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Abstract: Many studies have shown that dichlorodiphenyltrichloroethane (DDT) exposure raises
breast cancer risk. Another insecticide with similar properties is endosulfan, which has been ac-
tively used in agriculture after DDT prohibition. Previously, we have identified some estradiol-,
progesterone-, and testosterone-sensitive microRNAs (miRNAs, miRs). Because DDT and endosulfan
have estrogenic, antiandrogenic, and antiprogesterone properties, we hypothesized that these miR-
NAs are affected by the insecticides. We quantified relative levels of miRNAs and expression levels
of their target genes in breast cancer MCF-7 cells treated with p,p′-DDT, o,p′-DDT, or endosulfan. We
also quantified miR-19b expression, which, as previously shown, is regulated by estrogen. Here, we
observed that miR-19b expression increased in response not only to estradiol but also to testosterone
and progesterone. Treatment of MCF-7 cells with p,p′-DDT or endosulfan decreased the protein levels
of apoptosis regulators TP53INP1 and APAF1. In cells treated with o,p′-DDT, the TP53INP1 amount
decreased after 24 h of incubation, but increased after 48 h of incubation with insecticide. OXTR
expression, which is known to be associated with breast carcinogenesis, significantly diminished
under the exposure of all insecticides. In cells treated with p,p′-DDT or o,p′-DDT, the observed
changes were accompanied by alterations of the levels of hormone-responsive miRNAs: miR-324,
miR-190a, miR-190b, miR-27a, miR-193b, and miR-19b.

Keywords: organochlorine pesticide; dichlorodiphenyltrichloroethane; endosulfan; hormone receptor;
endocrine disruptor; microRNA

1. Introduction

Over the past 50 years, it has been established that a variety of chemicals can affect the
endocrine system [1]. Such compounds are called endocrine-disrupting chemicals (EDCs).
They can either mimic endogenous hormones in the body or competitively bind to a hor-
mone receptor [2]. EDCs are usually lipophilic compounds that bioaccumulate in adipose
tissue [3]. One of the first EDCs to be studied was dichlorodiphenyltrichloroethane (DDT).
It is an organochlorine pesticide that was widely used in the 1940s–1970s in agriculture.
At present, DDT is approved for malaria control [4]. Another organochlorine pesticide is
endosulfan, which was extensively used in the 1980s and 1990s. Although endosulfan was
banned globally in 2011, it is still employed illegally in certain countries [5,6]. Despite the
global ban on these pesticides in agriculture, owing to their extensive use in the past and
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continued use in some countries, these compounds and their metabolites are still detectable
in human breast milk and serum [7–9].

Isomers and metabolites of DDT and endosulfan may have an estrogen agonist activity
and androgen and progesterone antagonist activities [10–15]. Several reports point to a
link between exposure to these pesticides and a higher risk of malignant tumors [8,16–18].
Nonetheless, the mechanisms by which DDT and endosulfan can lead to cancer initiation
are not fully investigated. The most studied is the relation of pesticides with the risk of
breast cancer, whose initiation and progression are known to be associated with changes
in the expression and activity of estrogen receptor (ER), progesterone receptor (PR), and
androgen receptor (AR) [19–22]. The fact that DDT and endosulfan alter the microRNA
(miRNA, miR) expression profile also implies that these pesticides can contribute to cancer
initiation [23–25]. Through effects on the levels of miRNAs, insecticides may change
protein expression of many tumor suppressor genes or oncogenes. We have previously
identified a number of estradiol-, testosterone-, and progesterone-sensitive miRNAs [26].
Therefore, to search for new targets of pesticides in breast cells, we analyzed the expression
of these miRNAs and of their predicted target genes in ER-, PR-, and AR-expressing breast
cancer MCF-7 cells treated with various doses of p,p′-DDT, o,p′-DDT, or endosulfan. To
confirm the role of ER, PR, and AR in the identified changes, we also quantified miRNAs
in MDA-MB-231 cells (an ER-, PR-, AR-negative cell line) exposed to p,p′-DDT, o,p′-DDT, or
endosulfan.

2. Materials and Methods
2.1. Chemicals and Reagents

4,4′-DDT (p,p′-DDT; 98%, SKU 386340), 2,4′-DDT (o,p′-DDT; analytical standard, SKU
49018), endosulfan (analytical standard, SKU 32015), estradiol, progesterone (≥99%, SKU
P0130), and testosterone (≥99%, SKU 86500) were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

2.2. Cell Culture

The ER-, PR-, AR-positive breast cancer MCF-7 cell line and ER-, PR-, AR-negative
breast cancer MDA-MB-231 cell line were obtained from the Russian Cell Culture Collec-
tion (a St. Petersburg (Russia) branch of the European Tissue Culture Society). MCF-7
cells were cultivated in Iscove’s modified Dulbecco’s medium (IMDM; Gibco BRL Co.,
Gaithersburg, MD, USA) supplemented with 10% of fetal bovine serum (Gibco BRL Co.),
2 mM L-alanyl-L-glutamine (Gibco BRL Co.), 250 mg/mL amphotericin B, and 100 U/mL
penicillin/streptomycin (Gibco BRL Co.). MDA-MB-231 cells were grown in Dulbecco’s
Modified Eagle Medium/Nutrient Mixture F-12 media (DMEM/F-12; Gibco BRL Co.)
with 10% FBS (Gibco BRL Co.), 2 mM L-alanyl-L-glutamine (Gibco BRL Co.), 250 mg/mL
amphotericin B, and 100 U/mL penicillin/streptomycin (Gibco BRL Co.). The cells were
maintained in a 5% CO2 incubator at 37 ◦C and passaged when 65–80% confluent. Con-
ventional PCR assays were performed to verify the absence of mycoplasma contamination.
The treatment of cells with estradiol, progesterone, testosterone, p,p′-DDT, o,p′-DDT, or
endosulfan was carried out in accordance with a protocol published elsewhere [27].

