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Abstract: Type 2 diabetes mellitus (T2DM) patients have a high risk of coronary artery disease (CAD).
Thallium-201 myocardial perfusion scan (Th-201 scan) is a non-invasive and extensively used tool in
recognizing CAD in clinical settings. In this study, we attempted to compare the predictive accuracy
of evaluating abnormal Th-201 scans using traditional multiple linear regression (MLR) with four
machine learning (ML) methods. From the study, we can determine whether ML surpasses traditional
MLR and rank the clinical variables and compare them with previous reports.In total, 796 T2DM,
including 368 men and 528 women, were enrolled. In addition to traditional MLR, classification and
regression tree (CART), random forest (RF), stochastic gradient boosting (SGB) and eXtreme gradient
boosting (XGBoost) were also used to analyze abnormal Th-201 scans. Stress sum score was used as
the endpoint (dependent variable). Our findings show that all four root mean square errors of ML are
smaller than with MLR, which implies that ML is more precise than MLR in determining abnormal
Th-201 scans by using clinical parameters. The first seven factors, from the most important to the
least are:body mass index, hemoglobin, age, glycated hemoglobin, Creatinine, systolic and diastolic
blood pressure. In conclusion, ML is not inferior to traditional MLR in predicting abnormal Th-201
scans, and the most important factors are body mass index, hemoglobin, age, glycated hemoglobin,
creatinine, systolic and diastolic blood pressure. ML methods are superior in these kinds of studies.

Keywords: type 2 diabetes mellitus; coronary artery disease; thallium-201 myocardial perfusion scan;
machine learning

1. Introduction

Type 2 diabetes (T2DM) is the fifth most common cause of death in Taiwan and its
prevalence has been increasing drastically over the last three decades [1]. Now in Taiwan,
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there are 2.457 million T2DM which is 9.7% of the total population [2]. Similarly, it is
expected that there will be 700 million patients throughout the world by 2045 [3]. In the
past, having T2DM would reduce life expectancy by around six years compared to healthy
comparators [4]. Evidence has shown that approximately 50% of T2DM patients die of
cardiovascular disease [5,6]. At the same time, evidence has shown that T2DM increases
the risk of coronary artery disease (CAD) and that T2DM is associated with a 70% excess
risk of acute myocardial infarction (MI) [7–9]. More importantly, 28.5% of the MI is silent in
T2DM [10]. Therefore, early detection of CAD in diabetic patients is important for health
providers. Guidelines have been developed to define a high-risk profile of diabetic patients
who might benefit from routine cardiac screening [11,12].

Several examinations are used to evaluate the status of CAD. For instance, coronary an-
giography is considered the “gold standard”, but it is invasive and has attendant risks. The
second one, computed tomography coronary angiography (CTCA), although non-invasive,
is relatively expensive. The third commonly used test is exercise electrocardiogram (ECG).
However, this can only be used for patients who can exercise to a sufficient workload [13,14].
Lastly, pharmacologic stress testing with myocardial perfusion scintigraphy (MPS) using
Thallium as a tracer is also non-invasive in nature. In diabetic patients, it has been shown
to be of value for diagnosing significant CAD, stratifying risk and future management [15].
This examination has been well-accepted as a tool to identify patients with CAD and
predicting CAD prognosis in clinical settings. Since MPS could be taken as a surrogate
for CAD, there are studies trying to identify risk factors for abnormal MPS [16]. Several
risk factors have been identified as being associated with abnormal MPS, including current
smoking, duration of diabetes and the cholesterol/high-density lipoprotein (HDL) ratio,
etc. It should be noted that all these studies used traditional multiple linear regression
(MLR) to analyze the data.

Since the rapid progress of computational facilities, artificial intelligence using machine
learning (ML) has developed rapidly and has been used in some of the research areas in the
medical field, including cancer, cardiovascular disease, neurological disease, emergency
medicine and even in the pharmacological field, etc. [17–21]. The definition of ML is the
study of computer algorithms that can improve automatically through experience and by
the use of data [22]. It enables machines to learn from past data or experiences without
being explicitly programmed. After certain computer algorithms are created using the
ML method, the process has many parameters to predict future results. It now becomes
a new modality for data analysis competitive with traditional MLR [23–25]. Since ML
could capture nonlinear relationships in the data and complex interactions among multiple
predictors, it has the potential to outperform conventional logistic regression in disease
prediction [26].

