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The prevalence and severity of cardiovascular disease (CVD) are exacerbated by chronic 
stress exposure. While stress-induced sympathetic activity and elevated glucocorticoid 
secretion impair cardiovascular health, the mechanisms by which stress-responsive brain 
regions integrate autonomic and endocrine stress responses remain unclear. This review 
covers emerging literature on how specific cortical and hypothalamic nuclei regulate 
cardiovascular and neuroendocrine stress responses. We will also discuss the current 
understanding of the cellular and circuit mechanisms mediating physiological stress 
responses. Altogether, the reviewed literature highlights the current state of stress 
integration research, as well unanswered questions about the brain basis of CVD risk.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide. Although diet, exercise, 
and other lifestyle risk factors have been extensively characterized, less focus has been placed 
on the effects of prolonged mental stress to increase CVD morbidity and mortality (Barefoot 
et  al., 1996; Chida and Steptoe, 2010). Notably, CVD risk more than doubles with chronic 
stress exposure (Yusuf et  al., 2004; Steptoe and Kivimäki, 2012); yet, the neurobiological 
mechanisms linking stress and cardiovascular health outcomes are only partially understood. 
However, recent methodological advances have improved the ability to specifically interrogate 
stress-responsive neurocircuitry and subsequent regulation of cardiovascular physiology.

The physiological stress response is a conserved biological mechanism that promotes survival 
and adaptation in the presence of potential threats to homeostasis. In response to stressors, 
the brain activates both autonomic and endocrine output to mobilize energy resources (Myers 
et al., 2014b). The immediate response is generated by the autonomic nervous system, composed 
of the sympathetic and parasympathetic branches. The sympathetic nervous system is governed 
by descending cortical and forebrain circuits that regulate the activity of pre-sympathetic neurons 
in the hypothalamus and brainstem which communicate with spinal pre-ganglionic sympathetic 
neurons (Ulrich-Lai and Herman, 2009). Post-ganglionic sympathetic neurons then promote 
fight-or-flight responses including elevations of epinephrine, glucose, heart rate, and blood 
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pressure. The parasympathetic branch is regulated by descending 
cortical and forebrain innervation of brainstem pre-ganglionic 
nuclei which typically withdraw activity in response to stress. 
On a prolonged timescale, the neuroendocrine hypothalamic–
pituitary–adrenocortical (HPA) axis is activated by paraventricular 
hypothalamic corticotropin-releasing hormone (CRH; Herman 
et  al., 2016). CRH is secreted in the anterior pituitary gland 
and stimulates the release of adrenocorticotropic hormone 
(ACTH). Systemic ACTH then acts on the adrenal cortex to 
stimulate synthesis and release of glucocorticoids. Glucocorticoids 
(cortisol in humans and corticosterone in rodents) act throughout 
the body via glucocorticoid receptors (GR) and mineralocorticoid 
receptors (MR; de Kloet et al., 2005). Importantly, corticolimbic 
circuits appraise context and prior experience to regulate 
autonomic activity, hormone secretion, and feedback through 
GR and MR signaling (Myers et  al., 2012).