2.3. Viability, Apoptosis and Proliferation Assay

Cell viability, apoptosis and proliferation were detected by Hoechst 33342/propidium
iodide (PI) staining as previously described [28]. The cells were treated for 6, 24 and
48 h with insecticides dissolved in DMSO at concentrations 0.1–50 µM. Treated cells and
control cells were stained with Hoechst 33342 (Sigma-Aldrich) for 30 min at 37 ◦C and PI
(Sigma-Aldrich) for 10 min at 37 ◦C. An IN Cell Analyzer 2200 (GE Healthcare, Chicago,
IL, USA) was used to perform automatic imaging of four fields per well under 200×
magnification, in brightfield and fluorescence channels. The images produced were used
to analyze live, apoptotic and dead cells among the whole population using the IN Cell
Investigator software (version 1.5, GE Healthcare, Chicago, IL, USA. All data shown are
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means of three wells. Quantitative data are expressed as the mean ± standard deviation
(SD). The cytotoxic activity was determined as half-maximal lethal concentration (LC50),
which was defined as ‘the compound concentration that reduces the number of live cells by
50%’ and was calculated from curves constructed by plotting cell survival (%) versus drug
concentration (µM). The proliferation activity was determined as half-maximal inhibitory
concentration (IC50), which was calculated from a curve constructed by plotting a cell count
(%) versus drug concentration (µM).

2.4. RNA Isolation

Total RNA was isolated using the TRIzol™ Reagent (Invitrogen, Carlsbad, CA, USA).
Glycogen (Amresco, Cleveland, OH, USA) served as an RNA co-precipitant. RNA integrity
was evaluated by agarose gel electrophoresis. Concentration and purity of RNA were
assessed on an Agilent-8453 spectrophotometer (Agilent Technologies, Santa Clara, CA,
USA) at wavelengths 260 and 280 nm.

2.5. Reverse Transcription and Real-Time PCR (RT-PCR) of MiRNAs

Stem-loop primers [29] and the RT-M-MuLV-RH Kit (Biolabmix Ltd., Novosibirsk,
Russia) were used for reverse transcription of miRNAs. PCR was conducted with TaqMan
probes and the BioMaster UDG HS-qPCR (2×) Kit (Biolabmix Ltd.). Detection of PCR
products was carried out by means of a CFX96™ Detection System (Bio-Rad Laboratories,
Hercules, CA, USA). Expression levels of small nuclear RNAs U44 and U48 were used to
normalize the data.

The primer sequences for the reverse transcription are listed in Table 1.

Table 1. Sequences of primers for miRNA reverse transcription.

RNA Primer Sequences

hsa-miR-23a-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGAAATC-3′

hsa-miR-190a-5p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCTAATA-3′

hsa-miR-190b-5p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACCCAA-3′

hsa-miR-27a-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCTCACA-3′

hsa-miR-193b-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCGGGAC-3′

hsa-miR-324-5p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACACCAAT-3′

hsa-miR-423-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTGAGGG-3′

hsa-miR-200b-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTCATCAT-3′

hsa-miR-21-5p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAACATC-3′

hsa-miR-126-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGCATTAT-3′

hsa-miR-378a-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCCTTCT-3′

hsa-miR-149-5p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGGAGTGA-3′

hsa-miR-342-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGGGTG-3′

hsa-miR-19b-3p 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGTTT-3′

U44 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTCAGTT-3′

U48 5′-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGGTCAG-3′

The oligonucleotides that were employed for PCR are listed in Table 2.
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Table 2. Sequence of primers for RT-PCR of miRNAs.

RNA Primer Sequences

hsa-miR-23a-3p Forward 5′-GCCGCATCACATTGCCAGG-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACGGAAATC-(BHQ1)-3′

hsa-miR-190a-5p Forward 5′-GCCGCTGATATGTTTGATA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACACCTAATA-(BHQ1)-3′

hsa-miR-190b-5p Forward 5′-GCCGCTGATATGTTTGATA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACAACCCAA-(BHQ1)-3′

hsa-miR-27a-3p Forward 5′-GCCGCTTCACAGTGGCTAA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACGCGGAAC-(BHQ1)-3′

hsa-miR-193b-3p Forward 5′-GCCGCAACTGGCCCTCAAA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACAGCGGGAC-(BHQ1)-3′

hsa-miR-324-5p Forward 5′-CCCGCATCCCCTAGGGC-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACACACCAAT-(BHQ1)-3′

hsa-miR-423-3p Forward 5′-GCCGAGCTCGGTCTGAGGC-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACACTGAGG-(BHQ1)-3′

hsa-miR-200b-3p Forward 5′-GCCGCTAATACTGCCTGGTA-3′,
Probe 5′-(R6G)-TTCGCACTGGATACGACGTCATCAT-(BHQ1)-3′

hsa-miR-21-5p Forward 5′-GCCGCTAGCTTATCAGACT-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACTCAACATC-(BHQ1)-3′

hsa-miR-126-3p Forward 5′-GCCGCTCGTACCGTGAGTA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACCGCATTAT-(BHQ1)-3′

hsa-miR-378a-3p Forward 5′-GCCGCACTGGACTTGGAGTC-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACGCCTTCT-(BHQ1)-3′

hsa-miR-149-5p Forward 5′-GCCGTCTGGCTCCGTGTCT-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACGGGAGTGA-(BHQ1)-3′

hsa-miR-342-3p Forward 5′-GCCGCTCTCACACAGAAATCG-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACACGGGTGC-(BHQ1)-3′

hsa-miR-19b-3p Forward 5′-GCCGTGTGCAAATCCATGCA-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACTCAGTTT-(BHQ1)-3′

U44
Forward 5′-GCCGCTCTTAATTAGCTCT-3′

Probe 5′-(R6G)-TTCGCACTGGATACGACAGTCAGTT-(BHQ1)-3′

U48
Forward 5′-GAGTGATGATGACCCCAGGTAA-3′

Probe 5′-(R6G)-TTCGCACCAGAGCCAACGGTCAG-(BHQ1)-3′

Reverse 5′-GTGCAGGGTCCGAGGT-3′

The reverse primer targeting the stem-loop region in the synthesized cDNAs was 5′-
AGTGCAGGGTCCGAGGTA-3′ (except for the cDNA of U48). Each sample was analyzed
in triplicate (technical replicates). The fold-change of each miRNA was calculated using
the threshold cycle (CT) method (2−∆∆Ct).

2.6. MRNA Reverse Transcription and RT-PCR

Reverse transcription of mRNA was performed by means of the RT-M-MuLV-RH
Kit (Biolabmix Ltd.), and 0.8 µg of RNA was used in this reaction. PCR was carried out
with the BioMaster HS-qPCR SYBR Blue(2×) (Biolabmix Ltd.) reaction mix, followed by
loading into the CFX96™ Detection System (Bio-Rad Laboratories). GAPDH, SYMPK, and
ANKRD17 served as reference genes. The specific primers that were used in PCR are listed
in Table 3.
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Table 3. Sequence of primers for gene expression analysis by RT-PCR.

