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ABSTRACT. In cases of food poisoning, it is important for food sanitation inspectors to 
determine the causative pathogen as early as possible and take necessary measures to minimize 
outbreaks. Interviews are usually conducted to obtain epidemiological information to aid in the 
rapid determination of the cause. However, the current method of determining the causative 
pathogen has the disadvantage of being reliant upon the experience and knowledge of food 
sanitation inspectors. Here, we analyzed 529 infectious food poisoning incidents reported 
in five municipalities in the Kinki region to develop a tool for evaluation using a multinomial 
logistic regression model, which can predict the causative pathogen based on the patients’ 
epidemiological information. This tool predicts the most probable cause of the incident by 
generating a list of pathogens with the highest probability. As a result of leave-one-out cross 
validation, the agreement ratio with the actual pathogen was 86.4%, and this ratio increased 
to 97.5% when the agreement was judged by including the true pathogen within the top three 
pathogens with the highest probability. In cases where the difference of probability between the 
first and second candidate pathogen was ≥50%, the agreement ratio increased to 94.2%. Using 
this tool, it is possible to accurately estimate the causative pathogen at an early stage based 
on patient information, and this will further help narrow the target of investigations to identify 
causative agent, thereby leading to a prompt identification, which can prevent the spread of food 
poisoning.
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Foodborne pathogens have been reported to cause detrimental human diseases all over the world [3]. Even in the developed 
countries with good hygienic conditions, foodborne illnesses still result in a significant economic burden due to employee 
absenteeism, resources needed for treatment, and hospitalization and can sometimes be life-threatening [7, 16]. In Japan, an 
estimated 20,000 domestically acquired infectious foodborne illnesses associated with over 20 known pathogens are reported each 
year [19]. Upon the occurrence of a foodborne illness incident, food sanitation inspectors conduct an investigation to determine 
the causative foodborne pathogen. Investigation usually begins with an in-person interview with patients to collect epidemiological 
information, such as symptoms and their frequency, dietary history, and clinical outcomes.

Although the clinical features of most foodborne illnesses are non-specific for individual cases, outbreaks frequently have 
characteristic features with respect to the length of incubation period, duration of symptoms, and percentage of cases wherein 
patients experience specific signs and symptoms depending on their etiology [6, 14]. For example, the incubation period of 
Staphylococcus aureus (Sa)-induced food poisoning is relatively shorter compared with that of other pathogens (between 30 min 
and 4 hr), with the major clinical symptoms being vomiting and diarrhea. Norovirus (noro) causes similar symptoms, but its 
incubation time is relatively longer compared with that of other pathogens (between 24 and 48 hr). Campylobacteriosis shows 
different symptoms such as abdominal pain, cramping, and high fever in different cases [1].

Allowing the food sanitation inspectors to focus on the investigation before results of cultures are available will enable the 
investigation to be completed more rapidly, with a greater chance of successfully identifying the underlying cause of the outbreak. 
For outbreaks in commercial establishments, such as restaurants, the prompt identification of causative agent will prevent 
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additional incidents of illness and help develop better prevention strategies [5, 12, 13]. For example, noro has a human reservoir 
and does not replicate in food or the environment. Thus, rapidly identifying noro as a probable causative pathogen would allow 
the food sanitation inspectors to focus on issues pertaining to the health and hygiene of food workers and the potential ongoing 
transmission through these workers [8]. However, food sanitation inspectors currently infer the cause of food poisoning based 
on experience and the patient interview; therefore, inexperienced inspectors may not be able to rapidly suspect the cause of an 
outbreak, leading to dither and delay in the prompt initial action.

Although the usefulness of the clinical data for the prediction of causatives has been proposed [8], to the best of our knowledge, 
there is no report describing the mathematical evaluation of this interrelation and the development of a tool by multinomial logistic 
regression models. Here, we describe an algorithm to link the relation and the evaluation of the algorithm by leave-one-out cross 
validation (LOOCV). The purpose of this research was to predict causative pathogens primarily from clinical information collected 
from patient interviews at the early stage during the course of foodborne diseases.

