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It has been increasingly recognized that inflammation plays an important role in the
pathogenesis of cardiovascular disease (CVD). In obesity, adipose tissue inflammation,
especially in the visceral fat depots, contributes to systemic inflammation and promotes
the development of atherosclerosis. Adipocyte fatty acid-binding protein (AFABP), a lipid
chaperone abundantly secreted from the adipocytes and macrophages, is one of the key
players mediating this adipose-vascular cross-talk, in part via its interaction with c-Jun
NH2-terminal kinase (JNK) and activator protein-1 (AP-1) to form a positive feedback loop,
and perpetuate inflammatory responses. In mice, selective JNK inactivation in the adipose
tissue significantly reduced the expression of AFABP in their adipose tissue, as well as
circulating AFABP levels. Importantly, fat transplant experiments showed that adipose-
specific JNK inactivation in the visceral fat was sufficient to protect mice with apoE
deficiency from atherosclerosis, with the beneficial effects attenuated by the continuous
infusion of recombinant AFABP, supporting the role of AFABP as the link between visceral
fat inflammation and atherosclerosis. In humans, raised circulating AFABP levels are
associated with incident metabolic syndrome, type 2 diabetes and CVD, as well as non-
alcoholic steatohepatitis, diabetic nephropathy and adverse renal outcomes, all being
conditions closely related to inflammation and enhanced CV mortality. Collectively, these
clinical data have provided support to AFABP as an important adipokine linking obesity,
inflammation and CVD. This review will discuss recent findings on the role of AFABP in
CVD andmortality, the possible underlying mechanisms, and pharmacological inhibition of
AFABP as a potential strategy to combat CVD.
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INTRODUCTION

Obesity is a global health problem. Based on the data from the World Health Organization (WHO),
in 2016, more than 1.9 billion adults aged 18 years or above were overweight, and among them, 650
million were obese (1). In a pooled analysis of 19.2 million participants, the age-standardized
prevalence of obesity has tripled in men and doubled in women over the last four decades. If these
trends continue, around 1 in 5 of the global population will become obese by year 2025 (2).
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Obesity leads to increased risks of type 2 diabetes (3, 4), non-
alcoholic fatty liver disease (NAFLD) (5), cardiovascular disease
(CVD) (6), cancer (7), and mortality. Indeed, high body mass
index (BMI) has become one of the top five leading causes of all-
cause mortality and disability-adjusted life-years (8). In 2015,
high BMI contributed to 7.1% of global deaths. Strikingly, CVD
accounted for two-thirds of these deaths and more than half of
disability-adjusted life-years related to high BMI (9). Recently, in
a Mendelian randomization (MR) study involving more than
360,000 participants from the UK Biobank, each genetically
instrumented increase in BMI of 1 kg/m2 was associated with a
significantly higher risk of most cardiovascular outcomes
including hypertension, atrial fibrillation, coronary heart
disease (CHD), heart failure and peripheral vascular disease
(PVD) (10). Genetically predicted fat mass index was
associated with an even broader list of cardiovascular outcomes
including ischemic stroke. These findings corroborated with
another large MR study which demonstrated the causal effects
of adiposity on CVD (11). Taken together, both observational
and MR studies provided strong epidemiological evidence that
obesity, in particular central adiposity, is closely linked with
CVD and cardiovascular mortality.

Inflammation, on the other hand, is an established important
risk factor of CVD and cardiovascular mortality (12). Previous
observational studies had demonstrated that markers of
inflammation such as C-reactive protein (CRP) and tumor
necrosis factor alpha (TNF-a) receptor 1 were independent
prognostic markers of adverse cardiovascular outcomes among
individuals with and without prevalent CVD (13, 14). Recently,
the use of Canakinumab, an anti-inflammatory monoclonal
antibody targeting interleukin-1, was also shown in a
randomized controlled trial to significantly reduce the
incidence of non-fatal myocardial infarction, non-fatal stroke
and cardiovascular death, confirming that inflammation plays a
crucial role in the pathogenesis of CVD (15). Obesity is a state of
chronic low-grade systemic inflammation, which is induced by a
cascade of cellular events that occur in the dysfunctional adipose
tissue, and perpetuated by dysregulated secretion of adipokines
through their local and systemic actions (16). This review will
focus on adipocyte fatty acid-binding protein (AFABP) and
present the recent data on its role as an important adipokine
linking obesity, inflammation and CVD.
AFABP EXPRESSION AND SECRETION