Gene Primer Sequences

GAPDH
Forward 5′-ACAACTTTGGTATCGTGGAAGGAC-3′

Reverse 5′-CAGGGATGATGTTCTGGAGAGC-3′

ANKRD17
Forward 5′-AATGTTGCCACCACTCTTCC-3′

Reverse 5′-TGCAGCTGTGCATTCTTTTC-3′

SYMPK
Forward 5′-GCTGGAGAAGAAAGAGGTG-3′

Reverse 5′-ACAGGTTGGTGGCTTTGATG-3′

AKR1C2
Forward 5′-CCTAAAAGTAAAGCTCTAGAGGCCGT-3′

Reverse 5′-GAAAATGAATAAGATAGAGGTCAACATAG-3′

TRPS1
Forward 5′-GTATCCTGCATCGGGAGAAA-3′

Reverse 5′-AGCTTCTGGTAGAGGCCACA-3′

TP53INP1
Forward 5′-GCACCCTTCAGTCTTTTCCTGTT-3′

Reverse 5′-GGAGAAAGCAGGAATCACTTGTATC-3′

APAF1
Forward 5′-AACCAGGATGGGTCACCATA-3′

Reverse 5′-ACTGAAACCCAATGCACTCC-3′

XIAP
Forward 5′-TGGCAGATTATGAAGCACGGATC-3′

Reverse 5′-AGTTAGCCCTCCTCCACAGTGA-3′

OXTR
Forward 5′-GCACGGTCAAGATGACTTTC-3′

Reverse 5′-GCATGTAGATCCAGGGGTTG-3′

The optimal concentration of each primer was 250 nM. Each PCR was carried out
with 0.3 µL of cDNA in a final reaction volume of 20 µL. Melting profiles were employed
to assess PCR specificity. Samples were analyzed in triplicate (technical replicates). The
relative gene expression was analyzed using the 2−∆∆Ct method.

2.7. Western Blot Analysis

The cells were washed with PBS and lysed in mRIPA buffer according to a previously
published protocol [30]. The protein concentration was determined using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA; cat. # 23225). Protein
samples (20 µg per lane) were separated by SDS-PAGE and transferred to a polyvinylidene
difluoride membrane. The membranes were blocked in PBS containing 5% of nonfat
milk and 0.1% of Tween 20 and probed with primary antibodies. The following specific
antibodies were utilized in this work: anti-p53 DINP1 (cat. # ab202026, Abcam, Waltham,
MA, USA), anti-APAF1 (ab2001), anti-Oxytocin Receptor (ab217212), anti-PTPRS (ab55640),
anti-GAPDH (ab181602), a goat anti-mouse IgG H&L (HRP) antibody (ab97040; secondary
antibody), and a goat anti-rabbit IgG H&L (HRP) antibody (ab97051; secondary antibody).
The bands were visualized using the Pierce™ ECL Western Blotting Substrate (Thermo
Fisher Scientific). The intensity values of the bands were quantified in the GelQuant.NET
software provided by biochemlabsolutions.com (version 1.8.2) [31].

2.8. Bioinformatic Analysis

To determine whether the promoter region of the MIR19b gene contains a sequence
matching the binding site of AR and PR, a putative miRNA gene promoter region was
retrieved from the human genome (hg38) 10,000 nucleotides upstream from the start of a
precursor miRNA sequence according to MirGeneDB [32]. AR- and PR-binding sites were
found in these regions using a position weight matrix (MA0007.2, MA0113.3) from Jaspar
(http://jaspar.genereg.net/, accessed on 12 December 2017) [33] (sequences of binding
sites for these receptors are identical) in Biostrings (R Bioconductor package) [34].

http://jaspar.genereg.net/
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2.9. Statistical Analysis

STATISTICA software (version 12; TIBCO Software Inc., Palo Alto, CA, USA) was
used for statistical data analysis. The data are displayed as means. Statistical comparisons
between groups were performed by one-way analysis of variance (ANOVA), followed by
Dunnett’s multiple comparison post hoc test. Significance was set to p < 0.05.

3. Results
3.1. The Effects of p,p′-DDT, o,p′-DDT, and Endosulfan on Viability and Proliferation of MCF-7 Cells

The effects of p,p′-DDT, o,p′-DDT and endosulfan on viability of MCF-7 cells was
evaluated by dual staining with Hoechst 33342/propidium iodide (PI). The cytotoxic
activity was determined as LC50, and the proliferation activity as IC50. The LC50 values
after incubation of the cell lines with the tested compounds for 6, 24 and 48 h are listed in
Table 4, and the IC50 values are presented in Table 5.

Table 4. The cytotoxicity (LC50) of p,p′-DDT, o,p′-DDT, and endosulfan against MCF-7 cells.

Time, h
LC50, µM

p,p′-DDT o,p′-DDT Endosulfan

6 >50 >50 >50
24 >50 >50 33.6 ± 0.8
48 48.7 ± 0.5 >50 32.8 ± 0.9

Table 5. The proliferation (IC50) of p,p′-DDT, o,p′-DDT, and endosulfan against MCF-7 cells.

Time, h
IC50, µM

p,p′-DDT o,p′-DDT Endosulfan

6 >50 >50 >50
24 68.7 ± 0.8 >50 60.1 ± 0.6
48 65.7 ± 0.7 46.9 ± 0.5 20.7 ± 0.4

The choice of DDT doses (0.1 µM and 10 µM) for further investigation of miRNA
expression was based on the results of previous studies [24,35]. Since endosulfan, in com-
parison with DDT, had a high cytotoxic activity and a significant effect on cell proliferation,
we incubated cells with 0.1 and 1 µM of this insecticide. We have previously demonstrated
that after 6, 24, and 48 h of incubation with DDT or endosulfan, there is a change in the ex-
pression of target genes of ER, PR, and AR [27]. Therefore, to study the effect of insecticides
on the expression of hormone-responsive miRNAs, we chose the same incubation time.

