle arrest (El-Deiry et al, 1993; Brugarolas et al, 1995).
p21Waf1/Cip1 is a cyclin-dependent kinase inhibitor that can activate
both G1 and G2 cell cycle arrests similar to those seen in response
to p53 induction (Harper et al, 1993; Agarwal et al, 1995; Bates 
et al, 1998). Importantly, cells deleted for p21Waf1/Cip1 are deficient
in both G1 and G2 arrest, and in the coupling of DNA synthesis and
mitosis. These defects are also described in p53-null cells
(Waldman et al, 1995; Waldman et al, 1996). Another target of p53
that contributes to the p53-induced G2 arrest is 14-3-3 sigma
(Hermeking et al, 1997). The 14-3-3 family proteins play a role in
signal transduction and cell cycle control, in part by binding and
sequestering proteins (Muslin and Xing, 2000). Although 14-3-
3sigma deficient cells could transiently arrest in G2 phase after
DNA damage, they were unable to maintain the cell cycle arrest
(Chan et al, 1999). As mentioned above, 14-3-3 can bind p53 and
activate its sequence-specific DNA binding after IR (Waterman
et al, 1998), and so may represent a positive feedback loop to p53
to prevent cell cycle progression in damaged cells. Further poten-
tial mediators of the G2 arrest include GADD45 (Wang et al,
1999) and Reprimo (Ohki et al, 2000). 
British Journal of Cancer (2001) 85(12), 1813–1823
Apoptosis 

While there is evidence that p53 can mediate apoptosis by
transcription-independent mechanisms, p53 both activates and re-
presses genes that participate in the apoptotic response. Cells in
which the wild-type p53 was replaced by a transcriptionally inac-
tive mutant showed loss of both cell cycle arrest and apoptotic
functions, supporting the importance of transcriptional regulation
in these responses (Chao et al, 2000; Jimenez et al, 2000). 

Numerous apoptotic genes that are transcriptionally activated by
p53 have been identified, suggesting that the p53 apoptotic
response is multifaceted (Vousden, 2000) (Figure 2). The first
apoptotic target of p53 identified was the bax gene, a pro-apoptotic
member of the BCL-2 family (Miyashita and Reed, 1995). Recently,
other pro-apoptotic members of this family named Noxa (Oda et al,
2000) and PUMA (Nakano and Vousden, 2001; Yu et al, 2001)
have been identified as p53 targets. These proteins, as well as
another p53 target gene product, p53AIP1 (Oda et al, 2000),
localize to the mitochondria and promote loss of the mitochon-
drial membrane potential and cytochrome c release, thus acti-
vating the Apaf-1/caspase-9 apoptotic cascade (Bossy-Wetzel and
Green, 1999). Significantly, p53-induced apoptosis was found to
be inhibited by loss of Apaf-1 or caspase-9 (Soengas et al, 1999).
Perturbation of mitochondrial integrity may also be mediated by
several genes coding for redox-controlling enzymes, which were
identified as p53-induced genes (PIGs) in a colon cell line under-
going p53-mediated apoptosis (Polyak et al, 1997). It has been
proposed that reactive oxygen species (ROS) produced by these
PIGs cause damage to mitochondria which in turn initiates apop-
tosis. This model is supported by the observations that antioxi-
dants, which eliminate ROS, can inhibit p53-mediated apoptosis
as well as concomitant changes in the mitochondrial membrane
potential in some systems (Li et al, 1999). Recently a study
revealed that the p53 protein itself can localize to the mitochon-
dria presenting a potential additional transcription-independent
way of mediating apoptosis (Marchenko et al, 2000). 

p53 has also been implicated in the membrane death receptor-
induced pathway of apoptosis in several ways. Expression of at
least two of the death receptors, FAS/APO1 and DR5/KILLER,
and one of the death receptor ligands, FASL, have been observed
to be up-regulated by p53 (Owen-Schaub et al, 1995; Wu et al,
1997). The DR5 promoter was shown to be a direct target of p53
(Takimoto and El-Deiry, 2000), while cell surface expression of
FAS was enhanced by p53 through promotion of its trafficking
from the Golgi to the plasma membrane (Bennett et al, 1998).
Activation of death receptors by their ligands (FAS by FASL and
DR5 by TRAIL) results in trimerization and recruitment of intra-
cellular adapter molecules which initiate the caspase cleavage
cascade and apopotosis (Ashkenazi and Dixit, 1998). Activation of
PIDD, a death domain containing protein, by p53 also induces
apoptosis and is likely to function through the death receptor
pathway (Lin et al, 2000). 

