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Abstract

Insect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for

understanding its control have typically relied on either model-based methods or lineariza-

tions thereof. Here we develop a framework that combines model predictive control on an

established flight dynamics model and deep neural networks (DNN) to create an efficient

method for solving the inverse problem of flight control. We turn to natural systems for inspi-

ration since they inherently demonstrate network pruning with the consequence of yielding

more efficient networks for a specific set of tasks. This bio-inspired approach allows us to

leverage network pruning to optimally sparsify a DNN architecture in order to perform flight

tasks with as few neural connections as possible, however, there are limits to sparsification.

Specifically, as the number of connections falls below a critical threshold, flight performance

drops considerably. We develop sparsification paradigms and explore their limits for control

tasks. Monte Carlo simulations also quantify the statistical distribution of network weights

during pruning given initial random weights of the DNNs. We demonstrate that on average,

the network can be pruned to retain a small amount of original network weights and still per-

form comparably to its fully-connected counterpart. The relative number of remaining

weights, however, is highly dependent on the initial architecture and size of the network.

Overall, this work shows that sparsely connected DNNs are capable of predicting the forces

required to follow flight trajectories. Additionally, sparsification has sharp performance

limits.

Author summary

Originally inspired by biological nervous systems, deep neural networks (DNNs) are pow-

erful computational tools for modeling complex systems. DNNs are used in a diversity of

domains and have helped solve some of the most intractable problems in physics, biology,
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and computer science. Despite their prevalence, the use of DNNs as a modeling tool

comes with some major downsides. DNNs are highly over-parameterized, which often

results in them being difficult to generalize and interpret, as well as being incredibly com-

putationally expensive. Unlike DNNs, which are often trained until they reach the highest

accuracy possible, biological networks have to balance performance with robustness to a

noisy and dynamic environment. Biological neural systems use a variety of mechanisms

to promote specialized and efficient pathways capable of performing complex tasks in the

presence of noise. One such mechanism, synaptic pruning, plays a significant role in refin-

ing task-specific behaviors. Synaptic pruning results in a more sparsely connected net-

work that can still perform complex cognitive and motor tasks. Here, we draw inspiration

from biology and use DNNs and the method of neural network pruning to find a sparse

computational model for controlling a biological motor task.

Introduction

Between childhood and adolescence, the number of synaptic connections between neurons

sharply decreases through a process called synaptic pruning [1]. Depending on the neural sys-

tem, synaptic pruning can improve the brain’s efficiency and affect cognitive function. In fact,

synaptic pruning is seen as a mechanism for learning, in which the environment affects which

neural connections are maintained and which are removed [2]. Refinement of neural connec-

tions via pruning occurs in wide ranging taxa, from humans to Drosophila and in systems

ranging from sensory input to motor control [3, 4]. For example, during metamorphosis of the

hawkmoth, Manduca Sexta, synapses are pruned and reconnected to enable adult-specific

behaviors [5]. The biological mechanisms that underlie synaptic pruning (often activity depen-

dent) have a range of processes including a variety of semaphorins, increased GABAergic sig-

naling, changes in dendritic spine density (with some enigmatic mechanisms), and even

neuro-immune interactions [6]. Synaptic pruning plays a significant role in refining task-spe-

cific behaviors, the result of which is a more sparsely connected network that can still perform

complex cognitive and motor tasks.

There is a rich basis of literature in biological synaptic pruning. However, the main finding

across these numerous studies is that synaptic pruning plays a major role in the refinement of

neural connectivity [3]. Through the overgrowth of synapses and their subsequent pruning,

biological neural systems are made both optimal for a specific task and more efficient for hav-

ing more sparse connectivity. Deep neural networks (DNNs), which were originally motivated

by the visual cortex of cats and the pioneering work of Hubel and Wiesel [7, 8], are often con-

sidered as mathematical proxies for biological neural processing. The universal approximation

properties of DNNs [9] make them ideal for modeling high-dimensional, complex, nonlinear

mappings for a large diversity of problems. From image and speech recognition [10, 11] to

fluid flow control [12, 13], DNNs learn input-to-output mappings by combining gradient

descent with the backpropagation algorithm. Like biological pruning, DNNs have an extensive

literature dedicated to improving the generalization capabilities (i.e. performance on unseen

data) and computational efficiency of DNNs through the mechanism of pruning.