3.2. ER-, PR-, and AR-Dependent Changes in the Expression of Hormone-Responsive MiRNAs in
Cells Treated with DDT or Endosulfan

In an earlier study, we identified many miRNAs whose promoter regions contain ER-,
PR-, and/or AR-binding sites and showed that the expression of some of them in MCF-7
cells is sensitive to estradiol, progesterone, or testosterone [26]. Table 6 presents a list of
these miRNAs and compounds that alter their expression. Here, we also investigated the
effect of hormones and insecticides on the expression of miR-19b. It was previously shown
that this miRNA is estrogen-regulated [36]. Using bioinformatic analysis, we also found
that the hsa-mir-19b-1 promoter region contains a sequence corresponding to the AR/PR
binding site.
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Table 6. The miRNAs potentially regulated by ER, PR, and AR. Data from [26].

miRNA Estradiol Testosterone Progesterone Potentially
Regulated by

miR-23a - - - ER, AR

miR-27a - ↓ - ER, AR

miR-190b
↓ (6 h)

- ↑ ER, AR, PR
↑ (24 h)

miR-190a ↑ ↓ ER, PR, AR

miR-200b ↓ ↑ - ER, AR

miR-21 -
↓ (6 h)

↑ ER, PR, AR
↑ (48 h)

miR-126 - - - ER, PR, AR

miR-378 - - - ER, PR, AR

miR-423 ↑ ER, PR, AR

miR-149 - - - ER, PR, AR

miR-193b ↑ ↑ - ER, PR, AR

miR-324 ↑ ↑ ↑ ER, PR, AR

miR-342 - - - ER, PR, AR
MCF-7 cells were treated with 10 nM or 100 nM of hormone for 6, 24, and 48 h. “↑” and “↓” indicate how miRNA
expression changed under the action of a compound (increased or decreased). The incubation time with the
compound is indicated in parentheses.

To test whether the expression of these miRNAs is influenced by the studied insec-
ticides, we treated MCF-7 cells with o,p′-DDT, p,p′-DDT or endosulfan. We also treated
MDA-MB-231 cells to investigate whether the observed changes in miRNA expression
were present in ER-, PR-, AR-negative cells.

Incubation of MCF-7 cells with 10 µM p,p′-DDT caused a 1.4-fold increase in the
miR-27a level (Table 7). Treatment of the cells with 10 µM o,p′-DDT for 24 or 48 h resulted
in 1.3-fold upregulation of estradiol-sensitive miR-190b. The relative level of miR-190a
declined 1.4–1.6-fold in the cells that were incubated with 0.1 or 10 µM o,p′-DDT for 48 h. A
small increase in the miR-190a level after 48 h of incubation with the high dose of p,p′-DDT
was observed in both MCF-7 and MDA-MB-231 cells (Figure 1). The amount of miR-200b
also went up under the influence of endosulfan in both cell lines. The levels of miR-126
and miR-378a were not affected by the hormones but increased 1.3–1.4-fold in cells that
were incubated for 6 h with 10 µM o,p′-DDT or p,p′-DDT. The expression of miR-193b rose
after incubation with 10 µM p,p′-DDT for 6 h (1.3-fold) and after treatment with 10 µM
o,p′-DDT for 48 h (1.4-fold). The level of progesterone- and estradiol-responsive miR-324
increased 1.3–1.4-fold in the cells after incubation with o,p′-DDT for 6 h. The expression of
miR-342 went up after 24 and 48 h treatment with 10 µM o,p′-DDT. The miR-19b amount
was elevated in the cells by each hormone (Figure 2) and by the p,p′-DDT and endosulfan.
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Table 7. Relative miRNA levels in MCF-7 cells treated with p,p′-DDT, o,p′-DDT, or endosulfan.

miRNA Time, h

Relative level of miRNA

p,p′-DDT o,p′-DDT Endosulfan

0.1 µM 10 µM 0.1 µM 10 µM 0.1 µM 1 µM

miR-23a
6 0.85 0.92 0.87 1.01 0.83 0.90

24 0.99 0.98 1.10 1.03 0.91 0.93
48 1.08 1.20 0.86 0.99 0.96 1.03

miR-27a
6 0.85 0.92 1.14 1.20 0.90 0.95

24 1.08 1.00 0.97 1.01 1.05 1.15
48 1.19 1.44 ** 0.94 1.09 1.08 1.07

miR-190b
6 0.93 0.91 0.96 1.07 0.96 1.06

24 0.98 1.02 1.05 1.26 * 0.98 1.16
48 0.87 0.91 1.00 1.33 * 1.08 1.06

miR-190a
6 0.90 0.98 0.91 0.93 1.08 1.09

24 1.01 0.91 0.95 0.94 0.94 1.01
48 1.19 1.23 * 0.73 * 0.63 ** 0.97 1.07

miR-200b
6 1.06 1.17 1.02 1.02 1.06 0.97

24 1.08 1.11 1.07 1.01 0.99 0.99
48 1.02 1.08 1.04 1.15 1.08 1.28 *

miR-21
6 0.97 1.11 1.03 1.07 1.06 1.04

24 1.10 1.11 1.03 1.03 1.11 1.16
48 0.91 0.97 1.05 1.10 1.01 1.19

miR-126
6 1.14 1.27 * 1.04 1.38 ** 1.03 1.01
24 1.13 0.92 1.00 0.95 1.01 1.17
48 0.87 0.90 1.07 1.09 1.13 1.05

miR-378
6 1.11 1.31 * 1.09 1.25 * 1.03 1.10

24 1.00 1.14 0.95 1.00 0.97 1.11
48 1.07 1.11 1.05 1.21 1.11 1.04

miR-423
6 1.09 1.17 0.85 1.05 0.94 0.88

24 1.08 1.08 1.17 1.26 * 0.89 0.92
48 0.95 1.03 0.94 1.17 0.97 1.00

miR-149
6 0.97 1.16 1.09 1.01 1.08 1.13

24 1.08 1.14 0.89 1.00 0.94 0.95
48 1.03 1.05 0.83 0.82 1.13 1.06

miR-193b
6 1.04 1.28 * 1.08 1.24 * 0.99 1.09

24 1.02 0.97 0.88 0.97 0.95 1.08
48 1.00 1.03 1.02 1.40 ** 1.00 0.91

miR-324
6 0.98 1.03 1.25 * 1.42 ** 0.94 0.91
24 1.09 0.96 1.10 1.04 0.92 1.05
48 1.00 0.95 0.98 0.95 1.08 1.14

miR-342
6 1.00 0.91 0.89 1.01 1.09 0.94

24 0.96 1.16 1.15 1.32 * 0.84 0.98
48 0.90 0.96 1.18 1.33 * 1.16 1.03

miR-19b
6 0.84 1.01 0.96 0.99 1.18 1.23 *

24 1.40 ** 1.64 ** 1.03 0.96 1.12 1.11
48 0.98 1.15 0.99 1.08 0.91 0.82

Each value represents the mean of three independent experiments; the results are normalized to the control (cells
treated with dimethyl sulfoxide; DMSO). Significant differences are highlighted in bold. * Significant differences
from the control (p < 0.05); ** p < 0.01.