Loss of survival signalling can augment p53-mediated apoptosis
(Gottlieb et al, 1994; Abrahamson et al, 1995; Canman et al, 1995;
Lin and Benchimol, 1995; Prisco et al, 1997), and the ability of
p53 to negatively regulate the IGF pathway (Buckbinder et al,
1995) and inhibit intergrin-associated survival signalling may
further sensitize cells to p53-induced death (Bachelder et al,
1999). The NF-κB transcription factor has lately been shown to
play an important role in p53-mediated apoptosis (Ryan et al,
2000), in contrast to the anti-apoptotic effect of NF-κB induced in
© 2001 Cancer Research Campaign
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Figure 2 p53 induces apoptosis by activating target genes such as PIGs, Bax, Noxa, PUMA, p53AIP1 DR5, FAS PIDD and IGF-BP3. p53-induced apoptosis
involves change in mitochondrial membrane potential (∆Y), cytochrome C release and caspase activation 
response to TNF (Van Antwerp et al, 1996; Phillips et al, 1999).
However, in other systems p53 expression has been shown to be
dependent on NF-κB (Wu and Lozano, 1994; Kirch et al, 1999),
and the contribution of NF-kB to the p53 apoptotic pathway
remains unclear. 

Choice of response 

Whether a cell undergoes cell cycle arrest or apoptosis in response
to p53 depends on several factors. Some of these may be indepen-
dent of p53, such as the presence of extracellular survival factors,
the presence of other oncogenic alterations and the availability of
additional transcription factors or cofactors (Vousden, 2000).
However, the activity of p53 can also contribute to the choice of
response. The type and the magnitude of the cellular stress may
control p53 function by affecting the level or activity of the p53
protein that is induced. Activation of apoptosis has been associated
with higher levels of p53 than those required for cell cycle arrest
(Chen et al, 1996), suggesting that the promoters regulating
expression of apoptotic genes bind p53 with a lower affinity than
the cell cycle arrest targets. Alternatively, affinity of p53 to target
promoters might be regulated by conformational change
(Thornborrow and Manfredi, 1999), and several mutants of p53
show selective loss of the ability to activate apoptotic target genes
and to induce apoptosis (Ryan and Vousden, 1998). Covalent
modification such as phosphorylation can also regulate conforma-
tion and/or promoter specificity of p53. Phosphorylation of p53 on
© 2001 Cancer Research Campaign
serine 46, for example, is required for the induction of the apop-
totic target gene p53AIP1 (Oda et al, 2000) and inhibition of the
kinase responsible for serine 46 phosphorylation by the phos-
phatase WIP1, which is also p53-inducible, inhibits the ability of
p53 to activate the apoptotic response (Takekawa et al, 2000). 

DNA repair 

Besides preventing cells with damaged genomes from replicating,
via its apoptotic and cell cycle arrest function, p53 also participates
in DNA damage repair. Cells lacking p53 function are deficient in
nucleotide excision repair (NER), which repairs UV-induced DNA
damage (Ford and Hanawalt, 1995; Wani et al, 1999) and base exci-
sion repair (BER), which removes bases damaged by alkylating
agents, oxygen-free radicals or hydrolysis (Offer et al, 2001; Zhou
et al, 2001). The C-terminus of p53 directly binds to different
forms of damaged DNA: single-stranded DNA, ends of double-
strand breaks and DNA ‘bulges’ resulting from insertion/deletion
mismatches. Also, p53 can associate with several components of the
repair machinery in vitro, including XPB/ERCC3, XPD/ERCC2,
p62 subunit of TFIIH, CSB, replication protein A and Ref-1. Other
biochemical activities of p53, such as DNA reannealing, DNA
strand transfer and 3′–5′ exonuclease activity might also play a role
in its repair function (for review see Albrechtsen et al (1999) McKay
et al (1999)). 