The present study was performed with a T2DM cohort without diagnosed CAD and
there were two aims: 1. To compare whether ML is more accurate than MLR. 2. To rank the
risk factors and compare their orders to previous reports.

2. Materials and Methods
2.1. Subjects

T2DM patients, aged between 30 and 95 years old, who had undertaken Thallium-201
myocardial perfusion scans (Th-201 scan) in Cardinal Tien hospital from 1999 to 2008
were recruited for the study. All study subjects were anonymous and the data of the
participants were used only for the analysis. This is a retrospective study, and all the data
were retrieved from medical records from the hospital. The study proposal was reviewed
and approved by the institutional review board of Cardinal Tien hospital before the study
began. On the day of the thallium scan, a thallium scan consent form provided by the
Nuclear Medicine Department woud be obtained from the individual who received the
examination. The diagnostic criteria for T2DM were based on the 2012 American Diabetes
Association criteria [27]. In total, 928 T2DM patients were recruited. After some subjects
were excluded due to various causes, 796 patients remained for analysis, including 368
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men and 428 women. Figure 1 illustrates the flowchart of the subject selection in the
present study.
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Figure 1. Flowchart of sample selection from the Cardinal Tien Hospital Diabetes Study Cohort.

Body mass index (BMI) was calculated as body weight (kg)/height (m)2. Systolic
and diastolic blood pressure (SBP and DBP) were measured on the right arm of seated
subjects using a standard mercury sphygmomanometer. Blood samples were drawn from
the antecubital vein for biochemical analysis.

2.2. Th-201 Scan

On the day of testing, patients fasted for 4 h and withheld dipyridamole, β-blockers,
calcium channel blockers, long-acting nitrates, xanthine-containing medications and caffeine-
containing beverages. Each patient then received intravenous infusion of dipyridamole
over 4 min at a concentration of 0.56 mg/kg in 20 mL of normal saline (an infusion rate
of 0.14 mg/kg/min). Th-201 was administered intravenously 3 to 4 min after the dipyri-
damole infusion was completed. The scans started at 5 to 8 min after radiopharmaceutical
administration (stress scan) and 3 h later (rest scan).

The myocardial region was classified into 17 parts and each part was evaluated by
nuclear medicine experts based on a 5-point scoring system described previously [28]:
0, normal; 1, slight decrease of tracer uptake; 2, moderate decrease of tracer uptake; 3,
severe decrease of tracer uptake; 4, absence of tracer uptake. The stress score and rest score
of single vessels were initially counted as individual vessel scores. The sums of individual
vessel stress scores (after injection of dipyridamole) were recognized as representative of
the Th-201 results (dependent variable) since some of the studies have shown that SSS
provides important information for detecting CAD and its outcomes [28–30].

2.3. Laboratory Evaluation

After the 10 h overnight fast, blood specimens were collected from each subject for
further analysis. Plasma was separated from the whole blood within one hour and stored
at −70 ◦C. A glucose oxidase method (YSI 203 glucose analyzer; Scientific Division, Yellow
Springs Instruments, Yellow Springs, OH, USA) was used to determine fasting plasma
glucose (FPG) levels. The dry, multilayer analytical slide method of the Fuji Dri-Chem
3000 analyzer (Fuji Photo Film, Minato-Ku, Tokyo, Japan) was used to determine total
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cholesterol and triglyceride (TG). An enzymatic cholesterol assay following dextran sulfate
precipitation was used to determine serum HDL-C and low-density lipoprotein cholesterol
(LDL-C) levels. The HbA1c level was measured using the Bio-Rad Variant II automatic
analyzer (Bio-Rad Diagnostic Group, Los Angeles, CA, USA). Plasma insulin was assayed
using a commercial solid-phase radioimmunoassay technique (Coat-A-Count insulin kit,
Diagnostic Products Corporation, Los Angeles, CA, USA) with intra- and inter-assay
coefficients of variance of 3.3% and 2.5%, respectively.

2.4. Statistical Analysis:

The data were tested for normal distribution using the Kolmogorov–Smirnov test and
for homogeneity of variances using the Levene’s test. Continuous variables were expressed
as mean ± standard deviation.

Table 1 lists the definition of the fifteen baseline clinical variables (independent vari-
ables, sex, age, BMI, duration of diabetes, smoking, FPG, glycated hemoglobin (HbA1c),
TG, HDL-C, LDL-C, alanine aminotransferase (ALT), creatinine (Cr), microalbuminuria,
SBP and DBP, used in this study. As aforementioned, the SSS derived from the Th-201 scan
is the dependent variable; the other 15 variables are used as predictor variables.