Toxics 2022, 10, 25 9 of 20
Toxics 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 1. Changes in relative levels of miRNAs in MDA-MB-231 cells exposed to an insecticide for 
48 h. The Y-axis shows the ratio of the miRNA level in the cells treated with a DDT isomer or 
endosulfan to the miRNA level in the cells treated with DMSO. Each value is the mean of three 
independent experiments. * Significant differences from the control (p < 0.05). 

 
Figure 2. Changes in relative level of miR-19b in MCF-7 cells exposed to estradiol (E2), 
progesterone (P4) or testosterone. The Y-axis shows the ratio of the miRNA level in the cells treated 
with a hormone to the miRNA level in the cells treated with DMSO. Each value is the mean of three 
independent experiments. * Significant differences from the control (p < 0.05); ** p < 0.01. 

Figure 1. Changes in relative levels of miRNAs in MDA-MB-231 cells exposed to an insecticide
for 48 h. The Y-axis shows the ratio of the miRNA level in the cells treated with a DDT isomer or
endosulfan to the miRNA level in the cells treated with DMSO. Each value is the mean of three
independent experiments. * Significant differences from the control (p < 0.05).

Toxics 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 1. Changes in relative levels of miRNAs in MDA-MB-231 cells exposed to an insecticide for 
48 h. The Y-axis shows the ratio of the miRNA level in the cells treated with a DDT isomer or 
endosulfan to the miRNA level in the cells treated with DMSO. Each value is the mean of three 
independent experiments. * Significant differences from the control (p < 0.05). 

 
Figure 2. Changes in relative level of miR-19b in MCF-7 cells exposed to estradiol (E2), 
progesterone (P4) or testosterone. The Y-axis shows the ratio of the miRNA level in the cells treated 
with a hormone to the miRNA level in the cells treated with DMSO. Each value is the mean of three 
independent experiments. * Significant differences from the control (p < 0.05); ** p < 0.01. 

Figure 2. Changes in relative level of miR-19b in MCF-7 cells exposed to estradiol (E2), progesterone
(P4) or testosterone. The Y-axis shows the ratio of the miRNA level in the cells treated with a hormone
to the miRNA level in the cells treated with DMSO. Each value is the mean of three independent
experiments. * Significant differences from the control (p < 0.05); ** p < 0.01.

The levels of miR-23a, miR-27a, miR-190b, miR-21, miR-126, miR-378, miR-423, miR-
149, miR-193b, miR-324, miR-342, and miR-19b did not change in MDA-MB-231 cells treated
with insecticides.
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3.3. Treatment of Cells with either DDT or Endosulfan Alters Levels of mRNAs That Are Targets of
the Studied MiRNAs

We chose genes that are targets of several of the analyzed miRNAs (Table 8). In
addition, we were interested in the PTPRS (protein tyrosine phosphatase receptor type S),
which, according to the TargetScan database, is a target for only 12 miRNAs conserved
among vertebrates, including miR-190 [37]. According to The Human Protein Atlas, OXTR
(oxytocin receptor) expression is the highest in breasts; expression levels of AKR1C2 (aldo-
keto reductase family 1 member C2), TRPS1 (transcriptional repressor GATA-binding 1),
and XIAP (X-linked inhibitor of apoptosis) are moderate or high in breast cells. According
to the database information on the expression of PTPRS mRNA, breast cells are also
characterized by its high expression. All data are available at v21.proteinatlas.org [38].

Table 8. The studied miRNAs and their target mRNAs in humans.

Target mRNA miRNAs

OXTR miR-23a-3p, miR-21-5p, miR-378a-3p, miR-149-5p, miR-324-5p, miR-342-3p
AKR1C2 miR-23a-3p, miR-27a-3p, miR-190-5p, miR-21-5p, miR-342-3p, miR-193b-3p *
TRPS1 miR-23a-3p, miR-27a-3p, miR-190-5p, miR-200b-3p, miR-193-3p, miR-149-5p, miR-324-5p, miR-19-3p

TP53INP1 miR-23a-3p, miR-27a-3p, miR-190-5p **, miR-200b-3p, miR-193-3p, miR-342-3p, miR-19-3p
APAF1 miR-23a-3p *, miR-27a-3p, miR-190-5p, miR-200b-3p, miR-21-5p *, miR-378a-3p, miR-149-5p, miR-324-5p, miR-19-3p
XIAP miR-23a-3p, miR-27a-3p, miR-190-5p, miR-200b-3p *, miR-149-5p, miR-19-3p

PTPRS miR-190-5p

The miRNAs with the largest number of detected expression alterations in the cells treated with the insecticides
are highlighted in bold. * The interaction of miRNA with the target mRNA was confirmed by a reporter assay
according to the miRTarBase database [39]. ** The interaction of miRNA with the target mRNA was confirmed by
a reporter assay [40].

To determine whether the observed changes in the expression of target genes were the
result of hormone-like action of insecticides, we also assessed the mRNA levels in the cells
exposed to estradiol, progesterone, or testosterone.

OXTR expression decreased after 6 h of incubation with 10 µM p,p′-DDT, 10 µM
o,p′-DDT, or 10 or 100 nM progesterone (1.6-, 1.8-, and 1.4-fold, respectively; Table 9).
Furthermore, the mRNA level of this receptor diminished in the cells treated with p,p′-DDT
or endosulfan for 48 h. Under the action of estradiol or testosterone, OXTR expression
increased. AKR1C2 expression decreased in cells treated with testosterone for 24 and 48 h
but rose in cells incubated with 10 µM p,p′-DDT. The TRPS1 mRNA level increased in
testosterone- and estradiol-treated cells but declined 1.6-fold in cells treated with the high
dose of o,p′-DDT for 6 h. TP53INP1 (tumor protein P53-inducible nuclear protein 1) mRNA
expression decreased in cells after 6 h of treatment with either estradiol or o,p′-DDT (by 1.4–
1.6- and 1.6-fold, respectively). Additionally, the mRNA level of this gene increased under
the influence of progesterone after 24 h of incubation and went down 1.5–1.6-fold after 48 h
of incubation with p,p′-DDT. APAF1 (apoptotic peptidase-activating factor 1) expression
went up in testosterone-treated cells and diminished in cells treated for 6 h with 100 nM
progesterone. When cells were exposed to each insecticide, a 1.4-fold decrease in APAF1
expression was observed after incubation with p,p′-DDT for 48 h and after incubation with
o,p′-DDT for 6 h. The level of PTPRS mRNA declined under the influence of testosterone.
In cells treated with estradiol, this gene’s expression increased after 24 h of incubation but
decreased after 48 h of incubation. During the exposure to each insecticide, PTPRS was
found to be upregulated after 6 h.
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Table 9. Relative mRNA levels in MCF-7 cells exposed to estradiol, testosterone, progesterone,
p,p′-DDT, o,p′-DDT, or endosulfan.

