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Abstract: Fiber-reinforced epoxy materials have the advantages of light weight, high strength and
designability, which are widely used in high-technology fields. In this paper, triangular poly (vinyl
alcohol) (PVA) fibers prepared by melt spinning were used for the first time in reinforcing and
toughening epoxy resins. Based on intermolecular complexation and plasticization, the triangular
PVA fibers were successfully prepared via melt spinning and hot drawing. The thermal properties,
crystallinity, morphology and mechanical properties of the triangular fibers with different draw
ratios were characterized by DSC, FTIR, XRD, SEM and tensile testing. The results show that the
comprehensive performance of the triangular fibers increased with the increase in the draw ratio. The
tensile strength of triangular fibers increased from 0.3 to 4.22 cN/dtex. Then, the triangular PVA fiber
and circular PVA fiber-reinforced and toughened epoxy materials were prepared, respectively. The
mechanical properties of triangular PVA fiber/epoxy composites were higher than that of circular
fiber-reinforced and toughened epoxy materials. Furthermore, the single-fiber pull-out test was
used to analyze the interface capability of fibers and epoxy. The pull-out force of the circular fiber
was 1.24 N, while that of the triangular fiber was 2.64 N. The specific surface area of the triangular
PVA fiber was larger than that of the circular PVA fiber, which better made its contact with epoxy
and was not easily pulled out. Experiments prove that triangular PVA fiber is an ideal material for
strengthening and toughening epoxy resin.

Keywords: triangular PVA fibers; melt spinning; hot drawing; toughing epoxy

1. Introduction

Over the last few years, there has been an increase in the use of fiber-reinforced epoxy
resins in many areas because of their superior mechanical and physical properties, such as
high specific strength and specific stiffness [1]. In fiber-reinforced composites, fibers are
reinforcing materials and play a major role in the mechanical properties of the composites.
The role of polymers is to bond the fibers tightly together, give full play to the mechanical
properties of the fibers and transfer the external stress to the fibers [2].

Fibers generally used to reinforce epoxy resin are glass fibers and carbon fibers. Glass-
fiber-reinforced composites have gained popularity owing to their low cost, high-strength
properties, durability, ease of repair and simplicity to form [3]. D.J. Krug III et al. [4]
studied the glass-fiber-reinforced epoxy–resin composites with ~50 wt.% loadings of 0◦/90◦

cross-woven fiber glass mats for potential use as low-cost, high-strength, lightweight
materials for safety/sports goggles, motorcycle helmets or window armor applications,
which outperformed traditional glass-fiber-reinforced epoxy composites in properties while
still providing transparency. R. Giridharan et al. [5] fabricated eco-friendly composites
using glass and cotton fibers with epoxy resin by hand lay-up method. The results show that
the hybrid-fiber-reinforced epoxy composites exhibited better mechanical properties than
the individual samples. Furthermore, carbon-fiber-reinforced epoxy resins have attracted
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more attention because of their low weight, high fracture toughness, high strength and good
insulating properties [6]. J.-L. Zhao et al. [7] used three-dimensional carbon fiber fabric to
reinforce hydroxyapatite (HA)/epoxy composite and epoxy resin through resin transfer
molding. The impact toughness and flexural strength of fiber-reinforced epoxy and fiber-
reinforced HA/epoxy composites were much higher than those of epoxy and HA/epoxy
composites. The impact toughness of both fiber-reinforced composites decreased while the
flexural strength and the flexural modulus increased with fiber volume ratio. At present,
most of the reinforced fibers used in epoxy resin are circular cross-section fibers. Compared
with the circular cross-section fibers at the same denier, the profiled fibers can increase
the contact area between the fiber and the matrix [8], improve the bond strength at the
two-phase interface and improve fiber pull-out strength, which are proportional to the
circumference of the fiber section. The profiled fiber-reinforced composite material has
become a trend [9].

Poly (vinyl alcohol) (PVA) is a polar polymer material with multi-hydroxyl groups,
which endow PVA fibers with many good properties, such as high tensile strength, excellent
abrasion resistance, anti-alkaline resistance and good adhesive properties with epoxy
resin [10–12]. Specifically, the hydroxyl group of PVA fiber can form hydrogen bonds with
epoxy functional groups to enhance interface bonding. Meanwhile, profiled PVA fibers
have a special surface shape, which is believed to have good effects in strengthening epoxy
resin. However, the strong hydrogen bonding in PVA also makes its melting point so close
to its decomposition temperature that the melt spinning of PVA is very difficult, while
the solution spinning of PVA applied in the commercial field cannot form the controllable
and adjustable cross-section due to the coagulation bath. In our research group, based
on the principle of intermolecular complexation and plasticization, water was selected
as a plasticizer of PVA. Water exists in the PVA/water system in three states: free water,
freezable bound water and non-freezing water. The freezable bound water was less
closely associated with PVA, while the non-freezing water directly interacted with the
hydroxyl groups of PVA, retarding the water evaporation during thermal processing. Water
could weaken the intra-molecular and inter-molecular hydrogen bonds of PVA molecular
chains and reduce its melting point. Therefore, an environmentally friendly technique
was developed to disrupt the hydrogen bonding of PVA, decreasing its crystallinity and
realizing the melt spinning of PVA [13].