Table 1. Variable definition.

Variables Description Unit

V1: Sex Male/Female -
V2: Age Patient age year

V3: Body mass index Body mass index Kg/m2

V4: Duration of diabetes Duration of diabetes year
V5: Smoking No/Yes -

V9: Glycated hemoglobin HbA1c (Glycated hemoglobin) %
V10: Triglyceride Triglyceride baseline mg/dL

V11:High density lipoprotein cholesterol High-Density Lipoprotein Cholesterol mg/dL
V12: Low density lipoprotein cholesterol Low-Density Lipoprotein Cholesterol mg/dL
V13: Alanine aminotransferase baseline Alanine aminotransferase U/L

V14: Creatinine Creatinine mg/dL
V6: Systolic blood pressure Systolic blood pressure mmHg
V7: Diastolic blood pressure Diastolic blood pressure b mmHg

V8: Hemoglobin Hb

V15: Microalbuminuria
Urine albumin to creatinine ratio =

microalbumin (mg/dL)/urine
creatinine(mg/dL)

mg/g

2.5. ML Methods and Proposed Scheme

This research proposed a scheme based on four ML methods, namely classification
and regression tree (CART), random forest (RF), stochastic gradient boosting (SGB) and
eXtreme gradient boosting (XGBoost) to construct predictive models for determining
abnormal MPS and to identify the importance of these risk factors. These ML methods have
been widely applied to various healthcare and/or medical informatics applications and do
not have prior assumptions about data distribution [31–39]. MLR is used as a benchmark
for comparison.

The first method, CART, is a tree structure method [40]. It is composed of root nodes,
branches and leaf nodes that, based on tree structures, grow recursively from the root
nodes and split at each node based on the Gini index to produce branches and leaf nodes
using the rule. The nodes of overgrown trees are then pruned for optimal tree size using
cost–complexity criterion, and different decision rules are generated to compose a complete
tree [41,42].

RF, the second method in this study, is an ensemble learning decision trees algorithm
which combines bootstrap resampling and bagging [43]. RF’s principle method is to randomly
generate many different and unpruned CART decision trees for which decreased Gini impurity
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is regarded as the splitting criterion, and then to combine all the trees generated into a forest.
Then all the trees in the forest are averaged or voted to generate output probabilities and a
final robust model [44].

The third method, SGB, is a tree-based gradient boosting learning algorithm combining
both bagging and boosting techniques to minimize the loss function and solve the over-
fitting problem of traditional decision trees [45,46]. The SGB sequentially and stochastically
generates many weak learner trees through multiple iterations and each tree concentrates
on correcting or explaining the errors from the tree of the previous iteration generated. The
residual of the previous iteration tree is used as the input for the newly generated tree. This
iterative process continues until a stopping criterion is reached at the maximum number of
iterations or the convergence condition. The cumulative results of many trees are used to
determine a final robust model.

XGBoost, the fourth method in this study, is gradient boosting technology based on
SGB optimized extension [47]. Its principle is training many weak models sequentially to
ensemble them using the gradient boosting method of outputs to achieve better prediction
performance. In XGBoost, the Taylor binomial expansion is used to approximate the objec-
tive function and arbitrary differentiable loss functions to accelerate the model construction
converging process [48]. Then, XGBoost applies a regularized boosting technique to re-
duce the complexity of the model and correct the overfitting, thus increasing the model
accuracy [47].

The flowchart of the proposed scheme combining the four ML methods is demon-
strated in Figure 2. As Figure 2 shows, in the proposed scheme, we first collected patients
to prepare the dataset for model construction, and then the dataset was randomly split into
80% training dataset for model building and 20% testing dataset for out-of-sample testing.
In the training process, each ML method had its own hyperparameters to be tuned for
constructing a relatively well-performing model. We used a 10-fold cross-validation (CV)
technique for hyperparameter tuning. To do this, the training dataset was further randomly
divided into the training dataset to build the model with a different set of hyperparameters,
and the validation dataset for model validation. All possible combinations of hyperparam-
eters were investigated using grid search. The model with the lowest root mean square
error on the validation dataset was viewed as the best model of each ML method. The best
models of RF, SGB, CART and XGBoost were generated and the corresponding variable
importance ranking was obtained.

During the testing process, the testing data set is used to evaluate the predictive
performance of the best ML models. The metrics used for model performance comparison
are symmetric mean absolute percentage error (SMAPE), root mean square error (RMSE),
root-relative square error (RRSE), and relative absolute error (RAE), which are shown in
Table 2.