Although autonomic and endocrine stress responses are 
necessary for survival, exposure to traumatic or chronic stress 
can lead to autonomic imbalance, impaired negative feedback 
of the HPA axis, and illness (McEwen and Stellar, 1993; Herman 
et  al., 2003). While the autonomic nervous system and HPA 
axis act through different mechanisms, central integration of 
both systems is necessary for appropriate physiological control. 
There is a limited collection of forebrain and brainstem structures 
that provide monosynaptic input to both autonomic pre-ganglionic 
neurons and HPA axis neurosecretory cells (Ulrich-Lai and 
Herman, 2009). In addition to the paraventricular hypothalamus 
(PVN), which houses both pre-autonomic and secretory cells 
(Swanson and Sawchenko, 1983), subsets of neurons in the 
bed nuclei of the stria terminalis, hypothalamus, and hindbrain 
(ventrolateral medulla and nucleus of the solitary tract) regulate 
neuroendocrine and autonomic outflow. Importantly, this stress 
regulation is modulated by descending corticolimbic inputs 
including the prefrontal and insular cortices, amygdala, and 
hippocampus (Herman et al., 2003; Myers, 2017). The hierarchy 
of cortical inputs to subcortical regions that innervate stress-
effector cells is fundamental to translating cognitive appraisal 
and emotional processes into physiological activity. This review 
specifically focuses on stress-regulatory cortical regions and their 
targets in the hypothalamus. The amygdala, a temporal lobe 
limbic structure critical for the expression of fear, also provides 
multi-synaptic excitatory drive to both sympathetic and HPA 
axis stress responses (Swanson and Petrovich, 1998; Sah et  al., 
2003). The complex nuclear heterogeneity of the amygdala gives 
rise to numerous projections that target the bed nuclei of the 
stria terminalis, hypothalamus, and brainstem (Hermann et  al., 
1997; Prewitt and Herman, 1998; Saha, 2005; Myers et  al., 
2014a) Although, the actions of specific amygdaloid nuclei on 
autonomic and endocrine stress responses have been extensively 
reviewed elsewhere (Davis, 1997; Shekhar et  al., 2003; Phelps 
and LeDoux, 2005; Ulrich-Lai and Herman, 2009; Davis et  al., 
2010; Myers et  al., 2012, 2014b; Herman et  al., 2016; Myers, 
2017). Accordingly, the following review will concentrate on 
the rodent cortical–hypothalamic neurocircuitry that integrates 
neuroendocrine and cardiovascular autonomic activity. While 
the brainstem has a pivotal role in stress integration, this topic 
has also been reviewed elsewhere (Ulrich-Lai and Herman, 

2009; Rinaman, 2011; Herman et  al., 2016; Maniscalco et  al., 
2017; Chaves et  al., 2021; Lamotte et  al., 2021).

The current review focuses on the rodent prefrontal cortex, 
including a specific population of cells in the infralimbic cortex 
(IL) that is necessary for cardiovascular and endocrine responses 
to chronic stress. We  also discuss the importance of prelimbic 
prefrontal cortex (PL) and highlight insular cortex effects on 
cardiovascular activity. Additionally, we  discuss how these 
cortical regions may target the hypothalamus to trans-synaptically 
regulate neuroendocrine and cardiovascular autonomic effectors. 
The specific hypothalamic nuclei examined include the lateral 
hypothalamus (LH), dorsal medial hypothalamus (DMH), and 
posterior hypothalamus (PH), all of which innervate the PVN 
and regulate cardiovascular reactivity.

CORTICAL STRESS REGULATION

Medial Prefrontal Cortex
The medial prefrontal cortex (mPFC) is important for translating 
stress appraisal into adaptive behavioral and physiological 
responses through descending multi-synaptic circuits that target 
the HPA axis and autonomic effectors of cardiovascular activity. 
The mPFC is divided into dorsal and ventral subdivisions 
which have contrasting roles in acute and chronic stress reactivity 
(Radley et  al., 2006; Mcklveen et  al., 2013). Dorsal mPFC, PL 
in rodents, inhibits heart rate reactivity to acute stress (Tavares 
et  al., 2009). Additionally, PL disinhibition reduces HPA axis 
reactivity to acute psychological stressors (restraint), while 
enhancing responses to physiological stressors (hypoxia; Jones 
et  al., 2011). Further, GR signaling in the PL is necessary to 
inhibit corticosterone responses to acute restraint but not chronic 
variable stress (Mcklveen et  al., 2013). Although the circuitry 
underlying PL effects on the cardiovascular system has not 
been directly queried, the HPA axis regulatory effects are 
mediated by synaptic relays in the bed nuclei of the stria 
terminalis (Radley et al., 2009; Johnson et al., 2019). Ultimately, 
these data suggest that the PL limits cardiovascular and HPA 
axis responses to acute psychological stressors with little evidence 
for involvement in chronic stress integration.