Gene Time, h
Relative Level of mRNA

Estradiol Testosterone Progesterone p,p′-DDT o,p′-DDT Endosulfan

10 nM 100 nM 10 nM 100 nM 10 nM 100 nM 0.1 µM 10 µM 0.1 µM 10 µM 0.1 µM 1 µM

OXTR
6 0.81 1.01 0.97 1.02 0.70 * 0.71 * 1.02 0.64 ** 0.92 0.57 ** 0.96 0.90
24 1.25 * 1.31 * 1.24 1.73 ** 1.00 1.00 0.88 1.06 1.10 1.00 1.05 0.88
48 1.57 * 2.45 ** 1.25 * 1.26 * 1.16 1.33 * 0.77 * 0.72 ** 1.03 0.98 0.86 0.67 **

AKR1C2
6 1.03 1.09 1.05 1.12 0.80 0.83 0.98 0.93 0.93 0.81 0.97 0.99
24 1.00 0.90 0.67 * 0.71 * 0.93 0.94 1.00 1.27 * 0.96 1.18 0.88 1.22
48 0.93 1.23 0.74 * 0.65 ** 0.91 0.90 0.99 1.42 ** 0.83 1.10 0.94 1.01

TRPS1
6 1.04 1.11 1.16 1.11 0.85 0.97 0.98 0.90 0.98 0.63 ** 0.97 1.01
24 1.19 0.99 1.06 1.09 1.07 1.02 0.90 1.00 1.02 1.17 1.06 0.98
48 1.12 1.62 ** 1.35 * 1.42 ** 1.12 1.12 0.88 0.81 1.05 1.03 0.88 1.07

TP53INP1
6 0.64 ** 0.71 * 1.17 1.12 0.93 0.94 1.08 0.87 1.06 0.64 * 1.00 0.98
24 0.83 0.85 0.82 0.88 1.31 * 1.29 * 0.85 0.94 1.10 1.02 1.11 1.03
48 0.80 0.78 * 0.87 1.00 1.05 1.11 0.67 ** 0.62 ** 1.08 0.96 0.96 0.98

APAF1
6 0.95 1.15 1.26 * 1.39 * 0.84 0.73 ** 1.14 1.22 * 0.91 0.72 * 0.92 1.00
24 1.15 1.07 0.95 0.96 1.20 1.18 0.85 0.94 1.07 1.16 1.17 1.06
48 0.88 0.95 0.78 0.99 1.06 1.07 0.80 0.73 * 1.02 0.87 1.01 1.07

XIAP
6 0.81 0.95 0.98 1.04 0.86 1.10 1.10 0.93 1.04 0.83 0.88 0.82
24 1.01 0.97 0.95 0.91 1.07 1.12 1.03 1.09 1.10 0.96 1.00 0.97
48 1.17 1.13 1.02 1.11 1.08 1.05 0.93 0.82 0.98 0.77 * 1.06 0.93

PTPRS
6 1.14 1.20 1.14 1.01 0.90 0.90 1.11 1.34 * 1.35 * 1.72 ** 1.01 1.28 *
24 1.27 * 1.33 * 0.75 * 0.79 * 1.11 1.12 1.12 1.03 0.99 1.01 1.17 1.06
48 0.76 * 0.66 ** 0.80 0.79 * 1.19 1.21 1.07 1.13 1.15 1.26 0.84 0.92

Each value is the mean of three independent experiments; the results are normalized to the control (cells treated
with DMSO). Significant differences are highlighted in bold. * Significant differences from the control (p < 0.05);
** p < 0.01.

3.4. Relative Amounts of Proteins OXTR, APAF1, TP53INP1, and PTPRS in Treated Cells

To confirm that the identified alterations in the expression of target mRNAs were
accompanied by changes in the amounts of respective proteins, we performed Western blot
analysis of cells exposed to each insecticide for 24 or 48 h. For this assay, we chose OXTR,
APAF1, TP53INP1, and PTPRS because their mRNA levels were significantly influenced by
several compounds being tested.

We confirmed that the amount of the OXTR protein was lower in cells treated with
p,p′-DDT for 24 and 48 h (Figure 3).

In cells treated with o,p′-DDT for 24 h, the amount of the OXTR protein diminished
too, accompanied by upregulation of miR-378a, miR-324, and miR-342 during the exposure
to the insecticide (Figure 4).

The TP53INP1 protein level turned out to be reduced in cells treated with p,p′-DDT
(Figure 5).

In cells treated with o,p′-DDT for 24 h, this protein’s level declined too (Figure 6).
After 48 h of incubation with o,p′-DDT, we observed an increase in the amount

of TP53INP1 protein, which corresponded to a decrease in the expression of miR-190a
(Figure 7).

The amount of APAF1 diminished under the influence of 10 µM p,p′-DDT after 48 h of
incubation, consistently with the results of PCR (Figure 8).

A small decrease in the APAF1 amount occurred in cells after incubation with o,p′-DDT
(Figure 9).

Although the PTPRS mRNA level proved to be elevated in the cells incubated with
each insecticide, there was a decrease in the protein level of PTPRS in the cells incubated
with p,p′-DDT or o,p′-DDT within 24 h (Figure 10).