The sparsification of such DNNs has typically been motivated by the pernicious effects of

over-fitting data, and to a lesser extent, the DNNs computational and memory footprint, i.e.

the need to be implemented on small portable devices such as smart phones. Dropout, for

instance, was one of the early versions of sparsification that allowed for greater generalization

capabilities [11, 14, 15]. However, standard dropout methods typically only enforce temporary
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sparsification since the algorithm often allows for nodes to again re-train their weights from

their zeroed-out state. Thus most DNNs typically remain highly over-parameterized and their

layers are fully-connected. For example, the natural language processing model, GPT-3, is the

largest DNN ever built with 175 billion parameters [16], and successful models with millions

of parameters are not uncommon. There are many different methods to make DNNs more

sparse, ranging from regularization during training [17] to specifying sparse architectures

[18].

Biologically inspired neural network pruning has also been shown to be an effective method

for sparsifying a DNN without compromising performance [19–23]. In neural network prun-

ing, the connectivity of a DNN is made more sparse by forcing select weights between the lay-

ers to zero and then retraining, resulting in a more sparse network that is capable of

performing comparably to the fully-connected network up to a certain limit. Pruning has been

used to prevent network overfitting and to reduce overall model size. Pruned DNNs have the

advantage of (i) having a small memory footprint, (ii) providing improved generalization, and

(iii) being more efficient for generating input-output computations. Thus they have important

practical advantages over their fully-connected counterparts. They are also more representa-

tive of biological neural systems, in which neural pathways are sparsely and specifically con-

nected for task performance. In fact, a diversity of sparse networks exist across species. For

example, the respiratory rhythm patterns of mammals are generated by sparsely connected

networks [24]. In the olfactory system of Drosophila, high-dimensional odor signals are

sparsely encoded via the mushroom body [25, 26]. Neural network pruning enables the explo-

ration of biologically-inspired, sparse learning and the strengths of the resultant sparse

networks.

The inverse problem of insect flight is a highly nonlinear dynamical system, in part due to

the unsteady mechanisms of flapping flight [27, 28] and the noisy environment through which

insects maneuver. As such, the inverse problem of insect flight serves as an exemplar to study

whether a DNN can solve a biological motion control problem while maintaining a sparse con-

nectivity pattern. In an inverse problem, the initial and final conditions of a dynamical system

are known and used to find the parameters necessary to control the system. In other words,

the DNN in this study is trained to predict the controls required to move the simulated insect

from one state space to another. Solving the inverse problem of insect flight has been previ-

ously simulated using a genetic algorithm wedded with a simplex optimizer for hawkmoth

level forward flight and hovering [29]. Another study linearized the dynamical system of simu-

lated hawkmoth flight and found the system to operate on the edge of stability [30]. Recently, a

study developed an inertial dynamics model of M. sexta flight as it tracked a vertically oscillat-

ing signal, which modeled the control inputs using Monte Carlo methods in a model-inspired

by model predictive control (MPC) [31].

In this work, we use the inertial dynamics model in [31] to simulate examples of M. sexta
hovering flight. Fig 1 shows the physical parameters of the simulated moth and the inertial

dynamics model. These data are used to train a DNN to learn the controllers for hovering.