AFABP is a major cytosolic protein of the mature adipocytes
(17). As a fatty acid binding protein, it acts as a lipid chaperone
that facilitates the trafficking of non-esterified fatty acids
throughout cellular compartments such as peroxisome,
endoplasmic reticulum (ER), mitochondria and nucleus (18).
AFABP also regulates lipid storage and oxidation, and is involved
in lipolysis though its interaction with the hormone-sensitive
lipase (HSL) and a co-activator of adipose triglyceride lipase
(ATGL) (19, 20). The expression of AFABP in adipocytes is
induced during adipocyte differentiation, and is transcriptionally
Frontiers in Immunology | www.frontiersin.org 2
activated by fatty acids, glucocorticoids, cyclic adenosine
monophosphate (cAMP), and peroxisome proliferator-
activated receptor gamma (PPARg) agonists (21–23).

Studies in recent years have shown that AFABP is secreted
from the adipocytes, and circulates in the blood stream in
both mice and humans (24) (25). However, since it lacks
a signal peptide sequence for classical secretory pathway
(25), it has recently been reported that AFABP is secreted
unconventionally via endosomes and secretory lysosomes in
response to lipolytic and fasting related signals, such as
adrenergic signaling, beta agonists, branched-chain amino
acids and glycerol (25, 26), and the involvement of sirtuin-1
activation has been implicated (27). While it is also expressed in
the macrophages (28) and endothelial cells (29), in vivo data
suggest that the adipocyte is the predominant contributor to
circulating AFABP levels (25).
AFABP IN RELATION TO ADIPOSE TISSUE
INFLAMMATION AND INSULIN
RESISTANCE IN OBESITY

AFABP secretion is dysregulated in obesity, with raised
circulating AFABP concentrations being found in obese
individuals (24). With chronic nutrient excess, pathological
expansion of the adipose tissue causes several maladaptive
changes especially in the visceral fat depots. Hypertrophic
adipocytes undergo high rates of spontaneous lipolysis (30),
which increases free fatty acid (FFA) efflux and stimulates
AFABP release. Lipo-toxicity ensues as lipid intermediates such
as ceramides and diacylglycerols accumulate. Moreover,
adipocyte hypoxia and cell death develop as a consequence of
its continuous expansion despite relative under-perfusion and
increased mechanical stress (31), and hypoxia is another known
stimulus for AFABP release from adipocytes (32). On the other
hand, AFABP (33), as a lipid chaperone, has been implicated in
ER stress in response to lipotoxic signals, leading to activation of
stress kinases such as nuclear factor kappa B (NFkB) and c-Jun
NH2-terminal kinase (JNK) (34), enhancing adipocyte insulin
resistance that potentiates lipolysis and lipotoxicity. Adipocyte
insulin resistance also augments the secretion of pro-
inflammatory cytokines including the chemokine monocyte
chemoattractant protein 1 (MCP1) (35), which stimulates the
recruitment of macrophages into the adipose tissue (36).
Furthermore, it induces a phenotypic switch in the
macrophages from the anti-inflammatory M2 polarized state to
the pro-inflammatory phenotype typical of M1 classical
inflammation in metabolically-activated macrophages (MMe)
(37, 38).

Both innate and adaptive immunity are activated in obesity.
In addition to macrophage infiltration, adaptive immune cells
including CD4+ T helper (Th1) cells, CD8+ T cells and B cells
also accumulate in the visceral adipose tissue (39). Transient
enhancement of AFABP expression has been reported in murine
splenic lymphocytes after dexamethasone administration (40).
However, among the major human leucocyte subsets, the
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expression of AFABP is largely restricted to the macrophages and
myeloid dendritic cells (DC) (41). Specifically, owing to its high
expression in the macrophages (28), AFABP is more closely
linked with the innate immune cells. It has been shown that
AFABP perpetuates lipopolysaccharide (LPS)-induced
inflammatory responses in macrophages through its interaction
with JNK and activator protein-1 (AP-1) forming a positive
feedback loop. Upon stimulation by LPS via toll like receptor 4
(TLR4), JNK is activated, leading to the induction of c-Jun
phosphorylation and its recruitment to a highly conserved AP-
1 consensus binding motif located within the AFABP gene
promoter. As a result, AFABP gene transcription is
upregulated, which further potentiates LPS-induced JNK
phosphorylation, activation of AP-1 complex and amplification
of pro-inflammatory responses in the macrophages (42).
Nonetheless, AFABP can also affect adaptive immunity
through the modulation of DC responses. NFkB activation is
impaired in AFABP deficient DCs, which exhibit reduced DC
function in T cell priming and cytokine production (41).
Recently, AFABP was also found to be upregulated in a
subpopulation of tissue-resident memory CD8+ T cells which
have high requirement for fatty acid metabolism. Importantly,
the lack of AFABP in these cells could negatively impact their
survival and hence attenuate their function in protective
immunity (43). In a viral infection model, mice with genetic
deficiency of AFABP had decreased interferon gamma
production and increased viral load (41). However, in a rodent
model of sepsis, pharmacological inhibition of AFABP in fact
was demonstrated to be beneficial, with attenuation of sepsis-
triggered inflammatory responses, reduced hepatic and
pulmonary tissue injury, as well as improved survival (44).
Frontiers in Immunology | www.frontiersin.org 3
Taken together, these studies highlight the close and complex
relationship between AFABP and cellular immunity.

