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Abstract
Coherent neural spiking and local field potentials are believed to be signatures of the bind-

ing and transfer of information in the brain. Coherent activity has now been measured

experimentally in many regions of mammalian cortex. Recently experimental evidence has

been presented suggesting that neural information is encoded and transferred in packets,

i.e., in stereotypical, correlated spiking patterns of neural activity. Due to their relevance to

coherent spiking, synfire chains are one of the main theoretical constructs that have been

appealed to in order to describe coherent spiking and information transfer phenomena.

However, for some time, it has been known that synchronous activity in feedforward net-

works asymptotically either approaches an attractor with fixed waveform and amplitude, or

fails to propagate. This has limited the classical synfire chain’s ability to explain graded neu-

ronal responses. Recently, we have shown that pulse-gated synfire chains are capable of

propagating graded information coded in mean population current or firing rate amplitudes.

In particular, we showed that it is possible to use one synfire chain to provide gating pulses

and a second, pulse-gated synfire chain to propagate graded information. We called these

circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded

information can rapidly cascade through a neural circuit, and show a correspondence

between this type of transfer and a mean-field model in which gating pulses overlap in time.

We show that SGSCs are robust in the presence of variability in population size, pulse tim-

ing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-

based information coding by implementing a self-contained, spike-based, modular neural

circuit that is triggered by streaming input, processes the input, then makes a decision

based on the processed information and shuts itself down.

Author Summary

Cognitive tasks are associated with the dynamic excitation of neural assemblies. When we
consider how quickly and flexibly such collectives may be formed and incorporated in a
task, a persistent question has been: how can the brain rapidly evoke and involve different
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neural assemblies in a computation, when synaptic coupling changes only slowly? Here,
we demonstrate mechanisms whereby information may be rapidly and selectively routed
through a neural circuit, and sub-circuits may be turned on and off. The resulting informa-
tion processing framework achieves the goal that has been pursued, but until now largely
not attained, of achieving faithful, flexible information transfer across many synapses and
dynamic excitation of neural assemblies with fixed connectivities.

Introduction
Functioning neuronal networks need to store, transmit, integrate and transform their inputs to
achieve the neural computation performed by the brain. How this happens in vivo has not
been understood. Many proposed mechanisms rely on rate model formulations with proposed
mechanisms ranging from how oscillations are generated [1], to how anatomical architecture
can maintain working memory [2], to how long time scales can emerge from the heterogeneous
(recurrent, feedforward and feedback) connectivities in the primate cortex [3].

With the advent of modern supercomputing, there have been efforts to simulate the entire
(or a large portion of the) brain with realistic spiking neurons [4–6]. There has also been work
using spiking models to perform Bayesian inference [7, 8], statistical machine learning algo-
rithms [9], arbitrary, highly accurate linear maps [10], and predictive coding [11].

Numerical studies investigating fundamental computational mechanisms such as informa-
tion propagation [12–15] have shown that it is possible to transfer firing rates through feed-for-
ward networks when there is sufficient background activity to keep the network near threshold
[16]. Further studies have shown that additional coherent spatio-temporal structures (e.g. hubs
or oscillations) can stabilize the propagation of synchronous activity and select specific path-
ways for signal transmission [17–20]. Despite many constructive examples, how general com-
putation (i.e. a Turing complete framework) can be performed using spikes or firing rates
remains an open problem.

From the above studies and the large literature on this subject, it is seen that there is a range
of levels of approximation at which to understand and model neural function. Marr catego-
rized this range [21] as: 1) studies at the computational level that ask what the brain does and
why, 2) studies at the algorithmic level that attack how the brain performs specific computa-
tions, the information representations used and the processes that manipulate this information,
and 3) studies at the implementational level that look for biophysical mechanisms that make
up the building blocks to be used at higher levels.

We have demonstrated an information propagation mechanism at the implementation level
that may be used as a fundamental building block to construct higher level information pro-
cessing algorithms, and, we hope, may be used to build yet more abstract structures such as the
cognitive operating system used by the brain with its many regions and sub-structures [22].
Our mechanism makes use of gating pulses to propagate information in the form of graded
pulses from layer to layer. Experimental evidence supports the idea that information in the
brain propagates in discrete spike packets, such as the pulses that arise from our mechanism.
Luczak, MacNaughton and Harris (LMH) have recently laid out evidence that stereotypical
and repeating spike sequences consisting of packets of spikes constitute basic building blocks
for neural coding [23]. They show that spike packets have been observed in many different
regions of cortex. Thus, they suggest, packet-based information processing is likely to be con-
served across much of the brain.
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Information packets by themselves are insufficient to form the basis for an information pro-
cessing system. The system must also be powerful enough to perform general computation.
That is, it must be as powerful as a universal Turing machine and be capable of storing, trans-
mitting, integrating and transforming information. In our previous work, we demonstrated
that graded information could be faithfully propagated through many layers of a neural circuit
and that arbitrary linear maps could be performed using appropriate synaptic connectivities
[22]. However, one thing that was lacking was the ability to perform decisions. Once a neural
circuit can perform a decision, the circuit itself can control subsequent processing, providing
the capacity necessary for general computation. In this paper, after providing a more general
understanding of graded information propagation than is discussed in our previous work, we
demonstrate that, by allowing graded information to interact with neural gating populations,
decisions can be made within our pulse-gated information processing framework. We show
how this works by implementing a self-contained, spike-based, modular neural circuit that is
triggered by an input stream, reads in and processes the input, generates a conditional output
based on the processed information, then shuts itself off.