MATERIALS AND METHODS

The data in this study included food poisoning incidents that occurred from 1950 to 2016 in Shiga prefecture and cases 
published between 2005 and 2016 in Osaka prefecture, Osaka City, Kyoto prefecture, and Nara prefecture (data are available 
from the National Epidemiological Surveillance of Foodborne Disease at the following URL only to public authorities of 
Japanese central and local governments: http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/nesfd/index.html, accessed 
on June 2, 2018). Among the data, 529 cases of food poisoning incidents caused by pathogens, with five or more patients in 
each case, for which all epidemiological data used in this study were available, were selected [8]. The data used in this study 
included six variables according to each food poisoning case: the name of the causative pathogen; the average incubation period; 
and the proportion of patients showing any of the following symptoms: diarrhea, fever, abdominal pain, and vomiting). The 
causative pathogens that were confirmed by the examination were grouped into nine categories of foodborne pathogens: Vibrio 
parahaemolyticus (Vp), noro, non-typhoidal Salmonella (Sal), Staphylococcus aureus (Sa), Campylobacter (Cam), diarrheagenic 
Escherichia coli (DEC), Clostridium perfringens (Cp), Aeromonas hydrophila (Ah) and Bacillus cereus (Bc). These pathogens 
were identified by the official procedures as instructed by Japanese government [18]. Due to the concern that a dataset with too few 
cases may skew results, pathogens with fewer than 25 cases each (DEC, Cp, Ah and Bc) were merged into the category “others” 
on the basis of the criterion proposed by other investigators [10, 11]. Consequently, six causative pathogens were considered in this 
study: Vp, noro, Sal, Sa, Cam and others.

The mean incubation period and the proportion of symptom appearance were calculated for each pathogen. A tool for predicting 
causative pathogens were established by applying multiple logistic regressions [4, 9]. We used foodborne pathogens as the 
dependent variable with using the “others” category as the reference category. The mean incubation periods and proportions of 
symptom appearance were used as the independent variables. Independent variables included in the final model were selected using 
a forward–backward selection method with Akaike Information Criterion (AIC) [2]. All analyzes were performed using R version 
3.1.0 with the package VGLM [15, 17].

The evaluation of the classification rule was conducted using LOOCV. LOOCV is often used to estimate the generalization 
ability of a statistical classifier (i.e., the performance of previously unseen data). At each LOOCV iteration, one sample was 
selected as testing set and the rest of the samples were used as the training set. For the calculation of coefficients, training 
steps were only performed with the data in the training set, without using the data of the testing set. Since the data in this study 
comprised 529 incidents, a multinomial logistic regression analysis was performed 529 times and the agreement ratio was 
calculated. In this evaluation, three criteria for judgement were used; i) whether the true pathogen perfectly matched with the first 
rank prediction, ii) whether the true pathogen matched with the ones within the top three pathogens with highest probabilities, 
iii) whether the agreement ratios become increased when the case shows that the difference between the first and second predicted 
probabilities was ≥50%.

Table 1. Summary of the incubation periods and the incidences of each symptoms observed in the foodborne incidents used in this study

Causatives Cam Noro Vp Sal Sa Cp DEC Ah Bc
Number of cases 139 138 112 73 44 11 10 1 1
Incubation period (hr)a) 62.3 ± 13.5 36.9 ± 5.6 17.4 ± 2.9 31.6 ± 14.7 5.0 ± 2.9 12.5 ± 1.8 31.4 ± 17.4 13 3.63
Diarrhea (%)a) 95.4 ± 10.2 74.2 ± 15.7 96.7 ± 5.8 94.3 ± 7.8 71.1 ± 21.4 92.1 ± 15.4 87.0 ± 26.9 83 37
Fever (%)a) 63.2 ± 20.6 54.6 ± 18.2 38.5 ± 18.0 69.1 ± 22.3 26.3 ± 21.0 6.2 ± 12.3 36.9 ± 16.9 50 3
Vomiting (%)a) 9.2 ± 13.0 59.6 ± 17.3 44.2 ± 18.9 19.2 ± 14.5 70.8 ± 25.5 1.8 ± 1.6 19.7 ± 17.1 67 56
Abdominal pain (%)a) 81.8 ± 16.1 55.6 ± 18.2 84.3 ± 18.9 73.3 ± 17.5 57 ± 23.5 60.3 ± 24.2 77.6 ± 19.8 67 16