Subregions of human ventral mPFC exhibit altered activity 
in mood disorders (Drevets et  al., 1997, 2008) and have been 
targeted for deep brain stimulation in treatment-resistant 
depression (Mayberg et  al., 2005). Further, growing evidence 
supports a role for rodent ventral mPFC (IL) in cardiovascular 
and HPA axis regulation during chronic stress. Anatomically, 
the IL is largely composed of pyramidal glutamate neurons 
with a smaller population of GABAergic interneurons that 
regulate local activity (McKlveen et  al., 2015, 2019). Principal 
IL glutamate neurons have unique connectivity compared to 
other cortical regions and innervate stress-regulatory structures 
throughout the amygdala, hypothalamus, and brainstem (Vertes, 
2004). Further, chronic stress exposure shifts IL excitatory/
inhibitory balance toward increased inhibition (Gilabert-Juan 
et  al., 2013; McKlveen et  al., 2016; Ghosal et  al., 2020).

Initial studies of IL effects on cardiovascular stress reactivity 
found that non-specific synaptic blockers attenuated heart 
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rate and blood pressure responses to acute restraint and 
fear conditioning (Resstel et  al., 2006; Tavares et  al., 2009). 
In contrast, IL NMDA activation reduces cardiovascular 
responses to air-jet stress (Camargos et al., 2012). Additionally, 
IL lesions increase stress-induced PVN activation, particularly 
in pre-autonomic cells (Radley et  al., 2006). Taken together, 
these studies identified the importance of the IL for 
physiological stress responses but yielded contrasting results 
on whether the region increases or decreases stress responding. 
The contradictory results may relate to a lack of cellular 
specificity for lesion, pharmacology, and synaptic blockade 
approaches. Subsequent studies employed viral-mediated gene 
transfer to specifically target glutamate release from IL 
pyramidal cells. Here, genetic knockdown of pre-synaptic 
vesicular glutamate packaging in IL neurons increased 
tachycardic and pressor responses to acute restraint and 
elevated homecage arterial and pulse pressures during chronic 
variable stress (Schaeuble et al., 2019). Furthermore, decreased 
glutamate release from IL neurons during chronic stress 
increased vascular endothelial dysfunction, as well as 
histological indictors of cardiac and vascular hypertrophy. 
In terms of neuroendocrine regulation, decreased output 
from IL glutamate neurons increased HPA axis responses 
to acute restraint and exacerbated the effects of chronic stress 
on basal and stress-induced glucocorticoid hypersecretion 
(Myers et  al., 2017). Altogether, these studies indicate that 
decreased glutamate release from IL neurons interacts with 
chronic stress to increase stress responding and promote 
susceptibility to cardiovascular pathologies.

Recent experiments utilizing optogenetic approaches to 
stimulate IL glutamate neurons in male and female rats 
revealed that activation of male IL pyramidal neurons restrains 
tachycardic and pressor reactivity to novel environment stress, 
as well as corticosterone and glucose responses to restraint 
(Wallace et  al., 2021). Intriguingly, IL stimulation prior to 
chronic variable stress protected against stress-induced inward 
ventricular hypertrophy, an indicator of elevated sympathetic 
tone and cardiac load. While the mechanisms underlying 
protection from subsequent stress exposure are unclear, prior 
IL stimulation decreases net cardiac sympathetic drive. These 
effects may be  explained by the persistent dendritic plasticity 
induced by optogenetic stimulation of IL glutamate neurons 
(Fuchikami et  al., 2015). Although investigations of sex 
differences in cortical stress regulation are limited (Wallace 
and Myers, 2021), results from female IL glutamate neuron 
stimulation differ from males. In fact, female IL stimulation 
increases heart rate reactivity to novel environment stress 
and glucose responses to restraint. Collectively, these data 
indicate that IL glutamate neurons regulate cardiovascular 
and HPA axis responses to chronic stress in a sex-dependent 
manner. To investigate how IL output circuitry mediates 
autonomic-endocrine integration, IL functional connectivity 
and pre-synaptic innervation of downstream structures were 
quantified throughout the male forebrain (Wood et al., 2019). 
These data highlight IL inputs to key stress-integrative nuclei 
including the LH and DMH; however, significantly greater 
connectivity is evident in the PH. To date, the stress-regulatory 

effects of IL projections to specific hypothalamic nuclei have 
not been determined.