Results
In Fig 1, we show how graded information may be propagated in an SGSC neural circuit (Fig
1A). This circuit consists of two feedforward networks. One network (gating chain), set up to
operate in the attractor synfire regime, generates a fixed amplitude pulse that propagates from
layer to layer (Fig 1D and 1E). The second network (graded chain) receives gating pulses from
the gating chain and is capable of propagating graded currents and firing rates from layer to
layer (Fig 1B and 1C). The gating chain delivers pulses offset by time T0 to the graded chain
rapidly enough that there is an overlap in the integration of graded information and its trans-
mission from one layer to the next. Graded information, in the form of synaptic currents and
firing rates, is faithfully propagated across all 12 layers in the simulation.

The observation that spike volleys in successive layers of the SGSC overlap in time led us to
consider an extension of our previous mean-field model [22] to allow for the integration of
graded information in successive populations to overlap in time. As in our previous work, we
consider the idealized case in which the gating pulses are square. In Fig 2, we show a transla-
tionally invariant solution (Fig 2A) and gating pulses (Fig 2B) from such a mean-field model.
Successive gating pulses of length T are offset by time T0. The solution is divided into segments
which are the result of the integration of spikes in the corresponding segment (shifted by T0)
from the previous layer during the gating pulse. In the I&F model, both T and T0 result from
intrinsic neuronal dynamics and synaptic delays. See Materials and Methods and SI Appendix
2 for the specific parameters that we used in our simulations.

For fixed T and T0, we find time translationally-invariant solutions for synaptic input cur-
rents for special values of the feedforward coupling strength, S = Sexact, in the mean-field model
(see Materials andMethods and SI Appendix 1). In Fig 2C, we plot Sexact as a function of
η = T/T0, where η is a measure of the overlap in the integration and transmission of graded infor-
mation. Note that Sexact becomes flatter as the overlap, η, gets larger. This implies that, for large
overlaps, any propagation error in the solution due to deviations from Sexact is small. Thus, in
the large η regime, information propagation is robust to variability in both pulse timing and cou-
pling strength. For practical purposes, we find that η> 2 or 3 is sufficiently robust. Furthermore,
for a generic feedforward network, there exists a wide range of S (roughly, S from 1 to 2.7) where
we can find time translationally-invariant solutions for which graded propagation is possible.

In Fig 3, we explore whether our mean-field theory could be used to model our I&F simula-
tion results. First, we determined the parameters (ηfit, αfit) that gave the best-fitting mean-field
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solution to the simulation data, given known T0. Here, we define α� S(T0/τ)e
−T0/τ, so that α =

1 at η = 1. In this expression, τ represents a synaptic time scale (see Materials and Methods).
Next, using the simulational synaptic coupling, αsim, we found η = ηsim that corresponded to
the time-translationally invariant solution of the mean-field model. Closeness of these two
points would give evidence that the mean-field theory, despite the simplications used to derive
it (e.g. precisely timed square gating pulses, linear f-I curve, etc.), can be used to model the I&F
simulation. We show details of this fitting procedure for two different T0’s (Fig 3A–3D), and
summarize the results for T0 = 0.003, 0.004, 0.005, 0.006 (Fig 3E). The closeness of model fits
with simulation results, for a wide range of overlaps, indicates that the mean-field theory is a
good model of the SGSC simulation.