Table 2. The Equation of Performance Metrics.

Metrics Calculation *

SMAPE SMAPE = 1
m

m

∑
j=1

|pj−qj|
(|pj|+|qj|)/2

RAE RAE =
∑m

j=1|pj−qj|
∑m

j=1|qj−q|
RRSE RRSE =

√
∑m

j=1(pj−qj)
2

∑m
j=1(qj−q)

2

RMSE RMSE =

√√√√ 1
m

m

∑
j=1

(
pj − qj

)2

SMAPE, Symmetric Mean Absolute Percentage Error; RAE, Relative Absolute Error; RRSE, Root- Relative Squared
Error; RMSE, Root Mean Squared Error. * p and q represent predicted and actual values, respectively; m is the
total number of data.
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The metrics of RF, SGB, CART and XGBoost models were used to compare the model
performance of the benchmark MLR model which used the same training and testing
dataset as the ML methods. An ML model with an average metric lower than that of
MLR was considered a convincing model. In order to evaluate whether the ML methods
outperform MLR, after ML methods were repeated 10 times, means and standard deviations
were obtained.

As all of the used ML methods can produce an importance ranking for each predictor
variable, we defined that the variable ranked 1 would be the most critical risk factor and the
variable ranked as 15 would be the least significant risk factor. The different ML methods
may produce different variable importance rankings since they have different modeling
characteristics; we integrated the variable importance ranking of the convincing ML models
to enhance stability and integrity by re-ranking the importance of risk factors. In the final
stage of the proposed scheme, we summarized and discussed our significant findings of
convincing ML models and identified important variables.
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In this study, all methods were performed with R software version 4.0.5 and R
Studio version 1.1.453 with the required packages installed (http://www.R-project.org;
https://www.rstudio.com/products/rstudio/ assessed 1 May 2022). The implementations
of RF, SGB, CART and XGBoost are, respectively, “random Forest” R package version
4.6-14 [49], “gbm” R package version 2.1.8 [50], “r part” R package version 4.1-15 [51],
“XGBoost” R package version 1.5.0.2. [52]. To estimate the best hyperparameters set for
developed effective CART, RF, SGB and XGBoost methods, the “caret” R package version
6.0-90 was used [53]. The MLR was implemented by the “stats” R package version 4.0.5,
the default setting was used to construct the models.

3. Results

The demographic data of the enrolled T2DM patients are shown in Table 3. Table 4
displays the comparison between conventional MLR and the four ML methods in identi-
fying abnormal Th-201, and we found that all four ML methods exhibited low prediction
errors compared to o the MLR method. These findings suggest that all ML methods are
reliable and not inferior to traditional MLR. In order to further determine whether the four
ML methods significantly outperformed the MLR method, the Wilcoxon signed-rank test
was used. We used the test to evaluate the prediction performance of the four ML methods
and the MLR method (data not shown). It can be observed that the prediction error values
of all ML methods were not significantly different from the MLR method.

Table 3. The demographics of enrolled type 2 diabetes patients.

Variables Mean ± SD N

Age 68.09 ± 10.07 796
Body mass index 26.17 ± 3.89 588

Duration of diabetes 13.81 ± 8.02 589
Fasting plasma glucose 150.09 ± 46.05 591
Glycated hemoglobin 7.68 ± 1.39 590

Triglyceride 123.65 ± 79.32 586
High-density lipoprotein cholesterol 49.53 ± 14.98 524
Low-density lipoprotein cholesterol 95.52 ± 26.18 588
Alanine aminotransferase baseline 23.66 ± 13.60 588

Creatinine 1.16 ± 0.99 587
Systolic blood pressure 131.08± 15.36 514
Diastolic blood pressure 73.35 ± 10.09 514

Microalbuminuria 196.53± 723.55 551

N (%) N

Sex 796
Male 369 (53.64%)

Female 427 (46.36%)

Smoking 329
No 212 (64.44%)
Yes 117 (35.56%)

SD, standard deviation.

Table 4. The performance of multiple linear regression (MLR) and different machine learning methods.