a) The incubation periods and the incidence of each symptoms are expressed as means ± standard deviation. Vp, Vibrio parahaemolyticus; Noro, Norovirus; 
Sal, non-typhoidial Salmonella; Sa, Staphylococcus aureus; Cam, Campylobacter; DEC, Diarrheagenic Escherichia coli; Cp, Clostridium perfringens; Ah, 
Aeromonas hydrophila; Bc, Bacillus cereus.
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RESULTS

Regarding the proportion of symptoms observed among patients with foodborne poisoning caused by each pathogen, Vp showed 
the highest diarrhea and abdominal pain rates (Table 1). Cam showed the longest incubation period among the six categories. Sal 
showed high fever rate. Sa showed the shortest incubation period and the highest vomiting rate. In most cases, diarrhea was a 
common symptom, with the lowest incidence of 71.1% for Sa. These clinical features align with those described in the literature 
[1].

On the basis of the result of forward–backward method, incubation period, diarrhea, fever, vomiting, and abdominal pain were 
selected as independent variables in the final model. Using the vector of coefficients (βκ), the conditional probability for causative 
pathogen “k” is given by the following equations:
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Where π is the probability of predictive pathogens, k is the number of causative pathogens, and η is the risk ratio between 
pathogen k and pathogen 1 (“others” as the reference rank), which is given by the following formula:

ηίκ=β0k + β1k × incubation period + β2k × diarrhea + β3k × fever + β4k × vomiting + β5k × abdominal pain
Where, β0k is intercept and βik is the coefficient of variable i for pathogen k. Intercepts and coefficients estimated by the 

multinomial logistic model for each pathogen are shown in the Table 2.
For example, supposing a scenario whereby the following food poisoning cases occurred: x́ =(incubation period, diarrhea, fever, 

vomiting, and abdominal pain)=(7.6, 79.2, 25.0, 79.2, and 58.3), η is:

ηCam=  x́ × , 2
T
iβ = −15.763 + (0.244 × 7.6) + (0.03 × 79.2) + (0.114 × 25.0) + (−0.015 × 79.2) + (0.006 × 58.3)= −9.521

ηnoro=  x́ × , 3
T
iβ = −5.933 + (0.165 × 7.6) + (−0.028 × 79.2) + (0.065 × 25.0) + (0.126 × 79.2) + (−0.033 × 58.3)=2.784

ηVp= x́ × , 4
T
iβ = −8.441 + (−0.114 × 7.6) + (0.085 × 79.2) + (0.026 × 25.0) + (0.078 × 79.2) + (0.017 × 58.3)=5.243

ηSal= x́ × ,5
T
iβ = −8.955 + (0.101 × 7.6) + (0.026 × 79.2) + (0.123 × 25.0) + (−0.008 × 79.2) + (−0.009 × 58.3)= −4.212

ηSa= x́ × , 6
T
iβ =2.803 + (−0.706 × 7.6) + (0.03 × 79.2) + (0.031 × 25.0) + (0.073 × 79.2) + (0.009 × 58.3)=6.895

Therefore, π of Sa is calculated by the equations (2):
πSa=exp (6.895)/(1 + exp (−9.521) + exp (2.784) + exp (5.243) + exp (−4.212) + exp (6.895))=0.827
Consequently, the probability of Sa is calculated as 82.7%.
As a result of LOOCV, the agreement ratio when the agreement was determined between the actual pathogen and that predicted 

by the model with the highest probability was 86.4% (Table 3). Among the pathogens, Noro showed the highest agreement ratio 
(94.2%). Noro, Vp, Sa and Cam showed agreement ratios over 90%, but Sal showed the lowest agreement ratio (68.5%) among 
five pathogens. When the agreement ratio was judged as the agreement between true pathogen and the top three pathogens 
predicted with the highest probability, the total agreement ratio increased to 97.5%. Of note, the agreement ratios for Vp and Sal 
by this criterion were 100 and 95.9% respectively. In addition, when looking at 433 cases where the difference in the predicted 