In Fig 4, we investigate the robustness of pulse-gated synaptic current transfer in the SGSC
to finite-size effects, variability in synaptic coupling, and inaccuracies in pulse timing. As
would be expected, transfer variability decreases as 1=

ffiffiffiffiffiffi
N1

p
(Fig 4A and 4B). Randomness in

Fig 1. Graded information transfer in synfire-gated synfire chains. A) Circuit diagram. ‘g’ (for ‘graded’)
denotes a population in the graded chain. ‘s’ (for ‘synfire chain’) denotes a population in the gating chain. S11,
S12 and S22 denote synaptic couplings between and within the respective chains. The gating chain generates
pulses that gate the propagation of graded information in the graded chain. B) Mean, synaptic current
amplitude transferred across 12 neural populations (labelled red, blue, magenta, black, etc., also see
corresponding colors in C) and E)). N1 = 1000. Averaged over 50 trials. Three amplitudes are depicted. C)
Spike rasters from graded populations for one instance of graded transfer. D) Mean, synaptic current
amplitude for fixed amplitude synfire chain across 12 layers.N2 = 100. Averaged over 50 trials. E) Spike
rasters from gating populations for one instance of graded transfer. Mean firing rates over the duration of a
graded pulse (T* 9 ms) reached 30–70 Hz for a single neuron. For the gating chain, the pulse length was
shorter (T* 3 ms), giving a mean firing rate of 300 Hz for a single neuron. (Please see Materials and Methods
for definitions of all parameters.)

doi:10.1371/journal.pcbi.1004979.g001
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synaptic coupling either in the gating chain or the coupling between chains has little effect on
the variability (compare Fig 4C and 4D with Fig 4B). As we mentioned above, this is expected
due to the flatness of Sexact(η) for large η. Here, η = 2.5. Similarly, jittering T0 has little effect on
the variability of current transfer (Fig 4E).

Pulse-gated propagation mechanisms, such as the SGSC, naturally give rise to a probabilis-
tic, spike-based information processing framework in which information, in the form of spik-
ing probabilities, is processed by graded chains and the flow of information is controlled by
gating chains [22]. Additionally, logic operations may be performed by allowing graded infor-
mation to interact with the pulse generator (see Materials and Methods).

In previous work [22], we demonstrated a number of example circuits that made use of
pulse-gated networks to control the flow of graded information through a neural circuit. We
showed how a working memory could be constructed. We also showed how matrix transforms,
such as a Hadamard transform (a Fourier transform using square-wave, Walsh functions with

Fig 2. Graded information transfer with overlapping pulses, exact mean-field solution. A) Graded,
mean current amplitudes across 2 populations. Two overlapping solutions are shown, one upstream (earlier
in time) and one downstream (later in time). The downstream current evolution is easiest to understand: The
red segment depicts the epoch when the second gating pulse (depicted in tan) has brought the downstream
population to threshold. During this time, the upstream current (depicted in magenta) is integrated and the
downstream current begins to rise. Once the upstream current enters the next epoch (depicted in blue), the
downstream current (depicted in magenta) continues to rise. After the upstream current begins to decay
exponentially (depicted in brown), the downstream current continues to rise (depicted in blue) until the gating
pulse ends. At this point, the downstream current decays exponentially. So, from the point of view of the
downstream population, the red segment represents the integration of the pink segment of the upstream
population, the magenta segment represents the integration of the blue segment of the upstream population,
and the blue segment represents the integration of the brown segment of the upstream population. T0/τ = 0.6,
T1/τ = 0.3, and T/τ = 1.5. Sexact for these values is 1.582. The coefficients of the solution polynomial are
{0.733, 0.640, 0.228} (See SI Appendix 1). B) Gating pulses offset from 0 for clarity. C) Sexact vs. η.

doi:10.1371/journal.pcbi.1004979.g002
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different frequencies as a basis), could be performed on streaming input. Finally, we showed
how pulses could be used to re-entrantly guide information through neural subcircuits to per-
form iterated computations.

Here, to illustrate the capability of pulse-based information processing to perform complex
computations, we show results from a toy model circuit meant to serve a representative func-
tion of the brain: to process incoming, time-dependent information, then make a decision
based on the processed data. For instance, a similar (non-toy) circuit would implement the rec-
ognition of a person’s face, transformed from visual information as it streams into the visual
cortex, or the recognition of a word or phrase in the auditory system. Upon recognition, the

Fig 3. Fitting a square-pulse gatedmean-field model of the SGSC. A) Fits of synaptic input currents
predicted by the mean-field model to results of I & F simulations for 3 amplitudes for T0 = 0.003. B) T0 = 0.003:
Blue line—αexact as a function of η. Red triangle—(ηsim, αsim), purple circle—(ηfit, αfit). Inset: magnification
showing location of results from fit. C) Fits of mean-field model and I & F simulation currents for 3 amplitudes
for T0 = 0.005. D) T0 = 0.005: Blue line—αexact as a function of η. Red triangle—(ηsim, αsim), purple circle—(ηfit,
αfit). Inset: magnification showing location of results from fit. E) Results of fit for T0 = 0.003, 0.004, 0.005,
0.006. Traces offset for clarity.

doi:10.1371/journal.pcbi.1004979.g003
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circuit might send on the information and transfer control to a downstream circuit responsible
for the reaction to the recognition.