In this paper, based on our previous work, the triangular PVA fibers were prepared by
melt spinning of PVA using water as a plasticizer, and the three-dimensional triangular
PVA fabrics were first used to strengthen and toughen epoxy resin through compression
molding, which provided a new type of fiber for reinforcing composites.

2. Experimental
2.1. Materials

PVA, with a polymerization degree of 1700 ± 50 and an alcoholysis degree of 99,
was supplied by Sichuan Vinylon Corporation (Chongqing, China). Epoxy resin (EP),
marked 128 with an epoxy equivalent of 185–192, was purchased from Chengdu Kemmett
Technology Co. Ltd. From Chengdu Haihong Chemical Reagent Co. Ltd. (Chengdu,
China) was purchased 4,4-diaminodiphenyl methane (DDM), which is an epoxy curing
agent with an active hydrogen equivalent of 49.6. Analytically pure acetone was purchased
from Chengdu Kelong Chemical Reagent Co. Ltd. (Chengdu, China) Deionized water was
prepared in our laboratory.

2.2. Preparation of Triangular PVA Fibers Fabric

PVA pellets and deionized water were mixed and swollen in a proportion of 6:4 at
about 40 ◦C to obtain thermoplastic PVA particles, and the thermoplastic PVA pellets were
spun via a melt-spinning machine with a triangular spinneret. The extruder temperature
was 80–90, 145–160 and 150–165 ◦C, and the spinneret temperature was 125–130 ◦C, rewind-
ing with double pre-stretching to prepare as-spun triangular PVA fibers. The as-spun fibers
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were drawn for the second time in hot-drawing equipment; the roller temperature was
85–95 ◦C, the three-stage temperature of the tunnel was 180–190, 190–200 and 200–205 ◦C
and the draw ratio was 2, 4, 6 and 7 times. Finally, the PVA fibers were woven into fabrics
with a small knitting machine; the processes are shown in Figure 1. Circular PVA fibers
were also prepared by the above method.
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colet Ltd., Vemon Hills, Illinois). 

Figure 1. Preparation of triangular PVA fibers and fabric.

2.3. Preparation of PVA/EP Composites

Epoxy and DDM with the mass ratio of 4:1 were stirred and mixed in a 90 ◦C water
bath. The mixture was immediately taken out and cooled to room temperature and an
appropriate amount of acetone added to dilute the epoxy to obtain a 65 wt.% epoxy solution.
The solution was placed into a vacuum oven for 20 min to remove air bubbles, then the
solution was evenly infiltrated into the PVA fiber fabric, for which the mass ratio of fiber to
epoxy resin was 1:1. The coated PVA fiber fabric was placed in a vacuum oven at 40 ◦C
for 30 min to remove the solvent, and then hung in a fume hood for 24 h. Finally, the PVA
fiber cloth was cut into the size of the mold frame of 120 mm × 120 mm, and 6 pieces of
PVA fiber fabric were molded into a laminate with the procession of 80 ◦C for 1 h, 100 ◦C
for 1 h and 120 ◦C for 2 h, as shown in Figure 2. At the curing process, the amine groups of
the DDM react with the epoxy groups, creating/reinforcing the network interlock at the
polymeric matrix.
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As a contrast, circular cross-section PVA fibers with similar tensile strength and its
fabric were used to strengthen epoxy resin through the same method as described above.

2.4. Characterization

The Fourier transform infrared (FT-IR) spectra of pure PVA powder and water plasti-
cized PVA powder were obtained from a Nicolet 6700 FT-IR spectrometer (Thermo Nicolet
Ltd., Vemon Hills, IL, USA).

The crystalline structure of profiled PVA fibers and as-spun PVA fibers were investi-
gated by a DX-1000 diffractometer (Fangyuan Instrument Co. Ltd., Dandong, China), the
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CuKa generator system was operated at 40 kV and 25 mA, and the scanning 2θ ranged
from 5◦ to 50◦ with a scanning rate of 0.02◦/min.