Insular Cortex
Human imaging studies reveal that insular cortex shifts cardiac 
autonomic activity, possibly leading to arrhythmias (Oppenheimer 
and Cechetto, 2016). Furthermore, both human and rodent 
studies include the insula in the central autonomic network 
(Saper, 1982; Shoemaker and Goswami, 2015). From rostral to 
caudal, insular cortex is divided into the anterior insula (AI), 
posterior insula (PI), and an overlapping intermediate insula. 
Additionally, dorsal to ventral differences in cytoarchitecture lead 
to disgranular, granular, and agranular subdivisions (Gogolla, 
2017). Although the insula has widespread limbic and visceral 
connectivity, the anatomical size and complexity have limited 
research on insular stress regulation. However, numerous studies 
have investigated the effects of insular stimulation on cardiovascular 
parameters, identifying effects of both AI and PI (Allen et  al., 
1991; Oppenheimer et  al., 1991; Yasui et  al., 1991). Specifically, 
electrical stimulation elicits tachycardia and modest arterial 
pressure increases in anesthetized rats (Ruggiero et  al., 1987). 
Further experiments stimulating multiple insular regions to 
pinpoint the origin of cardiac regulation found two distinct 
regions of the rostral PI produce tachycardia and bradycardia 
(Oppenheimer and Cechetto, 1990). Systemic muscarinic and 
adrenergic antagonists indicate that insular chronotropic effects 
are mediated by either elevated (tachycardia) or decreased 
(bradycardia) sympathetic activity. This interpretation is further 
supported by recent findings that activation of rostral PI NMDA 
receptors inhibits brainstem pre-sympathetic regions causing 
bradycardia (Marins et  al., 2016).

The results of functional studies align with monosynaptic 
anterograde tracing that indicates tachycardia-generating portions 
of the insula send efferents to pre-sympathetic regions including 
the LH, nucleus of the solitary tract, and parabrachial nucleus 
(Yasui et  al., 1991). Efferents from bradycardic insular cortex 
have similar projection targets; although, connectivity with the 
pre-sympathetic regions is less dense. While anterograde tracing 
indicates that the LH is the primary hypothalamic target of 
insular cortex, retrograde tracing has identified projections to 
the DMH and PH (Abrahamson and Moore, 2001; Çavdar 
et  al., 2001; Marins et  al., 2020, 2021). In fact, recent reports 
specify that hemorrhagic stroke in the insula leads to disrupted 
cardiac sympathetic control and suggest that the DMH may 
be a downstream mediator (Marins et al., 2020, 2021). Altogether, 
decades of research have demonstrated that insular cortex 
influences cardiac autonomic activity, but the regional 
differentiation of the insula for stress integration remains unclear. 
Ultimately, more work is needed to understand the impact of 
insular subregions on stress adaptation and cardiovascular health.

While studies of insular cortex modulating cardiovascular 
or endocrine function during chronic stress have not been 
reported, recent work indicates chronic variable stress decreases 
expression of FosB/ΔFosB, a marker of long-term neural 
activity, throughout AI and PI (Pace et al., 2020). Interestingly, 
the long-term decrease in insular activity is dependent on 
the IL as knockdown of glutamate output from the IL prevents 
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FIGURE 1 | Summary of cortical–hypothalamic circuits mediating stress integration. Illustration of chronic stress-responsive cortical regions and hypothalamic 
targets that innervate the PVN and/or brainstem to regulate neuroendocrine and cardiovascular activity. Green represents glutamatergic neurons. Red represents 
GABAergic neurons. Black dashes represent mixed GABA and glutamate or neurochemically undefined anatomical connections. IL, Infralimbic cortex; IC, Insular 
cortex; LH, Lateral hypothalamus; DMH, Dorsomedial hypothalamus; PH, Posterior hypothalamus; PVN, Paraventricular nucleus of the hypothalamus; pPVN, Peri-
paraventricular hypothalamus; CRH, Corticotropin-releasing hormone; AVP, Arginine vasopressin. Created with BioRender.com.