The neural circuit that we demonstrate is triggered by a streaming input. The input is a
function that oscillates in time. The circuit encodes the input in graded pulses, then transforms
it in order to determine frequency and phase information. It then makes a decision based on
the transformed input that affects subsequent processing (Fig 5).

The neural circuit consists of (see Fig 5A) 1) a trigger, 2) a module used to keep sampled
streaming input in short-term memory, 3) a 4 × 4 Hadamard transform, 4) a second set of
Hadamard outputs (Hadamard Copy) representing output copy to a downstream circuit, 5) an
Input population, 6) a Shut Down population to terminate processing, 7) a Compute gating
chain to drive the computation, 8) a Vigilance gating chain that serves as a processing indicator
and clock to synchronize the triggering of an output decision, 9) an Output Copy gating chain
that serves as a decision indicator and is turned on based on the amplitude of the (arbitrarily

Fig 4. Signal-to-Noise-Ratio as a function of the number of transfers.Red—mean synaptic current
amplitude for transfer across 12 layers. Blue—standard deviation of current amplitude. Mean and standard
deviation calculated from 1000 trials. A) N1 = 1000, all subsequent scales are the same. B) N1 = 100, C) S11

taken from a uniform distribution with half-width of 5%,N1 = 100, D) S12 taken from a uniform distribution with
half-width of 5%,N1 = 100, E) Pulse delay jittered by 10%,N1 = 100.

doi:10.1371/journal.pcbi.1004979.g004
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Fig 5. Autonomous decisionmaking circuit. A) Neural Circuit. Input amplitude triggers input to be read in, processed, and, conditionally, the
processing output is copied, then the circuit turns itself off. B) Connectivity matrix, divided into four components, K11 (graded to graded chain
connectivities, upper left), K12 (gating to graded chain connectivities, upper right), K21 (graded to gating chain connectivities, lower left), and K22 (gating to
gating chain connectivities, lower right). Plotted are values of Kij times the synaptic connectivity, S. Color bar denotes connectivity values. Graded chain
populations are: “Memory” (1–14), “Hadamard” (15–22), “Hadamard Copy” (23–30), “Input” (31), and “Shutdown” (32) populations. Memory designates
Read In (1, 6, 10, 13) and (non-cyclic) Memory populations. Hadamard designates populations holding Hadamard coefficient amplitudes. The Hadamard
transform is divided into two parallel operations, one that results in positive coefficients, the other in absolute values of negative coefficients. Hadamard
Copy designates populations into which the Hadamard transform may be copied. Input designates a population that linearly transduces a signal from
outside the network. And Shutdown designates a population that receives summed input from the Hadamard Copy populations. Upon excitation, it shuts
down the input and gating populations and terminates the computation. Gating chain populations are: “Trigger” (33), a re-entrantly coupled population that
fires until inhibited, “Compute” (34–39) for gating the computation of the windowed Hadamard transform in the Memory and Hadamard populations,
“Vigilance” (40–43) a pulse loop that, along with the “Logic—Conditional Output” (50) population makes a decision based on the amplitude of the output of
the 8’th Hadamard population, and “Output Copy” (44–47) a pulse loop that maintains a memory that the decision was made. Logic populations: “Logic—
Trigger” (49) a population that is conditionally excited when both Trigger and Input are excited, and “Conditional Output” (50) a population that is
conditionally excited when Hadamard coefficient 8 is above threshold and a population in Output Copy is excited. C) Raster plot showing spikes from the
graded chain. T0 = 4 ms, T = 7.5 ms, τ = 5 ms. Time runs from left to right. Initially, the Trigger population is re-entrantly excited until the Input amplitude
increases. Input, beginning at t = −0.025s combines with Trigger to initiate firing in the Logic—Trigger population, which triggers the Compute gating chain
and initiates the computation (indicated by vertical black line). Trigger is subsequently turned off by inhibition from the Compute gating chain. We show
the computation for three successive windows, each of length 4T0. The gating chain binds the input into four memory chains of length 4T0, 3T0, 2T0 and
T0. Thus, four temporally sequential inputs are bound in four of the memory populations beginning at times t = 4, 8, 12T0 relative to the trigger. Hadamard
transforms are performed beginning at t = 5, 9, 13T0. Each subsequent read in starts one packet length before the Hadamard transform so that the
temporal windows are adjacent. At time t = 0.06 s, the high amplitude in Hadamard coefficient 8 combines with gating population Conditional Output to
initiate the Output Copy chain. The output is copied to Hadamard Copy populations, which then cause the shutdown of the gating chain. D) Raster plot
showing spikes from the gating chain. These pulses trigger the computation, gate information through the graded chain, and are also used to perform the
decision to copy the Hadamard output to Hadamard Copy for sufficiently high amplitudes in Hadamard, population 8. E) Mean firing rates of the graded
chain averaged over 50 realizations. Read In—Magenta, Memory—Cyan, Hadamard Coefficients—Green, Input—Yellow, Shut Down—Red. F) Mean
firing rates for the gating chain averaged over 50 realizations. Trigger—Red, Cyan, Output Copy—Cyan. E,F) The firing rates have been smoothed by a
moving average process with width 2 ms.

doi:10.1371/journal.pcbi.1004979.g005
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chosen) 8’th Hadamard coefficient, and 10) Logic populations for a) triggering the computa-
tion and b)making the decision to copy the Hadamard output. Output then triggers circuit
shutdown by inhibiting all gating chains.