In the adipose tissue, infiltration of these immune cells drives
further release of pro-inflammatory adipokines including
TNF-a, interleukin-6 (IL-6) and AFABP, and reduces the
secretion of the anti-inflammatory adipokine adiponectin.
Increased AFABP secretion induces further lipolysis and
inflammation in the adipocytes via the p38/mitogen-activated
protein kinase (MAPK) pathway (45), and contributes to
this vicious cycle of adipose tissue insulin resistance and
inflammation (46) (Figure 1). Whole-body insulin sensitivity
was ultimately impaired, accompanied by a chronic state of
subclinical systemic inflammation, and the development of an
array of obesity-related complications including CVD and
cardiovascular mortality (Table 1).
AFABP AND CARDIOVASCULAR RISK
FACTORS

The detrimental role of AFABP on the development of CVD
begins with its effects on traditional cardiovascular risk factors in
addition to excess adiposity. AFABP-deficient mice displayed
improved glycemia, insulin sensitivity and lipid metabolism in
both dietary and genetically induced obesity (47, 48), secondary
to a reduced FFA efflux and increased glucose utilization in
muscles (49). Moreover, AFABP increases the hepatic expression
of gluconeogenic enzymes phosphoenolpyruvate carboxylase 1
(Pck1) and glucose-6-phosphatase (G6pc), leading to enhanced
hepatic glucose production and impaired glucose metabolism (25).
FIGURE 1 | AFABP in the vicious cycle of adipose tissue insulin resistance and inflammation. AFABP, adipocyte fatty acid-binding protein; ER, endoplasmic
reticulum; JNK, c-Jun NH2-terminal kinase.
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In humans, circulating AFABP concentrations also correlate
positively with adverse cardiometabolic risk factors including
age, obesity indices, hypertension, homeostatic model of insulin
resistance (HOMA-IR), low-density lipoprotein cholesterol
(LDL-C), and negatively with high-density lipoprotein
cholesterol (HDL-C) (50). Moreover, high circulating AFABP
concentrations predicted incident metabolic syndrome and type
2 diabetes, both of which are associated with increased risks of
CVD and mortality (50, 51).
AFABP AND ATHEROSCLEROSIS

AFABP promotes atherosclerosis, the central event in the
pathogenesis of CVD (81). Bone marrow transplant
experiments revealed that macrophage-specific AFABP
deficiency reduced atherosclerotic lesions in mice with
apolipoprotein E (ApoE) deficiency, to a similar extent as
those with whole body AFABP deficiency, suggesting that
much of the pro-atherogenic effects of AFABP are specific to
its actions in macrophages (28). The expression of AFABP in
macrophages can be upregulated in response to oxidized LDL
(oxLDL) and LPS (82, 83), which are both increased in obesity
(84, 85). On the other hand, metformin has been shown to
inhibit AFABP expression in macrophages (86). AFABP alters
lipid metabolism in macrophages and facilitates the formation of
Frontiers in Immunology | www.frontiersin.org 4
foam cell enriched with cholesterol and triglyceride (53, 54).
AFABP also promotes macrophage cell death through saturated
fatty acid-induced ceramide production (55). Moreover, AFABP
has been shown as an obligatory mediator of toxic lipids-induced
ER stress in macrophages, through inhibiting liver X receptor
alpha (LXRa) to reduce macrophage de novo fatty acid synthesis
which confers resistance to ER stress (33), as well as impairing
macrophage autophagy by attenuation of Janus Kinase 2 (JAK2)
activity (87). The elevated ER stress potentiates JNK activation
and further exacerbates inflammation.