Table 2. Coefficient of dependent variables with food poisoning pathogens by 
multinomial logistic regression analysisa)

The casative agent (k) Cam (β2) Noro (β3) Vp (β4) Sal (β5) Sa (β6)
Incubation period 0.244b) 0.165b) −0.114b) 0.101b) −0.706b)

Diarrhea 0.03 −0.028 0.085b) 0.026 0.03
Fever 0.114b) 0.065b) 0.026 0.123b) 0.031
Vomiting −0.015 0.126b) 0.078b) −0.008 0.073b)

Abdominal pain 0.006 −0.033 0.017 −0.009 0.009
Intercept −15.763b) −5.933c) −8.441b) −8.955b) 2.803
AICd) 490.96
Log-likelihood −215.48
Residual deviance 430.96

a) Category “others” (Cp, DEC, Ah and Bc) was considered as reference. b) P<0.01.  
c) P<0.05. d) Akaike’s information criterion.
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probability between the first and second pathogen was 50% or more, the agreement ratio for the most probable pathogen was 
94.2%, and the agreement ratio for Sal also increased to 82.2%.

DISCUSSION

We performed a multinomial logistic regression to provide a tool to predict causative pathogens of food poisoning cases. 
This tool requires clinical information regarding cases, obtained from personal interviews during early stage of an incident, as 
datasets for prediction. The use of equation (1) and (2) immediately returns the prediction of causative pathogens with probability 
ranking. In order to test the accuracy of the model prediction, we conducted LOOCV with different criterion for the judgement of 
agreement. Estimated agreement ratio for the predicted pathogen that matched the first rank prediction was 86.4%. These results 
suggest that reliable prediction is possible using the incubation period and the proportion of patient symptoms, as previously 
reported [8]. Since there was an agreement ratio of 94.2% when the difference in probability between the first and second pathogen 
was 50% or more, in such a case, food sanitation inspectors should mainly investigate predicted pathogen of the first probability. 
In case where the difference between the first and second probabilities was less than 50%, food sanitation inspectors should at least 
investigate the predicted pathogens by the third probability. This prediction would help food sanitation inspectors to narrow the 
target of investigations to identify causative pathogen, thereby leading to a prompt identification, which can prevent the spread of 
food poisoning.

In this study, DEC, Cp, Ah and Bc were merged into the category “others”. This approach was considered reasonable according 
to the literatures [10, 11]. On the other hand, this was considered necessary to avoid the exclusions a case whose clinical 
parameters did not match any established categories.

Although the tool we describe in this study proposes a potential solution to enable a rapid identification of causative pathogens 
in foodborne diseases, there is a limitation that the agreement ratio did not reach 100% in the current study. Considering this 
limitation, it is necessary for food inspectors not to overly commit on this tool, but just to utilize it as supportive information 
source, and to promptly act according to the evidence-based information obtained through microbiological examinations. Since 
we only used variables commonly documented in the National Epidemiological Surveillance of Foodborne Disease dataset in 
this study, this was considered an additional limitation of this study. The development of a comprehensive database of patients’ 
information including age, gender, and health and dietary histories, and the analysis using such metadata could be of significant 
value for increasing the agreement ratio of the similar prediction.

Changes in technologies and social environments during the long period for data collection (from 1950 to 2016) may affect 
the result of this study. To test the effect of dispersion of the reported years, we divided the whole cases into three groups, those 
reported between 1954 and 1979 (P1), 1980 and 1999 (P2), and 2000 and 2016 (P3). When the clinical information extracted from 
each group were separately subjected to the prediction by our tool, obtained agreement ratios of the first-ranked prediction were 
82.4% for P1, 86.9% for P2 and 90% for P3. The results suggest that, although some degrees of influence cannot be negligible, 
changes in social environments during this period do not affect our conclusion. This influence, however, remains to be examined by 
further analysis.
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