This probabilistic, spike-based algorithm uses a self-exciting population coupled to a
streaming input to trigger the computation (see Fig 5B, 5C, 5D and 5E), then continuously
gates 4 sequential input amplitudes into 4 read in populations and maintains the input values
by gating them through working memory populations until all values are simultaneously in 4
working memory populations. The values in working memory are next gated to Hadamard
populations transforming the input values into Hadamard coefficients (one set of positive coef-
ficients and one set of absolute values of negative coefficients [22]). At this point, a time-win-
dowed Hadamard transform has been computed on the input. Input for the simulation in Fig 5
is sinusoidal, so the Hadamard transform, which gives a frequency-based representation of the
input, outputs phase and frequency information for the sinusoid. Gating pulses are interleaved
such that this computation is performed iteratively on successive windows of length 4T from
the streaming input.

To implement a conditional copy of the transformed data, we combine the output of the
(arbitrarily chosen) eighth Hadamard coefficient in the present Hadamard output (represent-
ing that a particular frequency and phase of the input was detected) and the first population in
the “Vigilance” gating chain. This operation causes the graded pulse to activate the Output
Copy chain when its amplitude is sufficiently high, conditionally causing a pulse to cascade
through 4 gating populations with the last population gating the transfer from the subsequent
Hadamard output to the 8 output neurons. Once the Hadamard output is copied, it activates
the Shutdown population, which inhibits all populations in the gating chains, terminating the
computation.

Discussion
In this Section, we first discuss some technical issues related to the models and circuits that we
presented above. Second, we present some ideas for understanding some experimental aspects
of spike packets, à la LMH, using our SGSC-based information processing framework. Third,
we discuss aspects of oscillatory coherent activity and its possible relationship to pulse-gating.
Finally, we discuss some distinctive aspects of information processing using SGSCs and their
use.

Technical Issues: In parallel circuits such as the decision making circuit depicted in Fig 5,
race conditions can exist. This occurs when the relative arrival times of various pieces of infor-
mation (in our context, graded or gating pulses) are imprecise and thus corrupt a computation.
Such a problem could exist in our decision making circuit, however, note that the problem is
resolved by the fact that the gating chain (as may be seen in K22) uses a single chain of popula-
tions to gate the working memories and the Hadamard transform. Therefore, as long as gating
is consistently timed, there can be no race condition in this circuit, since the pulses that control
the parallel transfer of information arise from the same source, and thus gate the entire work-
ing memory or Hadamard populations at the same time. Furthermore, due to our use of an
attractor synfire chain for gating, the timing is stereotypical and consistent.

The fact that our idealized mean-field model predicts the value and the range of synaptic
strengths for exact transfer so well relies on an underlying time-translational invariance of the
spiking and membrane potential probability distribution functions. This correspondence can
be made more explicit by using a Fokker-Planck approach and suggests that a mean-firing rate
description may work well even when the number of neurons in each population is not so
large. Our I&F simulations indicate that N� 100–1000 is sufficient. Analysis of our Fokker-
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Planck simulations suggests that the dynamics of graded transfer may be captured by the mean
firing rate and a few additional variables encapsulating the equilibrium voltage probability dis-
tributions [24]. Ongoing work aims to clarify the conjunctive role of the gating current, the
synaptic coupling strength, Sexact, and the state of each neuronal population (as described by its
membrane potential distribution) in the transmission of firing rates and rate correlations.

Packets: In our propagation mechanism, an upstream neuronal population sends spikes
downstream, the spikes are integrated in the synaptic current of the downstream population,
but unless a gating pulse is provided by a pulse-gating population to the downstream popula-
tion, the information does not propagate. Gating pulses are provided by a feedforward chain
with strong connectivity. Graded information propagates through neural assemblies with
sparse, weaker connectivity. LMH conjecture that the cortex rests on a skeleton of stronger
connections immersed in a sea of weaker ones. Thus, a correspondence may exist between the
skeleton of strong connections and a gating chain and the sea of weakly connected neurons
and a graded chain.