the effect. While insular FosB/ΔFosB-positive cells are 
glutamatergic, IL pre-synaptic terminals target both 
glutamatergic and GABAergic neurons in the AI and PI. 
These findings suggest that IL-insula communication during 
chronic stress modulates long-term excitatory/inhibitory 
balance of the insular cortices, which may have significant 
implications for visceral regulation.

EFFECTOR REGIONS OF THE 
HYPOTHALAMUS

Paraventricular Hypothalamus
The PVN integrates hypothalamic and brainstem stress 
information to regulate both neuroendocrine and autonomic 
activity (Swanson and Kuypers, 1980). The region houses a 
diverse population of neurons that synthesize peptides implicated 
in stress reactivity including CRH, arginine vasopressin, and 
oxytocin. While PVN CRH release activates the HPA axis, 
multiple cell types give rise to brainstem and spinal projections 
to regulate sympathetic and parasympathetic balance (Ulrich-Lai 
and Herman, 2009). Notably, the descending cortical and limbic 

circuits that coordinate HPA axis and autonomic activity based 
on environmental context have limited direct innervation of 
the PVN (Roland and Sawchenko, 1993; Ulrich-Lai et al., 2011). 
However, numerous corticolimbic projections terminate in the 
GABAergic periphery of the PVN (peri-PVN) that surrounds 
neurosecretory cells (Cullinan et  al., 2008; Ulrich-Lai and 
Herman, 2009; Sunstrum and Inoue, 2019). Though direct 
assessment of stress regulation by specific inputs to peri-PVN 
has been difficult, anterograde and retrograde tracing studies 
have identified hypothalamic regions that provide direct input 
to the PVN (Figure  1). Specifically, glutamatergic projections 
arise from the LH, DMH, and PH, among others (Ulrich-Lai 
et al., 2011). These three hypothalamic nuclei are well-positioned 
based on connectivity to integrate descending limbic information 
(Ledoux et  al., 1988; Myers et  al., 2014a). Furthermore, a 
portion of PVN-projecting neurons in the DMH and LH are 
GABAergic (Roland and Sawchenko, 1993), suggesting the 
nuclei may have both excitatory and inhibitory control over 
PVN neurons. Thus, cortical influences on HPA axis and 
cardiovascular reactivity are likely mediated trans-synaptically 
through innervation of hypothalamic regions that directly 
synapse in the PVN.
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Lateral Hypothalamus
The prefrontal and insular cortices, among other limbic regions, 
target the LH (Yasui et  al., 1991; Vertes, 2004). Moreover, the 
LH provides direct glutamate and GABA input to the PVN 
(Roland and Sawchenko, 1993; Ulrich-Lai et  al., 2011) and 
innervates pre-ganglionic autonomic neurons in the 
parasympathetic dorsal motor nucleus of the vagus and 
sympathetic intermediolateral column (Saper et  al., 1976; Sun 
and Guyenet, 1986; Hahn and Swanson, 2010). Additionally, 
acute swim and restraint stressors activate cells in the LH 
(Cullinan et  al., 1995); however, the phenotype of LH stress-
responsive neurons has not been reported. The diversity of 
neurotransmitter and peptide messengers across the broad 
rostral to caudal breadth of the LH suggests a complex role 
in stress integration (Ziegler et  al., 2002; Swanson et  al., 2005; 
Ulrich-Lai and Herman, 2009). For instance, LeDoux and 
colleagues found that LH lesions reduce pressor responses to 
conditioned fear (Ledoux et  al., 1988). In contrast, NMDA 
signaling in the LH inhibits cardiovascular responses to restraint 
stress through parasympathetic activation (Deolindo et  al., 
2013). Moreover, recent studies found that LH GABAA and 
CRH receptor-1 antagonism decrease tachycardic responses to 
acute restraint stress (Gomes-de-Souza et  al., 2019; Barretto-
de-Souza et  al., 2021). Together, these results suggest the LH 
may both increase and decrease cardiovascular reactivity. Despite 
direct PVN innervation, there are no reports to our knowledge 
of HPA axis modulation by the LH. However, it is worth 
noting that the LH more heavily targets the posterior PVN 
than the CRH-rich anterior PVN (Ulrich-Lai et  al., 2011). 
Nevertheless, further analysis of LH stress integration is likely 
to elucidate specific subregional effects on sympathetic, 
parasympathetic, and neuroendocrine regulation.