However, there was recent evidence suggesting that the
negative impact of AFABP on atherosclerosis was not
exclusively due to its action in the macrophages. In mice,
selective JNK inactivation in the adipose tissue significantly
reduced both the expression of AFABP in their adipose tissue,
as well as circulating AFABP levels. Importantly, fat transplant
experiments showed that adipose-specific JNK inactivation in
the visceral fat was sufficient to protect mice with apolipoprotein
E (ApoE) deficiency from atherosclerosis, with the beneficial
effects attenuated by the continuous infusion of recombinant
AFABP, supporting the participation of adipocyte-derived
AFABP as a link between visceral fat inflammation and
atherosclerosis (56).

In humans, elevated baseline AFABP concentration predicted
incident CVD over a median follow-up of around 10 years in a
community-based cohort (57). Moreover, high circulating
TABLE 1 | Associations of AFABP with cardiometabolic conditions.

Circulating AFABP level Potential mechanistic actions References

Type 2
diabetes

• Predicts the development of type 2 diabetes • Increases free fatty acid efflux
• Reduces glucose utilization in muscles
• Increases hepatic expression of gluconeogenic enzymes

(25, 47–51)

Hypertension • Correlates positively with blood pressure • Increases endothelial dysfunction
• Worsens insulin sensitivity

(47, 48, 50,
52)

Dyslipidemia • Correlates positively with low-density lipoprotein cholesterol
• Correlates negatively with high-density lipoprotein cholesterol

• Increases free fatty acid efflux
• Negative effects on lipid metabolism
• Worsens insulin sensitivity

(47, 48, 50)

Coronary heart
disease

• Predicts the development of cardiovascular diseases
• Associates with coronary calcium score in patients with type 2

diabetes
• Associates with the coronary plaque burden in patients with

coronary heart disease

• Promotes atherosclerosis development:
• Alters lipid metabolism in macrophages and facilitates

foam cell formation
• Promotes saturated fatty acid-induced ceramide

production in macrophages
• Mediates toxic lipids-induced endoplasmic reticulum

stress in macrophages
• Increases adipose tissue and systemic inflammation

(33, 53–60)

Stroke • Associates with the presence of carotid atherosclerosis
• Correlates positively with the vulnerable carotid plaque phenotype
• Doubles the risk of incident adverse cardiovascular events including

cardiovascular mortality, non-fatal myocardial infarction and non-fatal
stroke.

• Predicts poor functional outcome and mortality from ischemic stroke

• Promotes atherosclerosis development (as above)
• Enhances the production of matrix metalloproteinases-9

which degrade the tight junction proteins in the blood
brain barrier, leading to cerebral edema, increased
neuro-inflammation and poor neurological outcomes

(61–68)

Heart failure • Correlates positively with circulating levels of N-terminal fragment of
pro-B-type natriuretic peptide

• Associates with the presence of left ventricular systolic and/or
diastolic dysfunction

• Associates with increasing severity of clinical heart failure
• Predicts incident heart failure among older individuals

• Negative inotropic effect on cardiomyocytes
• Reduces phosphorylation of endothelial nitric oxide

synthase in acute myocardial ischemia/reperfusion injury
• Increases oxidative stress and cardiac inflammation
• Increases cardiac hypertrophy and fibrosis

(52, 69–75)

Cardiovascular
mortality

• Associates with both short- and long-term cardiovascular morbidity
and mortality in patients with established coronary heart disease

• Predicts cardiovascular deaths in patients with type 2 diabetes

• See above (76–80)
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AFABP concentration was associated with coronary calcium
score in patients with type 2 diabetes (58), as well as the
coronary plaque burden in patients with coronary heart disease
(59). In keeping with observations from preclinical studies,
AFABP was not only expressed in macrophages within
atherosclerotic plaques of the coronary arteries in patients with
CHD, but also in both macrophages and adipocytes in their
epicardial and perivascular fat. In vitro studies showed that
treatment of human coronary artery smooth muscle and
vascular endothelial cells with AFABP augmented palmitic
acid-induced inflammation, suggesting that AFABP from
epicardial and perivascular fat could also participate in the
development of coronary atherosclerosis in a paracrine manner
(60). Furthermore, individuals who harbored the single
nucleotide polymorphism (SNP) T-87C, which reduced
AFABP gene expression in their adipose tissue, was found to
have a lower risk of CHD (88).
AFABP AND STROKE

The role of AFABP in the development of stroke is multifaceted.
First, high circulating AFABP concentration was associated with
the presence of carotid atherosclerosis (61, 62), a predisposing
condition for cerebral infarction. In patients with carotid
atherosclerosis, AFABP concentrations in their carotid plaques
correlated positively with the vulnerable plaque phenotype (63,
64), predicted their disease progression (89), and doubled their
risk of incident adverse cardiovascular events including
cardiovascular mortality, non-fatal myocardial infarction and
non-fatal stroke (64). Moreover, circulating AFABP concentration
was associated with ischemic stroke in cross-sectional studies, and
high AFABP concentration was consistently shown to be
predictive of poor functional outcome, as well as short- and
long-term mortality in patients who suffered from ischemic
stroke (62, 65–67).