Other evidence LMH discuss is: 1) spike-timing reliability progressively decays during a
packet giving way to stimulus related firing rates. In our framework, if one considers the com-
bined gating and graded pulses to be a spike packet received by a neuron in a graded popula-
tion, then the gating pulse occurs at the beginning of a packet, where gating and graded spikes
are combined early on. Later spikes in the packet, after the gating pulse ends, consist of spikes
from the graded waveform, which decays as spikes are integrated downstream. The early gating
pulse would be expected to be the most stereotypical aspect of the mechanism, and gating is
purely timing related so many early spikes should be strongly correlated with timing. Also,
later spikes (after the gating pulse ends) would consist purely of graded information, and so the
transformation to largely firing-rate type statistics would also be expected. 2) Later spiking in a
group of packets may represent feedback containing information concerning behavioral
choices. We have constructed and demonstrated re-entrant circuits in previous work, that are
nonetheless pulse-gated. In these circuits information is retained in packet form, but can be
used to modify subsequent circuit properties. So, pulse-gating and feedback are not inconsis-
tent and may be incorporated in the same packet-based information processing system. 3)
LMHmention a wide range of functions that packets can serve, including triggering of firing
patterns, recall and imagination of sensory stimuli, and attention. The neural circuit of Fig 5
demonstrates three of these functions: pattern triggering via switching on an SGSC, recall in
the form of a working memory and attention in the form of the Vigilance gating pulses, and it
is straightforward to envision other functions.

Coherent Activity: The emerging picture from accumulating experimental evidence is that
coherent activity is a fundamental contributor to cognitive function. Accumulating experimen-
tal evidence implicates coherent activity as an important element of cognition. Since its discov-
ery [25], activity in the gamma band has been demonstrated to exist in numerous regions of
the brain, including hippocampus [26–28], numerous areas in cortex [25, 29–34, 34–37],
amygdala and striatum [38]. Gamma band activity is associated with sharpened orientation
[39] and contrast [40] tuning in V1, and speed and direction tuning in MT [41]. Attention has
been shown to increase gamma synchronization between V4 and FEF [36], LIP and FEF [34],
V1 and V4 [42], and MT and LIP [43]. In general, communication between sender and receiver
neurons is improved when consistent gamma-phase relationships exist between upstream and
downstream sites [30].

Theta-band oscillations are associated with spatial memory [44, 45], where neurons encod-
ing the locations of visual objects and an animal’s own position have been identified [44, 46].
Loss of theta results in spatial memory deficits [47] and pharmacologically enhanced theta
improves learning and memory [48].
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As defined mathematically (e.g. [49], p. 207), coherence (alternatively, correlation of a signal
at a given lag) is a measure of the efficacy of univariate information transfer between neuronal
populations. Note that a matrix-valued definition of coherence is needed to measure the effi-
cacy of multivariate information transfer. Here we have demonstrated a coherent transfer
mechanism that dynamically routes graded information through a neural circuit using stereo-
typed gating pulses and makes decisions via non-linear coupling of graded and gating pulses.
As we have shown, SGSCs can be used as building blocks to implement complex information
processing algorithms, including sub-circuits responsible for short-term memory, linear maps,
and computational logic. As such, synfire-gated synfire chains should be considered as a candi-
date mechanism whenever coherent activity is implicated in information transfer.

We suggested in our previous work that a natural manifestation of neural circuits that
repeatedly analyze passive streaming input would be the existence of oscillatory, sub-threshold
pulses generated by pulse-gated control signals from gating chains. However, coherent, oscil-
latory activity in the gamma-band, either spiking activity or sub-threshold voltage oscillations,
is typically a transient phenomenon, at least in visual cortex [50]. This makes sense in the
computational context that we consider here and is exemplified in the final example in Results.
There, processing of streaming information is initiated, requiring repeated (oscillatory) sam-
pling of the input. But the neural circuit is subsequently switched off by logic internal to the cir-
cuit. Measurements of such circuits would show transient oscillatory coherent activity. An
important implication of pulse-gated information processing for experiment is that the gating
rhythms and patterns controlling information flow in a neural circuit will depend on the struc-
ture and time scales of the underlying algorithm that the brain implements. For instance, in the
circuit in Fig 5, the oscillation frequency is determined by the length of the cyclic gating chains.
Thus, different algorithms may be able to be distinguished based on the brain rhythms that
they evoke. Alternatively, by observing gating patterns, putative computational algorithms
might be able to be determined from brain rhythms.

Rapid visual categorization (RVC) experiments have demonstrated that objects can be rec-
ognized as early as 250–300 ms after presentation. It has been conjectured that massively paral-
lel, feedforward networks are used during RVC computations for maximum speed [12, 51–53].
With pulse lengths of 25 ms in an SGSC, 10–12 feedforward processing layers would be needed
to construct such a network (Fig 1). The signal-to-noise ratios that we demonstrated for the
SGSC (Fig 4) are good enough that it could be used for this type and rate of information trans-
fer. Indeed, in our examples, we show rapid propagation of graded information with 3 ms
pulses.