Some of the p53 target genes also participate in DNA damage
repair. GADD45 binds proliferating cell nuclear antigen (PCNA),
British Journal of Cancer (2001) 85(12), 1813–1823
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Figure 3 In tumour cells with p53, radiation and certain chemotherapeutic agents activate p53 by various mechanisms discussed in the text. Small molecules
can be used to inhibit MDM2- or E6-mediated degradation of p53 or to stabilize p53 in the active conformation. Alternatively, p53 or its homologues can be
introduced by adenoviral vectors (Adp53, Adp73). Gene therapy is used in combination with radiation or chemotherapy 
and could inhibit replicative DNA synthesis, thus allowing DNA
repair to proceed (Smith et al, 1994). Gadd45-null fibroblasts have
defects in NER similar to those seen in p53-null fibroblasts (Smith
et al, 2000) and Gadd45-deficient mice show increased radiation
carcinogenesis and genomic instability comparable to that seen in
p53-deficient mice (Hollander et al, 1999). Another transcriptional
target of p53 that plays a role in DNA repair is p53R2, a ribonu-
cleotide reductase gene (Nakano et al, 2000; Tanaka et al, 2000). 

POTENTIAL OF p53 IN CANCER THERAPY 

Since most cancers are defective in the p53 response, and tumour
cells are generally more sensitive to p53-mediated death than
many normal cells, reintroduction or reactivation of p53 in tumour
cells may have profound therapeutic utility. Several approaches to
restore p53 function in tumour cells are presently being pursued
(Figure 3). Mutant p53 can be re-activated in cells by small
peptides derived from the C-terminus of p53 (Selivanova et al,
1997). Even more promising, small compounds were identified
that stabilize both wild-type and mutant p53 in the active confor-
mation and thus are able to slow tumour growth in mice (Foster
et al, 1999). Inhibition of MDM2 may be effective in tumours that
retain wild-type p53, but fail to properly activate it, due to MDM2
overexpression or loss of ARF. Small peptides or antisense
oligonucleotides that target MDM2 have been shown to activate
p53 successfully in p53-positive tumour cells (Böttger et al, 1997;
Chen et al, 1999). Similarly, inhibition of the HPV E6 protein can
induce p53 in cervical cancer cells (Butz et al, 2000; Hietanes et al,
2000). These approaches may be less effective, however, in those
cancers where resistance to p53-mediated tumour suppression
results from defects in downstream effectors, such as Bax
(Rampino et al, 1997) or Apaf-1 (Soengas et al, 2001). 

Adenoviral or retroviral vectors have been used to re-introduce
wild-type p53 into tumour cells with no or mutant p53, inducing
apoptosis and promoting tumour regression in combination with
radiation therapy in clinical trials (Roth et al, 1999; Zeimet et al,
British Journal of Cancer (2001) 85(12), 1813–1823
2000). Adenoviral expression of the p53 family members p63 or
p73 was also able to induce apoptosis in certain cancer cells (Ishida
et al, 2000), and since p73 is resistant to degradation by MDM2 and
E6 (Marin et al, 1998; Prabhu et al, 1998; Balint et al, 1999;
Dobbelstein et al, 1999; Ongkeko et al, 1999; Zeng et al, 1999), its
potential for therapeutic application may be promising. In another
approach, an adenovirus lacking the p53-inactivating oncogene
E1B (Onyx-015) was shown to be able to replicate only in tumour
cells that are defective in the p53 pathway, but not in normal cells,
thus causing selective tumour cell killing and tumour regression in
many patients (McCormick, 2000). 

Despite the enhanced sensitivity of many cancer cells to p53-
mediated death, many normal cells also undergo apoptosis in
response to radiation or chemotherapy, leading to the debilitating
side effects that limit the extent of chemotherapy that can be toler-
ated. In a contrasting approach, an inhibitor of p53 was shown to
protect mice from the lethal effects of radiation treatment by
preventing damage of wild-type p53-containing normal tissues
(Komarov et al, 1999). Although many questions remain unan-
swered, it is apparent that our improving insights into the regula-
tion and function of the p53 tumour suppressor will yield exciting
advances in cancer therapy. 
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