The morphology of PVA/EP composites and PVA fibers were observed by a scanning
electronic microscope (SEM) (JSM-5900LV, JEOL Ltd., Tokyo, Japan) with a conductive gold
layer coating and an accelerating voltage of 10 kV.

Thermal tests were performed on a TGA-Q50 (TA Instruments Co. Ltd., New Castle,
DE, USA) for the thermo-gravimetric analysis (TGA) in a nitrogen atmosphere from 40 to
600 ◦C with a heating rate of 20 ◦C/min, and for differential scanning calorimeter (DSC)
analysis of profiled PVA fibers by heating from 100 to 260 ◦C at a heating rate of 10 ◦C/min
under nitrogen atmosphere.

The oriented structure of profiled PVA fibers and as-spun PVA fibers were investigated
by a D8-discovery (Bruker. Germany) with reflection mode at a scanning time of 300 s,
copper target wavelength of 0.154 nm, operating voltage of 40 kV and current of 40 mA.

Mechanical properties, including tensile strength and flexural strength of the PVA/EP
composites and tensile strength of fiber, were determined at ambient temperature using
an INSTRON-5567 testing machine. Each group was tested five times to take the average
value. Clamp distance was 45 mm and the drawing rate was 2 mm/min. The span was
60 mm and drawing rate was 0.5 mm/min.

Impact properties of the PVA/EP composites were determined at ambient temperature
using a Pit-501J plastic pendulum impact testing machine of Shenzhen Wanyan Testing
Equipment Co., Ltd. (Shenzhen, China), and the pendulum size was 2 J.

3. Results and Discussion
3.1. Characterization of PVA Fibers

As a result of the strong hydrogen bonding existing among PVA chains, the melting
temperature of PVA was very close to its decomposition temperature, and the melt spinning
of PVA was still challenged. A practical method based on intermolecular complexation
was proposed to realize the thermoplastic processing of PVA [14–16]. Water as a strong
polar molecule was introduced to realize the sufficiently stable melt spinning [17]. The
plasticization is reflected in Figure 3a; the neat PVA exhibited two characteristic peaks at
2θ = 19.5◦ and 22.5◦ corresponding to the (110) and (200) reflections as the main crystalline
range, respectively. Due to the excellent plasticization effect of water for PVA, the visible
reduction in the main crystalline range, specifically the reduction in (110) reflection and
the disappeared (200) reflection, was shown in the water-plasticized PVA [18,19]. The
hydrogen bond changes between PVA molecules can be seen from Figure 3b. There were a
large number of hydrogen bonds among PVA chains, which made the hydroxyl vibration
peak move to a lower wavenumber at 3349.8 cm−1. With the addition of water, water
molecules and the hydroxyl group of PVA reconstructed the hydrogen bond, destroying
the hydrogen bond of the PVA molecule, causing the hydroxyl vibration peak to move
to a higher wavenumber [13], located at 3432.6 cm−1. Based on the method of molecular
complexation and plasticization, the thermal processing of PVA was realized.
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It is well known that the cross-section is typically enlarged by the extrude swell during
melt spinning, and the profiled cross-sectional shapes are changed from the original capil-
lary shapes to circular shapes due to the surface tension of the polymer melt. The triangular
PVA fibers were successfully prepared by adjusting the melt-spinning parameters, such
as spinning speed and cooling speed. The cross-section morphology of triangular fiber
with different draw ratios is shown in Figure 4. The as-spun fibers basically maintained the
cross-sectional morphology of the original spinneret, and had a compact structure without
defects such as bubbles and micropores. As the draw ratio increased, the fibers became
slender, and the fiber still maintained a good triangular shape. There were no defects found
in the fibers, showing that hot drawing did not cause defects in the fibers.
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It is noted that Figure 4b–d has rough edges on the cross-section of fibers, because fiber
bundles were fixed and then cut off in a vertical axial direction when making the sample
of fiber section for SEM observation. The rough edges were caused by cutting during
sample preparation, which had no great relationship with the sample itself. Compared
with the equivalent circular cross-section fibers, triangular PVA fibers had a higher specific
surface. Controlling the hot-drawing process, the mechanical properties of the fiber could
be effectively improved while ensuring the characteristic triangular cross-section, and the
high-performance triangular PVA fibers could be prepared.