In [54], using calcium imaging in mouse primary visual cortex slices, similar activity to that
of a synfire chain was detected. Coactive activity occurred within a 3* 11ms time window,
which is similar to the synfire chain in our SGSC. Spike timing in the spiking pattern was pre-
served. There is also strong experimental evidence for synfire chains in birdsongs. In [55] and
[56], the authors found repeated bursting activity during bird songs that was well-characterized
as a synfire chain.

SGSC: To our minds, the success of the SGSC graded information propagation mechanism
rests on the structural robustness of the pulse gating mechanism. One contribution to robust-
ness is that the synfire chain that is used for gating pulse generation approaches a fixed ampli-
tude attractor with fixed temporal offset. A second contribution is that by providing
overlapping temporal windows for information integration, the constraints on parametric pre-
cision to achieve graded information transfer are relaxed (Fig 2C and related text). Having said
that, the correspondence between our mean-field model and the SGSC gives weight to the idea
that pulse-gating, independently of how it is implemented, is a robust mechanism for control-
ling information transfer in neural circuits. Thus, there is not a particular reason that other

Synfire-Gated Synfire Chains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004979 June 16, 2016 11 / 17



pulse generators should not be entertained. For instance, experiments implicate the PVBC/
OLM system of interneurons in cortical pulse generation [57].

A conceptual framework for the manipulation of information in neural circuits arises natu-
rally when one considers graded information transfer in the context of coherently interacting
neuronal assemblies. In this framework, information processing and information control are
conceived of as distinct components of neural circuits [22]. This distinction has been used previ-
ously [17, 18, 58, 59] in theoretical mechanisms for gating the propagation of fixed (non-graded)
amplitude waveforms. Independently, structures devoted to information gating have been
observed experimentally (see [60] for a review). One such circuit is the hippocampus/mediodor-
sal thalamus (MD)/ventral tegmental area (VTA)/prefrontal cortex (PFC). In this circuit, both
MD and VTA have been shown to gate the hippocampal-PFC pathway [61]. Additionally, fron-
tal and basal ganglia activity has been shown to gate access to working memory in human parie-
tal cortex [62]. Here, by providing a mechanism for the propagation of graded information and
including computational logic by allowing graded and gating chains to interact, active linear
maps (see Materials and Methods) take prominence as a key information processing structure.

It is worth mentioning that when we constructed the neural circuit example in Fig 5, we started
at the algorithmic level, then implemented the algorithm in the mean-field firing rate model, then
translated the mean-field model into the spiking, I&F network. We feel that this is a major
strength of the SGSC-based information processing framework, i.e. that it provides a practical
pathway for designing computational neural circuits, either for the purpose of forming hypotheses
about circuits in the brain, or for implementing algorithms on neuromorphic chips [63].

Materials and Methods

The Synfire-Gated Synfire Chain Circuit
Individual current-based, I&F point neurons in the SGSC have membrane potentials described
by

d
dt

vsi;j ¼ �gleak vsi;j � Vleak

� �
þ
X2

s0¼1

Iss
0

i;j þ Isi;j ð1Þ

t
d
dt

Iss
0

i;j ¼ �Iss
0

i;j þ Sss
0

pss0Ns0

X
i0

X
l

d t � ts
0 ;l

i0 ;j�1

� �
ð2Þ

t
d
dt

Isi;j ¼ �Isi;j þ f s
X

l

d t � sli;j

� �
ð3Þ

where σ, σ0 = 1, 2 with 1 for the graded chain and 2 for the gating chain, i = 1, . . ., Nσ denotes the
number of neurons per population for each layer, j = 1, . . .,M denotes the layer; individual spike

times, fts;li;j g, with l denoting spike number, are determined by the time when vsi;j reaches Vthres.

The parameters gleak and Vleak denote the leak conductance and the leak potential. We have used
reduced dimensional units in which time retains dimension in seconds and Vthresh − Vleak = 1. In
these units gleak = 50/sec. The parameter τ denotes the synaptic timescale (τ = 5 ms, or approxi-

mately an AMPA synaptic timescale, in the Results above). The current Iss
0

i;j is the synaptic cur-

rent of the σ population produced by spikes of the σ0 population. The parameter Sσσ
0
denotes the

synaptic coupling strength and the neurons from layer σ to layer σ0 are connected in an IID fash-
ion, with coupling probability given by pσσ0. Isi;j is a background noise current generated from

Poisson spike times, fsli;jg, with strength fσ and rate νσ.
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More Complex Synaptic Processing
General SGSC circuits can incorporate a number of subcircuits, such as short-term memory
and processing due to non-trivial synaptic connectivities [22] such as the circuit shown in Fig 5
(Results). In this case, more general connectivities are needed and the above equations become

d
dt

vsi;j ¼ �gleak vsi;j � Vleak

� �
þ
X2

s0¼1
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0
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dt
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t
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dt
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l
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� �
ð6Þ

Here, the synaptic connectivity for the graded chain is K11
jk , the coupling between the chains is

K12
jk , and the connectivity of the gating chain is K22

jk . Interaction between the graded chain and

the gating chain is given by K21
jk . We use K21

jk to implement conditional logic operations.