Toxics 2022, 10, 25 12 of 20
Toxics 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 3. (A) Relative levels of OXTR mRNA and of the miRNA targeting it (miR-378a) in MCF-7 
cells exposed to p,p′-DDT. The Y-axis represents the ratio of the mRNA or miRNA amount in the 
cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated with DMSO. 
Each value is the mean of three independent experiments. * Significant differences from the control 
(p < 0.05); ** p < 0.01. (B) Western blot analysis of OXTR in cells incubated with p,p′-DDT. The 
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with DMSO. Each value is the mean of three independent experiments. * Significant differences 
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Figure 3. (A) Relative levels of OXTR mRNA and of the miRNA targeting it (miR-378a) in MCF-7
cells exposed to p,p′-DDT. The Y-axis represents the ratio of the mRNA or miRNA amount in the
cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated with DMSO.
Each value is the mean of three independent experiments. * Significant differences from the control
(p < 0.05); ** p < 0.01. (B) Western blot analysis of OXTR in cells incubated with p,p′-DDT. The
numbers under OXTR bands denote fold change in the protein level as compared to the first band
(control); each data point was normalized to the corresponding GAPDH band. We present data from
one of three independent experiments (which yielded similar results).
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Figure 4. (A) Relative levels of OXTR mRNA and of miRNAs targeting it (miR-378a, miR-324, and
miR-342) in MCF-7 cells exposed to o,p′-DDT. The Y-axis shows the ratio of the mRNA or miRNA
amount in the cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated
with DMSO. Each value is the mean of three independent experiments. * Significant differences from
the control (p < 0.05); ** p < 0.01. (B) Western blot analysis of OXTR in cells incubated with o,p′-DDT.
The numbers under OXTR bands represent fold change in the protein level as compared to the first
band (control); each data point was normalized to the corresponding GAPDH band. We present
findings from one of three independent experiments (which yielded similar results).
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Figure 5. (A) Relative levels of TP53INP1 mRNA and of miRNAs targeting it (miR-19b, miR-27a, and
miR-190a) in MCF-7 cells exposed to p,p′-DDT. The Y-axis indicates the ratio of the mRNA or miRNA
amount in the cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated
with DMSO. Each value is the mean of three independent experiments. * Significant differences
from the control (p < 0.05); ** p < 0.01. (B) Western blot analysis of TP53INP1 in cells incubated
with p,p′-DDT. The numbers under TP53INP1 bands represent fold change in the protein level as
compared to the first band (control); each data point was normalized to the corresponding GAPDH
band. We present data from one of three independent experiments (which yielded similar results).
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Figure 6. (A) Relative levels of TP53INP1 mRNA and of miRNAs targeting it (miR-193b and miR-342)
in MCF-7 cells exposed to o,p′-DDT. The Y-axis shows the ratio of the mRNA or miRNA amount in
the cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated with DMSO.
Each value is the mean of three independent experiments. * Significant differences from the control
(p < 0.05). (B) Western blot analysis of TP53INP1 in cells incubated with o,p′-DDT. The numbers
under TP53INP1 bands denote fold change in the protein level as compared to the first band (control);
each data point was normalized to the corresponding GAPDH band. We present findings from one
of three independent experiments (which yielded similar results).
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Figure 7. (A) Relative level of miR-190a in MCF-7 cells exposed to o,p′-DDT for 48 h. The Y-axis
shows the ratio of the miRNA amount in the cells treated with a DDT isomer to the miRNA amount in
the cells treated with DMSO. Each value is the mean of three independent experiments. * Significant
differences from the control (p < 0.05); ** p < 0.01. (B) Western blot analysis of TP53INP1 in cells
incubated with o,p′-DDT. The numbers under TP53INP1 bands denote fold change in the protein
level as compared to the first band (control); each data point was normalized to the corresponding
GAPDH band. We present findings from one of three independent experiments (which yielded
similar results).
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Figure 8. (A) Relative levels of APAF1 mRNA and of miRNAs targeting it (miR-193b and miR-342) in
MCF-7 cells exposed to p,p′-DDT. The Y-axis represents the ratio of the mRNA or miRNA amount
in the cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated with
DMSO. Each value is the mean of three independent experiments. * Significant differences from the
control (p < 0.05); ** p < 0.01. (B) Western blot analysis of APAF1 in cells incubated with p,p′-DDT.
The numbers under APAF1 bands denote fold change in the protein level as compared to the first
band (control); each data point was normalized to the corresponding GAPDH band. We present data
from one of three independent experiments (which yielded similar results).
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Figure 9. (A) Relative levels of APAF1 mRNA and of miRNAs targeting it (miR-324, miR-378a, and
miR-190b) in MCF-7 cells exposed to o,p′-DDT. The Y-axis represents the ratio of the mRNA or miRNA
amount in the cells treated with a DDT isomer to the mRNA or miRNA amount in the cells treated
with DMSO. Each value is the mean of three independent experiments. * Significant differences from
the control (p < 0.05); ** p < 0.01. (B) Western blot analysis of APAF1 in cells incubated with o,p′-DDT.
The numbers under APAF1 bands denote fold change in the protein level as compared to the first
band (control); each data point was normalized to the corresponding GAPDH band. We present data
from one of three independent experiments (which yielded similar results).
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Figure 10. Western blot analysis of PTPRS in cells incubated with p,p′-DDT and o,p′-DDT. The
numbers under PTPRS bands denote fold change in the protein level as compared to the first band
(control); each data point was normalized to the corresponding GAPDH band. We present data from
one of three independent experiments (which yielded similar results). The levels of proteins APAF1
and OXTR declined in the cells treated with endosulfan for 24 h, and TP53INP1, APAF1, and OXTR
levels decreased in the cells treated for 48 h (Figure 11).
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Figure 11. Western blot analysis of OXTR, APAF1, and TP53INP1 in cells incubated with endosulfan
for 24 and 48 h. The numbers under bands denote fold change in the protein level as compared to the
first band (control); each data point was normalized to the corresponding GAPDH band. We present
data from one of three independent experiments (which yielded similar results).

3.5. The Effects of p,p′-DDT, o,p′-DDT, and Endosulfan on Apoptosis of MCF-7 Cells

Since the level of apoptosis regulating proteins decreased under the action of insecti-
cides, we investigated the effect of the compounds on cell apoptosis. The rate of apoptosis
was detected by Hoechst 33342/propidium iodide. We did not find significant changes in
the rate of apoptosis in cells treated with insecticides. However, it should be noted that
a tendency towards a decrease in the rate of apoptosis was observed in cells treated with
1 µM and 10 µM o,p′-DDT for 48 h (Table 10). A similar trend was observed in cells treated
with 0.1 µM endosulfan.

Table 10. Percentage of dead, living and apoptotic cells after incubation for 48 h with DMSO, o,p′-DDT
or endosulfan.