Mechanistically, genetic ablation of AFABP in mice was
recently found to protect them from severe cerebral ischemic
injury induced by surgical occlusion of their middle cerebral
artery, which translated to less neurological deficits and
improved survival after ischemic stroke. Both circulating and
cerebral AFABP concentrations were elevated in response to
cerebral ischemia. The increase in AFABP, derived from
microglia and infiltrating macrophages, enhanced the production
of matrix metalloproteinases-9 (MMP-9) through JNK activity,
which degraded the tight junction proteins in the blood brain
barrier, leading to cerebral edema, increased neuro-inflammation
and poor neurological outcomes (68).
AFABP, HEART FAILURE, AND
CARDIOVASCULAR MORTALITY

AFABP plays a critical role in the development of heart failure
and predisposes to increased cardiovascular mortality. In vitro
studies demonstrated that adipocyte-derived AFABP possessed a
Frontiers in Immunology | www.frontiersin.org 5
negative inotropic effect on rat cardiomyocytes and could inhibit
their contraction (69). In humans, circulating AFABP
concentration positively correlated with circulating levels of N-
terminal fragment of pro-B-type natriuretic peptide (NT-
proBNP), an established marker of heart failure (70).
Moreover, high circulating AFABP concentration was
associated with the presence of left ventricular systolic and/or
diastolic dysfunction (71–73), as well as increasing severity of
clinical heart failure (74). In the Cardiovascular Health Study,
circulating AFABP concentration was also shown to be a modest
but independent predictor of incident heart failure among older
individuals (75).

The negative impact of AFABP on cardiovascular outcomes
could also be attributed to their effects on endothelial
dysfunction and oxidative stress. Genetic ablation of AFABP
protected mice from cardiac dysfunction secondary to diabetes
and myocardial ischemia/reperfusion (MI/R) injury. AFABP,
whose expression was upregulated in cardiac endothelial cells
in response to acute MI/R injury and hyperglycemia, reduced
phosphorylation of endothelial nitric oxide synthase (eNOS) in
acute MI/R injury, and increased superoxide anions in diabetes.
In both situations, endothelial dysfunction ensued, which
induced oxidative stress and cardiac inflammation, leading to
cardiac hypertrophy, fibrosis and impaired myocardial
contractility (52). Indeed, in keeping with findings from studies
in mice, high circulating AFABP concentration was associated
with both short- and long-term cardiovascular morbidity and
mortality in patients with established CHD (76–78),and was an
independent predictor of cardiovascular deaths in patients with
type 2 diabetes (79, 80).
AFABP AND OTHER OBESITY-RELATED
CONDITIONS WITH INCREASED
CARDIOVASCULAR RISK

AFABP is also implicated in the pathogenesis of several obesity-
related complications with increased cardiovascular risk, such as
NAFLD, obstructive sleep apnea (OSA) and chronic kidney
disease (CKD) (90–92). In NAFLD, for instance, over-
expression of AFABP in Kupffer cells of the liver induced non-
alcoholic steatohepatitis in mice, while obesity-induced liver
injury was alleviated by pharmacological inhibition of AFABP
(93). Similar findings had been observed in humans, where
circulating AFABP concentration was associated with
increasing lobular inflammation, hepatocyte ballooning and
higher stages of hepatic fibrosis on liver histology (94). On the
other hand, elevated serum AFABP concentration was also found
in patients with severe OSA compared with those with milder
disease (95, 96), and the use of continuous positive airway
pressure was shown to reduce circulating AFABP concentrations
in a recent randomized controlled study (97). Moreover, circulating
AFABPwas associated with adverse renal outcomes including renal
deaths in patients with type 2 diabetes (98), which could possibly be
a result of macrophage infiltration in the glomerulus and
interstitium, ectopic expression of AFABP in the glomerulus, as
March 2021 | Volume 12 | Article 589206
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well as AFABP induced increased ER stress in the mesangial cells
(99–101). Importantly, high circulating AFABP concentration was
also an independent predictor of cardiovascular death in patients
with end-stage renal disease (102).
AFABP AS A THERAPEUTIC TARGET
FOR CVD