Mean-Field Solutions for Synaptic Current Propagation in the
Overlapping Pulse Case
To analyze graded propagation for the case in which the integration of graded information in
successive populations overlaps in time, we assume that the gating pulse is square with ampli-
tude sufficient to bring neuronal populations up to the firing threshold. We also assume that
above threshold the activity function is linear [22].

Firing in the upstream population is integrated by the downstream population. Thus, the
downstream synaptic current obeys

t
d
dt

Id ¼ �Id þ Smu ;

where S is a synaptic coupling strength, Id(t) is the downstream synaptic current, and τ is a syn-
aptic timescale. In a thresholded-linear model, the upstream firing rate is

mu � IuðtÞ þ IExc0 � g0
� �þ

;

where IExc0 ¼ g0 pðtÞ is an excitatory gating pulse, p(t) = θ(t) − θ(t − T) and θ is the Heaviside
step function, causing the downstream population to integrate Iu(t), giving the current

G Id½ �ðtÞ � Se�t=t

Z t

0

ds es=tIuðsÞ þ c

� �
:

The graded population is pulsed for time T. The offset between successive gating pulses is
given by T0 (see Fig 2, Results). In [22], we studied the case where T = T0. That is, the down-
stream pulse turned on just when the upstream pulse turned off. Here, we focus on the case
where η = T/T0 > 1, and η need not be an integer. Let n be the integer part of η. Then
T = nT0+T1, where T1 < T0.

In the SI Appendix 1, we give a general derivation of time translationally invariant solutions
in this context. In brief, a translationally invariant, graded current waveform is found for a par-
ticular feedforward strength, S = Sexact, by integrating the upstream firing rate over intervals of
length T1, T0, . . ., T0, while enforcing continuity of the solution. For these solutions, Sexact is
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given by the smallest root of

Xn

j¼0

ð�1Þj
ðn� jÞ!

ðjþ 1ÞT0 � T1ð Þ
t

Se�T0=t

� �n�j

¼ 0 :

Information Processing Using Graded Transfer Mechanisms
As we demonstrate in Results, current amplitude transfer for the SGSC may be modeled with a
piecewise linear activity function, therefore synaptic connectivities between two layers each
containing a vector of populations, perform a linear operation on the currents in the upstream
layer [22]. For instance, consider an upstream vector of neuronal populations with currents, Iu,
connected via a connectivity matrix K to a downstream vector of neuronal populations, Id:

IuðtÞ !K IdðtÞ : ð7Þ

With feedforward connectivity, K, the current amplitude, Id, obeys

t
d
dt

Id ¼ �Id þ Sexact KI
u þ puðtÞ � g0½ �þ ; ð8Þ

where pu(t) denotes a vector gating pulse on the upstream population. This results in the solu-
tion Id(t − T) = PK Iu(t), where P is a diagonal matrix with the gating pulse vector, p, of 0s and
1s on the diagonal indicating which neurons were pulsed during the transfer.

This discussion has identified three components of an information processing framework
that naturally arises from mechanisms such as the SGSC:

1. information content—graded current, I

2. information processing—synaptic weights, K

3. information control—pulses, p

Note that the pulsing control, p, serves as a gating mechanism for routing neural informa-
tion into (or out of) a processing circuit. We, therefore, refer to amplitude packets, I, that are
guided through a neural circuit by a set of stereotyped pulses as “bound” information. In the
SGSC, information content is carried by the graded chain (e.g. Fig 5B and 5D), information
processing is performed by the synaptic connectivities (e.g. Fig 5A) and information control is
performed by the gating chain (e.g. Fig 5C and 5E). We will refer to the combination of these
control and processing structures as active linear maps.

In order to make a decision, non-linear logic circuits are introduced. A simple decision can
be implemented in our framework by allowing interaction between information control and
content. In our example, a graded and a gating pulse were combined to make a decision, then
the output was fed as input to a gating chain. If the graded chain output a low value, the gating
chain was not switched on. However, if the graded chain output was high, this initiated pulses
in the gating chain, which rapidly approached an attractor. Thus, the interaction caused condi-
tional firing in the gating chain.

Supporting Information
S1 Appendix. Supporting information.
(PDF)
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