Drawing inspiration from pruning in biological neural systems, we sparsify the network using

neural network pruning. Here, we prune weights based simply on their magnitudes, removing

those weights closest to zero. Importantly, the pruned weights remain zeroed out throughout

the sparsification process. This bio-inspired approach to sparsity allows us to find the opti-

mally sparse network for completing flight tasks. Insects must maneuver through high noise

environments to accomplish controlled flight. It is often assumed that there is a trade-off

between perfect flight control and robustness to noise and that the sensory data may be limited

by the signal-to-noise ratio. Thus the network need not train for the most accurate model

since in practice noise prevents high-fidelity models from exhibiting their underlying
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Fig 1. Inverse problem of flight control. (A) The moth body is made of two ellipses attached with a spring. There are three control variables (F, α, and

τ) and four parameters to describe the state space (x, y, θ, and ϕ). See S1 Table for the global parameters and S2 Table for the calculated variables. (B)

The differential equation solver solves the forward problem of insect flight control. (C) The neural network is an attempt to solve the inverse problem of

flight control.

https://doi.org/10.1371/journal.pcbi.1010512.g001
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accuracy. Rather, we seek to find the sparsest model capable of performing the task given the

noisy environment. We employed two methods for neural network pruning: either through

manually setting weights to zero or by utilizing binary masking layers. Furthermore, the DNN

is pruned sequentially, meaning groups of weights are removed slowly from the network, with

retraining in-between successive prunes, until a target sparsity is reached. Monte Carlo simula-

tions are also used to quantify the statistical distribution of network weights during pruning

given random initialization of network weights. This work shows that sparse DNNs are capa-

ble of predicting the controls required for a simulated hawkmoth to move from one state-

space to another, or through a sequence of control actions. Specifically, for a given signal-to-

noise level the pruned network can perform at the level of the fully-connected network while

requiring only a fraction of the memory footprint and computational power.

Results

Network pruning results

Fig 2 shows the learning curve for a network trained using the sequential pruning protocol

with TensorFlow’s Model Optimization Toolkit (see Methods section for details) [32]. The net-

work is trained until a minimum error is reached, and then pruned to a specified sparsity per-

centage and then retrained until the loss is once again minimized. The sparsity (or pruning)

percentages are shown in Fig 2 where they occur in the training process. An arbitrary thresh-

old error of 10−3 (shown as a red, dashed line) was chosen to define the optimally sparse net-

work (i.e. sparsest possible network that performs under the specified loss). This specific

threshold value was chosen because it is near the performance of the trained, fully-connected

network. In practice, the red line represents the noise level encountered in the flight system.

Fig 2. Learning curve for sequential pruning of network. Fully-connected neural network is trained until the mean-squared error is minimized. Then,

the network is sequentially pruned by adding in masking layers and trained again. The performance of the network improves below the minimum error

achieved by the fully-connected network for low levels of pruning, but performs comparably to the fully-connected network until 94% of the network is

pruned.

https://doi.org/10.1371/journal.pcbi.1010512.g002
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Specifically, given a prescribed signal-to-noise ratio, we wish to train a DNN to accomplish a

task with a certain accuracy that is limited by noise. Thus high-fidelity models, which can only

practically exist with perfect data, are traded for sparse models which are capable of perform-

ing at the same level for a given noise figure. In the example in Fig 2, the optimally sparse net-

work occurs at 94% sparsity (or when only 6% of the connections remain). Beyond 94%

sparsity, the performance of the network breaks down because too many critical weights have

been removed.

Monte Carlo results

To compare the effects of pruning across networks, we trained and pruned 1320 networks

with different random initializations on the same dataset. In this experiment, the hyper-

parameters, pruning percentages, and architecture are held constant. Fig 3 shows the training

curves of 9 sample networks. The red, dashed line in each of the panels represents the same

threshold as in Fig 2 (10−3). The black, solid lines in Fig 3 represent the optimally sparse net-

works. Although the majority of networks in this subset breakdown at 93% sparsity, a few

breakdown at higher and lower levels of connectivity.

Fig 4 shows the loss after pruning the 1320 networks at varying pruning percentages (from

0% sparsity to 98% sparsity). The box plot in Fig 4 is directly comparable to Fig 2, but it is the

compilation of the results for many different networks. The networks do not all converge to

the same set of weights, which is evident by the numerous outliers, as well as the variance

around the median loss.