Dose
o,p′-DDT Endosulfan

Dead Cells (%) Live Cells (%) Apoptosis (%) Dead Cells (%) Live Cells (%) Apoptosis (%)

0 µM 0.19 ± 0.19 96.99 ± 0.08 2.82 ± 0.20 0.19 ± 0.19 96.99 ± 0.08 2.82 ± 0.20
0.1 µM 1.12 ± 0.97 96.61 ± 2.35 2.27 ± 1.38 0.55 ± 0.40 97.87 ± 1.13 1.59 ± 0.83
1 µM 0.22 ± 0.20 97.75 ± 0.07 2.03 ± 0.38 0.54 ± 0.22 96.90 ± 0.56 2.56 ± 0.34

10 µM 0.50 ± 0.24 97.83 ± 1.19 1.67 ± 0.95 0.52 ± 0.31 95.59 ± 1.12 3.89 ± 0.80

4. Discussion

It is reported that there are ~1000 chemicals that can interfere with the endocrine
system [3]. There are difficulties with the research on EDCs’ mechanisms of action and with
assessing the consequences of their impact on humans because adverse effects manifest
themselves years after EDC exposure and are absent in some people [3]. One of the most
famous EDCs is DDT. A number of studies suggest that the exposure to DDT elevates the
risk of breast cancer [8,17,41]. Another insecticide with similar properties is endosulfan; it
was actively used in agriculture after the prohibition of DDT. How DDT and endosulfan
may contribute to cancer has not been well investigated. Elsewhere, we have discovered
some estradiol-, progesterone-, and testosterone-sensitive miRNAs [26]. Because DDT and
endosulfan have estrogenic, antiandrogenic, and antiprogesterone effects, we hypothesized
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that these miRNAs can be affected by insecticides. Therefore, we measured relative levels
of these miRNAs and expression of their target genes in MCF-7 cells treated with p,p′-DDT,
o,p′-DDT, or endosulfan. Furthermore, we analyzed the expression of miR-19b, which is
known to be regulated by estrogen [36,42], and miRNA genes in whose promoter regions
sequences matching ER, PR, or AR binding sites have been found but expression levels
were not altered by hormones. Here, we also revealed that the promoter region of MIR19b
contains a binding site for AR and PR.

We noticed that the treatment of cells with p,p′-DDT alters the expression of miR-27a,
miR-190a, miR-126, miR-378a, miR-193b, and miR-19b. MiR-190a was also upregulated
in ER-, PR-, AR-negative MDA-MB-231 cells by this insecticide, probably indicating ER-,
PR-, AR-independent effects of p,p′-DDT on this miRNA’s expression. It is noteworthy that
p,p′-DDT and testosterone caused opposite alterations of miR-27a expression. Similarly,
the level of miR-190a went down in cells after incubation with progesterone but increased
after the exposure to p,p′-DDT, which has the strongest affinity for PR as compared to other
DDT isomers and endosulfan (potency of p,p′-DDT binding to PR is only 40-fold weaker
than that of progesterone) [10]. Amounts of estradiol-responsive miR-19b and miR-193b
went up in the cells exposed to p,p′-DDT.

Treatment of cells with o,p′-DDT resulted in overexpression of estradiol-sensitive
miR-190b and miR-193b and progesterone- and estradiol-responsive miR-324. The levels of
miR-126, miR-378a, miR-423, and miR-342 rose too. MiR-190a expression, which increased
under the action of testosterone, significantly decreased in cells treated with o,p′-DDT.

MiR-200b was upregulated by the exposure to endosulfan in both MCF-7 and MDA-
MB-231 cells. A small increase was observed for miR-19b level in cells treated with endo-
sulfan for 6 h.

For further analysis, we selected miRNA target genes OXTR, AKR1C2, TRPS1, TP53INP1,
APAF1, XIAP, and PTPRS. The revealed increase in the AKR1C2 mRNA level under the
influence of p,p′-DDT is probably related to antiandrogenic properties of DDT because we
found that testosterone treatment of the cells lowers this gene’s mRNA level. The AKR1C2
protein is involved in the metabolism of hormones such as estrogen, progesterone, and
androgen. Its expression change caused by DDT is probably another way that DDT affects the
endocrine system.

OXTR mRNA levels were reduced in the cells by the exposure to progesterone, p,p′-
DDT, or o,p′-DDT for 6 h. On the other hand, incubation with progesterone or o,p′-DDT
raised the expression of miR-324, and treatment with p,p′-DDT or o,p′-DDT upregulated
miR-378. OXTR mRNA is one of the targets of these miRNAs. We confirmed that under
the action of p,p′-DDT or o,p′-DDT, the protein level of OXTR decreased.

MRNA levels of proapoptotic antiproliferative protein TP53INP1 were reduced in the
cells by treatment with p,p′-DDT for 48 h or o,p′-DDT for 6 h. The observed alterations may
be due to estrogenic and antiprogesterone properties of DDT. Nonetheless, it should be
noted that after 24 h of incubation with p,p′-DDT, the level of miR-19b increased, and after
incubation for 48 h, the levels of miR-27a and miR-190a went up. For all these miRNAs,
TP53INP1 mRNA is predicted as a target. In cells treated with o,p′-DDT for 6 h, the miR-193b
amount increased, and levels of miR-342 and miR-190b increased after 24 h of incubation;
for these miRNAs, TP53INP1 mRNA is also predicted to be a target. We confirmed by
Western blotting the TP53INP1 protein downregulation under the influence of p,p′-DDT
and o,p′-DDT (after 24 h of incubation). After 48 h of incubation with o,p′-DDT, the amount
of TP53INP1 protein increased, which corresponded to a decrease in miR-190a expression.

The mRNA expression of APAF1, the protein product of which participates in apoptosis
initiation, was significantly reduced in cells by incubation with p,p′-DDT (for 48 h) or o,p′-
DDT (for 6 h). This mRNA, just as TP53INP1 mRNA, is a target for miR-19b, miR-190a and
miR-27a.

It was shown previously that incubation with o,p′-DDT for 5 days reduces the rate
of apoptosis [43]. Other researchers have demonstrated that o,p′-DDT has the ability to
suppress tumor necrosis factor alpha (TNF)-induced apoptosis in MCF-7 cells [44]. Thus,
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the previously demonstrated inhibition of apoptosis by this insecticide may be mediated,
among other things, by a decrease in the expression of APAF1 and TP53INP1.

Although we failed to detect significant changes in the levels of miRNAs or their
target mRNAs (with the exception of OXTR, miR-200b, and miR-19b) in cells exposed to
endosulfan, we demonstrated that after incubation with this insecticide, protein levels of
TP53INP1, APAF1, and OXTR decreased.

5. Conclusions

Thus, we identified new targets of action of the insecticides p,p′-DDT, o,p′-DDT, and
endosulfan. Treatment of MCF-7 breast cancer cells with these compounds lowered the ex-
pression of regulators of apoptosis TP53INP1 and APAF1 (but after 48 h of incubation with
o,p′-DDT, the TP53INP1 amount increased). The expression of OXTR, which is probably
implicated in breast carcinogenesis [45,46], significantly changed as well. In the cells treated
with p,p′-DDT or o,p′-DDT, the observed alterations were accompanied by quantitative
changes in the hormone-responsive miRNAs targeting these mRNAs (miR-324, miR-190a,
miR-190b, miR-27a, miR-193b, and miR-19b).
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