Mean (SD) SMAPE RAE RRSE RMSE

MLR 1.120(0.04) 1.049(0.06) 1.054(0.03) 7.760(0.39)
RF 1.070(0.03) 1.043(0.05) 1.042(0.02) 7.683(0.48)

SGB 1.074(0.03) 1.026(0.05) 1.039(0.03) 7.661(0.45)
CART 1.055(0.04) 1.031(0.06) 1.049(0.03) 7.736(0.56)

XGBoost 1.058(0.04) 1.017(0.05) 1.032(0.02) 7.613(0.58)

RF, random forest; SGB, stochastic gradient boosting; CART, classification and regression tree; XGBoost, eXtreme
gradient boosting; SMAPE, symmetric mean absolute percentage error; RAE, relative absolute error; RRSE, root
relative square error; RMSE, root mean square error. The numbers in the parentheses are standard errors.

http://www.R-project.org
www.rstudio.com/products/rstudio/
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The ranking of each factor created by ML is demonstrated in Table 5. Diverse ML
methods generated different relative importance rankings for each risk factor. Note that
the darkness of the blue color indicates the importance of the risk factors. The darker the
blue color is, the more important the risk factor is. For instance, in the SGB method, the top
three important factors are BMI, HbA1c and Cr. For the CART method, the most dominant
factor is BMI, followed by Cr and age. In addition, to identify the overall predictive power
of each parameter from all four ML methods, the mean ranking of each risk factor was
obtained by averaging the ranking values of each variable in each method.

Table 5. Importance ranking of each risk factor using the four convincing methods.

Variables RF SGB CART XGBoost Average

Sex 5 14 6 14 9.75
Age 2 4 3 15 6

Body mass index 4 1 1 6 3
Duration of diabetes 1 13 11 8 8.25

Smoking 6 15 15 1 9.25
Hemoglobin 8 6 4 2 5

Glycated hemoglobin 9 2 5 10 6.5
Triglyceride 10 10 8 12 10

High density lipoprotein cholesterol 11 7 10 5 8.25
Low density lipoprotein cholesterol 12 5 12 11 10
Alanine aminotransferase baseline 13 8 13 13 11.75

Creatinine 14 3 2 9 7
Systolic blood pressure 7 11 9 4 7.75
Diastolic blood pressure 3 12 14 3 8

Microalbuminuria 15 9 9 9 9.5

RF, random forest; SGB, stochastic gradient boosting; CART, classification and regression tree; XGBoost, eXtreme
gradient boosting.

Figure 3 shows the risk factors based on the order of their mean ranking values. It can
be noted from the figure that the first seven important risk factors in predicting abnormal
Th-201 scans are BMI, Hb, age, HbA1c, Cr, SBP and DBP, accordingly.
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4. Discussion

As aforementioned in the introduction, there are two goals of the present study. Our
results show that: 1. All the ML methods are not inferior to traditional MLR; 2. BMI, Hb,
age, HbA1c, Cr, SBP and DBP, from the most important to the least important, are the
major influencers.

Not surprisingly, BMI is the top risk factor in detecting abnormal Th-201 scans, which
suggests that obesity is the most critical clinical parameter to predict myocardial hypoper-
fusion. Accumulative evidence has shown that BMI is associated with an increased risk
of CAD and the occurrence of acute coronary artery syndrome [54,55], and it is also an
independent indicator in predicting exercise-induced myocardial ischemia [56]. The actual
mechanism underlying obesity and CAD remains to be determined, and several hypotheses
have been proposed. For instance, obesity is a central part of metabolic syndrome and
is associated with complicated metabolic derangements, including glucose intolerance,
dyslipidemia, HTN, dysregulated inflammatory cytokines and endothelial dysfunction, all
of which lead to susceptibility to CAD [55,57]. In addition, obesity is also correlated with in-
creased coagulation factor and platelets activation, which could result in a hypercoagulable
state, and subsequently contribute to the development of CAD [55].

The role of anemia has already been reported in much research [58,59]. From these
studies, three conclusions can be drawn: 1. Anemia affects the prognosis of acute coronary
disease [58]; 2. Anemia could alter ST-segment changes [59]; 3. Different methods of
transfusion could have different impacts on the prognosis of MI [60]. Among these studies,
Cook et al. performed a study to show the precise impact of anemia on MPS. In 195 anemic
participants, the mean SSS was higher than that of the normal comparators (6.8 vs. 4.7,
p < 0.01) [61]. It is not surprising that anemia could worsen epicardial CAD and increase
blood viscosity and end-diastolic pressure [62,63].