The TG and DSC curves of triangular PVA fibers with different draw ratios are shown
in Figure 5. From the TG curves, it could be seen that the mass of as-spun fibers decreased
with the increase in temperature, and the mass reduction to 90% at 130 ◦C was mainly the
evaporation of plasticizer water. The water content of the as-spun fiber was higher than
those of the stretched fibers, and with the fiber draw ratios increasing, the evaporation
of water decreased obviously, because some of the water had been evaporated during
the hot-drawing process. DSC curves also confirmed the above results. The enthalpy of
water evaporation of the stretched fibers obviously decreased with the increase in draw
ratio. The melt enthalpy of the PVA fibers increased obviously after hot-drawing, which
indicated the amorphous region of profiled PVA fibers decreased and the crystalline region
was more complete.
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(iii) 4; (iv) 6; (v) 7.

The characteristic diffraction peak at 2θ = 19.5◦(101) of the stretched fibers was obvi-
ously sharper and stronger than that of the as-spun fiber, and some new crystal diffraction
peaks appeared, such as diffraction peaks at 2θ = 11.0◦(100), 15.8◦(001) and 22.3◦(200),
as shown in Figure 6a. Hot drawing made the arrangement of PVA molecular chains
more regular, resulting in more perfect crystallization. The crystallinity of the fibers was
quantitatively characterized by calculation. The crystallinity of as-spun triangle PVA fibers
was 34.5%. The hot drawing increased the crystallinity of the fibers significantly. When it
was stretched seven times, the crystallinity of the fibers was as high as 79%. During the
hot-drawing process, a large amount of water evaporated, and the hydroxyl groups of
PVA, originally combined with water to form hydrogen bonds, were released. The random
PVA molecular chains stretched in the stretching direction during hot-drawing, and then
hydrogen bonds were rebuilt, leading to the high regularity of PVA molecular chains and
the crystallinity of fibers [13].
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The orientation and crystallization of macromolecules significantly affected the me-
chanical properties of the fibers. The elongation at break of as-spun triangular PVA fibers
was 419%, as shown in Figure 7b, indicating the potential of fibers for high ratio drawing.
The as-spun PVA fibers contained more water that could form hydrogen bonds with PVA,
which weakened the intra- and inter-molecular hydrogen bonds of PVA and caused PVA
chains to move more easily under the action of forces, showing a larger elongation at
break. After hot drawing, the tensile strength of PVA triangular fibers increased and the
elongation at break decreased significantly. The tensile strength of PVA triangular fibers
increased from 0.30 to 4.22 cN/dtex, and the elongation at break decreased from 419.0
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to 14.7%. The improvement in the mechanical properties of PVA fibers was attributed to
the hot drawing, which caused PVA chains to be arranged orderly along the stretching
direction, and the crystal and orientation texture of PVA fibers tended to be perfect, thus
increasing the tensile strength of PVA fibers. In this way, the PVA triangular fibers with
good tensile strength were successfully prepared.
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3.2. Characterization of PVA/EP Composites

Strength is the ability of a material to resist damage under external forces and a
tensile test could show the strength of a material. The PVA triangular fibers with a draw
ratio of seven times were used to reinforce and toughen epoxy resin. Circular PVA fibers
with similar tensile strength reinforced and toughened epoxy composites and pure epoxy
resin were prepared and compared with PVA triangular fibers/epoxy composites. The
mechanical strength averages of composites are shown in Table 1 and the tensile stress–
strain curves of EP and PVA/EP composites with different fibers are shown in Figure 8a.
It can be observed from the curves that the stress of pure epoxy decreased rapidly after
reaching the highest point during the stretching process, and the test bars broke directly.
However, the fiber-reinforced and toughened epoxy composites had an obvious plastic
deformation stage during the stretching process. The tensile strength of the composites was
slightly stronger than that of the epoxy resin, while the tensile strength of the composites
with circular fibers slightly lower. The elongation at break of fiber-reinforced and toughened
epoxy materials with different cross-sections was greatly increased. EP resin exhibited
elastic deformation while PVA fibers/EP composites exhibited plastic deformation during
tensile test. The mechanical properties of composite materials were largely affected by the
reinforcing phase. Compared with circular PVA fibers, triangular PVA fibers had larger
specific surface area and larger contact surface with epoxy resin, causing stronger tensile
strength of composites.

Table 1. The mechanical strength averages of EP and PVA/EP composites with different fibers.