Dorsomedial Hypothalamus
The DMH is another prominent limbic relay for stress 
regulation. The DMH receives glutamatergic input from 
cortical circuits as well as GABAergic innervation from 
subcortical regions such as the amygdala (Myers et al., 2014a). 
Furthermore, the DMH robustly expresses immediately early 
gene markers following acute swim and restraint stress 
(Cullinan et  al., 1995). DMH efferents target the PVN as 
well as pre-ganglionic sympathetic neurons (Saper et  al., 
1976), implying the region integrates stress-related processes 
(Ter Horst and Luiten, 1986, 1987; Thompson et  al., 1996). 
The DMH projections to the PVN are both GABAergic and 
glutamatergic (Roland and Sawchenko, 1993; Ulrich-Lai et al., 
2011), indicating the potential for both excitatory or inhibitory 
control of autonomic and endocrine stress responses. However, 
seminal work by DiMicco and colleagues used pharmacological 
approaches to interrogate the functional role of DMH 
neurotransmission in acute stress responding (DiMicco et al., 
2002). Specifically, a series of studies in anesthetized rats 
found that GABAA receptor antagonism or activation of 
ionotropic glutamate receptors (NMDA, AMPA, or kainate) 
in the DMH increases heart rate and blood pressure (Soltis 
and DiMicco, 1991a,b, 1992). Similar approaches in conscious 

rats found that DMH activation increases ACTH release, as 
well as stress-induced Fos in the PVN (Bailey and Dimicco, 
2001; Morin et  al., 2001). Moreover, GABAA agonists in the 
DMH reduce heart rate, blood pressure, and ACTH responses 
to stress (Stotz-Potter et al., 1996a,b). In all, this work suggests 
that tonic GABAergic inhibition of the DMH reduces acute 
cardiovascular and endocrine stress responding while 
glutamate-mediated DMH activation enhances stress reactivity 
at least partially through the PVN. Although, autonomic 
aspects of DMH modulation have been hypothesized to 
be  mediated by brainstem circuits (Fontes et  al., 2011). 
Interestingly, the DMH is activated by both repeated restraint 
and chronic variable stress (Flak et  al., 2012), yet the stress-
integrative role of the DMH under conditions of prolonged 
stress requires more investigation.