In the present study, age was ranked as the third most important risk factor in pre-
dicting abnormal Th-201 scans. It is known that age itself exerts an essential role in the
progressive deterioration of overall cardiovascular function, which increases the risk of
CAD in the elderly [64]. From a clinical view of point, advanced age is associated with a
high risk of T2DM, HTN, dyslipidemia and renal insufficiency, all of which contribute to the
occurrence of CAD. On the other hand, old age links certain molecular mechanisms involv-
ing vascular aging, and microvascular and macrovascular remodeling, including oxidative
stress, mitochondrial dysfunction, inflammation, endothelial dysfunction, etc. [65,66]. All
these clinical and molecular factors could facilitate cardiovascular dysfunction and myocar-
dial ischemia in the elderly.

HbA1c, the traditional long-term glycemic control marker of diabetes, was selected as
the fourth important parameter for having an abnormal Th-201 scan. In T2DM, sustained
exposure to hyperglycemia could increase the incidence and the severity of macrovascular
complications, including CAD [67–69]. In the additional 10 years of the original UK
Prospective Diabetes Study, the intensive glycemic control group demonstrated a long-term
reduction of all-cause mortality [70]. Therefore, intensive glycemic control is needed for
T2DM patients to reduce macrovascular complications in clinical settings.

Next, Cr was the fifth predictor in the current study, which implies that renal dysfunc-
tion was a significant clinical parameter in assessing CAD. In addition to CAD, T2DM is
also considered a strong pathogenic factor for having another major microvascular com-
plication, diabetic nephropathy (DN) [71]. DN is the principal cause of chronic kidney
disease (CKD) and end-stage renal disease, which is associated with high morbidity and
mortality rate [5]. Declined renal function is found to be associated with an increased risk
of death, cardiovascular events and hospitalization in a normal population-based study,
which suggests CKD is also an independent indicator for CAD risk and mortality [72].

The last two factors chosen were SBP and DBP. It is well-documented that HTN is
an independent risk factor for the occurrence of CAD, and BP reduction in hypertensive
patients could significantly reduce CAD incidence and mortality [73]. The pathogenesis of
HTN in the development of CAD is extremely complicated, including the effect of high BP
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as a physical pressure on the vessel wall, triggering and aggravating the atherosclerotic
process, inducing endothelial dysfunction, facilitating arterial wall stiffness, subsequently
leading to left ventricular hypertrophy and increasing myocardial oxygen consumption,
ultimately leading to myocardial ischemia [74].

One may question that why certain risk factors, including the duration of diabetes,
LDL, HDL, smoking and microalbuminuria, etc., were ranked as less critical clinical param-
eters in predicting abnormal Th-201 scans using ML methods. This interesting observation
could be attributed to the unique nature of ML which are data-directed and non-parametric
models. ML methods can process any nonlinear function and a prior hypothesis describing
the characteristics of the data is not required. In addition, despite the fact that the actual re-
lationships among the empirical data could be unclear or difficult to illustrate, ML methods
can still catch slight functional correlations between them [75–77]. Therefore, it is possible
that the duration of diabetes, LDL, HDL, smoking and microalbuminuria, etc., may consist
of more linear pattern information and less remarkable nonlinear clues than BMI, Hb, age,
HbA1c, Cr, SBP and DBP. Consequently, these variables are graded as the less important
risk factors using ML methods.

To the best of our knowledge, despite ML methods being used in certain medical
fields, however, no study has been carried out to predict abnormal Th-201 scans using ML
methods so far. This study is the first one to identify the most critical indicators in predicting
diabetic patients with abnormal Th-201 scans and possible CAD using clinical variables
together with ML. In addition to evaluating the importance of risk factors ranked by ML,
we also compared ML and MLR at the same time. However, there are still limitations to this
study. First, this is a cross-sectional study, and our data are less convincing than those of a
longitudinal study. Secondly, there were missing values in certain clinical variables, and
collecting complete data on these variables would make our results more valuable. Thirdly,
as healthy controls were not included in the study, we cannot compare the differences in
risk factors between T2DM and non-T2DM subjects. It would be our future plan to recruit
healthy subjects as a control group for further analysis to make our results more reliable
and comprehensive. Finally, important medication information including lipid-lowering
agents, sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 agonists,
etc., which can reduce the CAD risk, was not available for the study. Since we did not
collect this information, the effects of the aforementioned medications remain unknown.

In conclusion, our data showed that ML methods were not inferior to traditional MLR
and might be more accurate than traditional MLR in predicting abnormal Th-201 scans
in T2D patients. We recognized that BMI, Hb, age, HbA1c, Cr, SBP and DBP, from most
important to least important, are the most significant factors.
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