Composites EP Triangular Fibers/EP Circular Fibers/EP

Tensile strength
(MPa) 51.1 ± 3.6 58.3 ± 4.2 49.6 ± 3.9

Flexural strength
(MPa) 80.2 ± 5.6 35.8 ± 2.3 22.9 ± 2.0

Impact strength
(kJ/m2) 14.2 ± 1.2 71.0 ± 4.2 46.1 ± 3.8
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Stiffness is the ability of a material to resist elastic deformation under stress and a
flexural test may indicate the stiffness of the material. The flexure stress–strain curves
of EP and PVA/EP composites with different fibers are shown in Figure 8b. The strain
at yield of PVA/EP composites with different cross-sections increased, while the flexure
strength of the composites decreased, but the flexure properties of triangular PVA fibers/EP
composites were better than that of circular PVA fibers/EP composites. It was worth noting
that during the bending test, the composite materials bars could only be bent and could
not be crushed, while the pure epoxy resin bars directly bent and broke. The flexural
strength was affected by the flexural modulus and flexural strength of each component
of the materials, and the compatibility between the components. The modulus difference
between fiber and epoxy resin was large, so the strain generated by load was different,
which could easily cause the interface damage of composites. The triangle fiber had a
large specific surface area and a strong binding force with epoxy resin, so the ability of
triangle PVA fibers/EP composite to resist damage was stronger than that of circular PVA
fibers/EP composites.

Toughness represents the ability of a material to absorb energy during plastic defor-
mation and fracture and an impact test shows the toughness of the material. The impact
properties of EP and PVA/EP composites with different fibers are shown in Figure 8c. The
cross-sections of epoxy resin bars were thicker than those of composites, so the impact
absorbing energy of epoxy resin was greater than that of composites. However, the impact
strength of the composites was obviously higher than that of epoxy resin, especially the
triangular fibers/EP composites. Unlike pure epoxy resin, which was easy to break, the
composites were not completely broken after being impacted; only the matrix was cracked
and parts of the fiber layers were broken, and a small part of the fiber bundles was still
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connected compactly. In general, triangular fiber has great potential in strengthening and
toughening epoxy due to its unique profiled structure.

In order to clearly understand the distribution of PVA fibers in the epoxy resin matrix,
the cross-section structure of the materials was observed via SEM, as shown in Figure 9.
There was no obvious bubble or hole defect in the epoxy matrix, and no gap between
the PVA triangular fibers and the epoxy contact surface, indicating the fibers were fully
infiltrated in the epoxy solution. The fibers retained their profiled shape during the forming
process. The profile structure enabled the fibers to be arranged and closely adhered.
Triangular fibers were in contact with each other in a face, forming mechanical anchoring,
the fiber interaction force was strong and the stress was more easily transferred between
fibers when the materials were stretched. However, there was a clear gap between the PVA
circular fibers and the epoxy resin matrix, the circular fibers were in line contact and the
friction between the fibers was small. Compared with circular fibers, triangular fibers had
a larger specific surface area, which increased the contact area with the epoxy resin matrix
and increased the friction, making the fiber difficult to pull out. When the material was
damaged, it was more resistant to fracture.
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The mechanical properties of composite materials were affected by factors such as
fibers and interfaces. Single-fiber pull-out testing (SFPOT) is an important method to
evaluate the interface quality of composites. The embedded depth of the fiber in this
test was 5 mm. The load–deflection curves of the triangular fibers and circular fibers are
shown in Figure 10. The maximum load of the PVA triangular fibers was 2.64 N, while
the maximum load of the circular PVA fibers was 1.24 N. The circular PVA fibers had a
high elongation rate. When they were pulled out from the epoxy resin, the fibers deformed
seriously and were easy to pull out. This was also the reason for the high elongation at
break of the composite materials. Profile degree affected the specific surface area of the
fibers. Triangular fibers with high specific surface area increased the contact surface with
epoxy resin. In the process of pulling out, the irregular shape of the triangular fibers surface
increased the friction and made the fibers difficult to pull out. On the whole, the triangular
PVA fibers had good mechanical properties, which ultimately made them more effective in
strengthening and toughening epoxy resin.
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4. Conclusions

Based on inter-molecular complexation and plasticization, water was introduced as a
plasticizer to weaken the intra- and inter-molecular hydrogen bonds of PVA and reduced
its melting point to accomplish the melt spinning, and the PVA triangular fibers were
successfully prepared via melt spinning. The hot drawing of the fibers improved the
regularity of PVA chains, which made the fiber oriented and highly crystalline, so the
mechanical properties of the fiber increased with the increase in the draw ratio. Triangular
fibers had a higher specific surface than circular fibers which increased the contact area with
the epoxy matrix, so that more force was required to pull out a single fiber. The fibers were
better fixed in the EP matrix, beneficial to the improvement in the mechanical properties
of the composites. The tensile performance of the triangular PVA fibers/EP composites
improved, which showed obvious plastic deformation in tensile and bending tests, and
the impact strength of composites was obviously enhanced, thus proving the successful
preparation of the triangular PVA fiber-reinforced and toughened epoxy composites. All in
all, triangular fibers had good mechanical properties and profile degree, and had a good
advantage in strengthening and toughening epoxy materials.
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