Posterior Hypothalamus
Cortical and limbic circuits also converge on the PH (Abrahamson 
and Moore, 2001; Çavdar et  al., 2001) and the PH receives 
stress-activated inputs from multiple forebrain regions including 
the IL and PL (Myers et  al., 2016). Although the PH is 
predominately glutamatergic, a portion of IL inputs appose 
PH GABA neurons, possibly regulating PH inhibition (Myers 
et al., 2016). Additionally, the PH sends glutamatergic projections 
to the PVN (Ulrich-Lai et al., 2011) and innervates pre-ganglionic 
sympathetic neurons (Saper et  al., 1976). Furthermore, stress-
reactive neurons in the rostral PH innervate stress-activated 
cells in the medial parvicellular PVN and pre-autonomic raphe 
pallidus (Nyhuis et  al., 2016). Ultimately, the stress-responsive 
upstream and downstream connectivity of the PH implies a 
prominent role in stress integration. Similar to the DMH, early 
studies by Dimicco and colleagues identified the PH as a 
regulator of tachycardic and pressor responses under anesthesia 
(DiMicco et  al., 1986). Specifically, both GABA release and 
GABA synthesis in the PH inhibit cardiovascular sympathetic 
activity (DiMicco and Abshire, 1987). In awake rodents, GABA 
modulation does not alter hemodynamics under basal conditions 
(Lisa et  al., 1989). However, GABAA signaling reduces heart 
rate and blood pressure responses to acute stress. More recent 
work demonstrates that CRH-mediated excitation in the PH 
increases HR via pre-sympathetic neurons in the rostral 
ventrolateral and ventromedial medulla, without affecting vagal 
activity (Gao et  al., 2016). Taken together, these data indicate 
that the PH is both necessary and sufficient for acute sympathetic 
cardiovascular stress responses.

Multiple lines of converging evidence also implicate the PH 
in HPA axis facilitation. GABAA agonists in the PH decrease 
ACTH during restraint (Myers et  al., 2016) as well as 
corticosterone responses to acute restraint and audiogenic stress 
(Nyhuis et al., 2016). Furthermore, GABA antagonist-mediated 
disinhibition of the PH increases PVN Fos and elevates ACTH 
and corticosterone responses to restraint (Myers et  al., 2016). 
In addition to CRH neurons, PH projections also target 
vasopressin- and oxytocin-producing cells in the PVN (Myers 
et al., 2016), suggesting the potential for broad neuroendocrine 
regulation. The PH also exhibits histological indicators of long-
term activation during chronic variable stress but not repeated 
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restraint (Flak et  al., 2012). Altogether, there is considerable 
evidence that PH excitatory/inhibitory balance is important 
for autonomic and neuroendocrine stress integration.

CONCLUSION

The widespread impact of stress on health-related quality of 
life and CVD in particular makes understanding stress physiology 
a crucial issue. Here, we discussed the function and connectivity 
of cortical and hypothalamic brain regions that integrate 
cardiovascular and neuroendocrine responses to stressful stimuli 
(Figure  1). The aggregate literature reviewed illustrates the 
hierarchal organization of descending cortical circuits that 
modulate stress-effector neurons through intermediary subcortical 
neurons. Cell-type-specific approaches have contributed to our 
understanding of stress reactivity and have the potential to 
uncover the basis of excitatory/inhibitory balance as it relates 
to chronic stress-induced pathologies. Although, it is important 
to note that few studies have directly examined cortical or 
hypothalamic stress integration in the context of chronic stress. 
Currently, there are reports of IL regulation of the endocrine 
and cardiovascular consequences of chronic stress, as well as 
IL inhibition of the insula during chronic stress (Mcklveen 
et  al., 2013; Myers et  al., 2017; Schaeuble et  al., 2019; Pace 
et  al., 2020; Wallace et  al., 2021). However, to the authors’ 
knowledge, reports of functional hypothalamic cardiovascular–
HPA axis stress integration are limited to acute stress studies. 
While we  are beginning to unravel the roles of these networks 

in specific stress responses, many questions remain regarding 
autonomic-endocrine stress integration. Chiefly, most of the 
literature reviewed came from experiments with male subjects. 
Biological sex is an important factor for stress-related disease 
incidence and outcomes, yet the role of sex in stress responses 
across development and reproductive stages is largely unexplored. 
The experiments reviewed that included both sexes found 
marked differences in neural regulation of endocrine and 
autonomic reactivity (Wallace et  al., 2021). Moreover, there is 
increasing evidence for ovarian hormone regulation of cardiac 
and vascular outcomes after chronic stress (Brooks et al., 2018; 
Finnell et  al., 2018). Therefore, future studies examining the 
actions of sex steroids on cortical–hypothalamic circuits are 
vital for understanding the health burden of stress.
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