Preclinical studies have demonstrated that there is great potential
in targeting AFABP as a therapeutic strategy to combat CVD and
its risk factors. Several AFABP inhibitors have been developed,
including a few biphenyl azole, indole- and carbazole-based
compounds. In particular, BMS309403 (BMS) is a selective,
high-affinity small molecule oral inhibitor of AFABP which
impedes the ligation of fatty acid to its binding cavity on
AFABP (103). Pharmacological inhibition of AFABP using
BMS alleviated endothelial dysfunction and atherosclerosis in
mice with ApoE deficiency. This was accompanied by reduced
cholesterol ester accumulation in macrophages, as well as
attenuated expression of pro-inflammatory cytokines including
MCP1, IL-6 and TNFa (104, 105). Recently, BMS was also
shown to improve stroke outcomes by ameliorating
neurological deficits and improving the survival in mice with
cerebral ischemic injury after surgical occlusion of their
middle cerebral artery (68). Moreover, BMS attenuated non-
alcoholic steatohepatitis (93), improved glucose tolerance
(105) and decreased toxic lipid-induced ER stress associated
inflammation in the skeletal muscle of mice with dietary
Frontiers in Immunology | www.frontiersin.org 6
obesity (106). Another small molecule inhibitor HTS01037,
which acts as a competitive antagonist of AFABP mediated
protein-protein interactions (107), was shown to alleviate
macrophage inflammation and ER stress through upregulating
uncoupling protein 2 (UCP2) expression (108). In addition to
these oral compounds, alternative approaches of AFABP
inhibition have also been investigated. The use of neutralizing
antibodies against AFABP was demonstrated to significantly
reduce adipose tissue inflammation (34), hepatic glucose
production (25), and whole-body insulin resistance in obese
mice (109). Likewise, adipocyte targeted silencing of AFABP
using short-hairpin RNA treatment resulted in significant weight
reduction, improved insulin sensitivity and glycemia in obese
mice (110).

Although clinical studies of both BMS and neutralizing
antibodies are still not available, several compounds have
been found to modulate circulating AFABP concentrations.
Treatment with chloroquine in mice diminished AFABP
secretion from adipocytes, resulting in a lower circulating
concentration (26). In humans, atorvastatin (111), sitagliptin
(112), omega-3 fatty acids (113), and angiotensin II receptor
blockers (ARBs) including candesartan, olmesartan, telmisartan
and valsartan (114) decreased, whereas pioglitazone (115) and
canagliflozin increased circulating AFABP concentrations (116).
While omega-3 fatty acids and pioglitazone directly affect
AFABP expression in adipocytes, it was postulated that ARBs
suppressed and canagliflozin promoted catecholamines-induced
lipolysis, respectively, causing the changes in the circulating
AFABP concentrations despite neutral, if not favorable effects
FIGURE 2 | Direct and indirect effects of AFABP to the development of cardiovascular diseases. AFABP, adipocyte fatty acid-binding protein; CV, cardiovascular.
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of ARB and sodium glucose co-transporter 2 inhibitors on
adiposity (114, 116).
CONCLUSION

Obesity has reached pandemic levels, and so has CVD. Adipose
tissue inflammation with dysregulated adipokine secretion is
crucial to the pathogenesis of adverse cardiovascular outcomes
in obesity. Recent mechanistic and epidemiological studies have
provided further insights to support AFABP as a key player
mediating this adipose-vascular cross-talk via direct and indirect
effects (Figure 2). However, from a clinical perspective, further
validation studies are certainly required to investigate the
potential of employing AFABP as a promising marker of CVD
and cardiovascular mortality for clinical application. Moreover,
standardization of commercial AFABP ELISA assays is also
equally important. On the other hand, while preclinical studies
Frontiers in Immunology | www.frontiersin.org 7
have clearly demonstrated AFABP as an attractive therapeutic
target in battling against CVD, intervention studies to evaluate
the efficacy and safety of pharmacological inhibitors of AFABP
and/or neutralizing antibodies in humans are eagerly awaited. In
summary, although it may still be a long way before its clinical
application as a biomarker or therapeutic target, research in
recent years have clearly shown that AFABP is another major
adipokine linking obesity with inflammation and adverse
cardiovascular outcomes.
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