The median minimum loss achieved by the networks before pruning is 7.9 x 10−4. The first

box in the box plot in Fig 4 corresponds to the losses of all the trained networks before any

pruning occurs. The variance on the loss is relatively small, but there are several outliers. Once

again, the red, dashed line in the box plot in Fig 4 represents the threshold below which a net-

work is optimally sparse. Many networks follow a similar pattern and perform under the

threshold until they exceed 93% sparsity. Also, many networks perform better than the median

performance of the fully-connected networks when pruned up to 85% sparsity.

The number of optimally sparse networks in each sparsity category is shown in the bar plot

at the top of Fig 4. Of the 1320 networks trained, 858 of the networks are optimally sparse at

93% sparsity. A small number of networks (5) remain under the threshold up to 95% pruned.

Note that the total number of networks represented in the bar plot does not add up to 1320.

This is because several networks never perform below the threshold throughout the sequential

pruning process (see outliers in Fig 4).

Analysis of layer sparsity. The subset of optimally sparse networks pruned to 93% is used

in the following analysis of network structure (858 networks). The sparsity across all the layers

was found to be uniform (7% of weights remain in each layer) despite not explicitly requiring

uniform pruning in the protocol. Table 1 shows the average number of remaining connections

across the 858 networks, as well as the variance and the fraction of remaining connections.

Fig 5 shows a box plot of the number of connections from the input layer to the first hidden

layer for the subset of pruned networks. Interestingly, the initial head-thorax angular velocity

was completely pruned out of all of the networks in the subset, meaning it has no impact on

the output and predictive power of the network. Additionally, the initial abdomen angular

velocity connects to either zero, one, or two nodes in the second hidden layer, while all the

other inputs have a median connection to at least 5% of the weights in the first hidden layer.

Materials and methods

All code associated with the simulations and the DNNs is available on Github [33].
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Moth model

The simulated insect uses an inertial dynamics model developed in Bustamante et al., 2021

[31] and was inspired by hawkmoth flight control, M. sexta with body proportions rounded to

the nearest 0.1 cm. The simulated moth was made up of two ellipsoid body segments, the

head-thorax mass (m1) and the abdomen mass (m2). The body segments are connected by a

pin joint consisting of a torsional spring and a torsional damper as seen in [34]. The simulated

moth model could translate in x-y plane, and both the head-thorax mass, and the abdominal

Fig 3. Performance breakdown of 9 sample pruned networks. The networks are sequentially pruned. Each network is evaluated to find the optimally

sparse network. The red dashed line represents the performance threshold (10−3). The sparsest network that performs below this threshold is shown by

the solid, black vertical line.

https://doi.org/10.1371/journal.pcbi.1010512.g003
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mass could rotate with angles (θ,ϕ) in the x-y plane. See Fig 1 for more description of the simu-

lated insect, S1 Table for the global model parameters, and S2 Table for the calculated model

variables.

The computational model of the moth had three control variables and four state-space vari-

ables (as well as the respective state-space derivatives). This model is by definition

Fig 4. Monte Carlo analysis of pruned networks. 1320 networks are sequentially pruned and loss of the pruned networks at each sparsity percentage is

recorded in the box plot. The bar plot records the number of networks that make it to the corresponding sparsity percentage before exceeding the

hypothetical threshold (10−3).

https://doi.org/10.1371/journal.pcbi.1010512.g004

Table 1. Number of remaining parameters in networks pruned to 93% sparsity. This table gives the average number

of remaining weights in each layer of the networks pruned to 93% sparsity. The variance on the number of connections,

as well as the fraction of remaining connections are also given.

Layer i Average number remaining Variance Percentage remaining

1 280 23 0.07

2 11199 0 0.07

3 11199 0 0.07

4 447 0.04 0.07

5 8 6 0.07

https://doi.org/10.1371/journal.pcbi.1010512.t001
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underactuated because the number of control variables is less than the degrees of freedom.

The controls are as follows: F, the average force applied by the wings during each downstroke

and upstroke; α the direction of force applied (with respect to the midline of the head-thorax

mass); and τ, the abdominal torque exerted about the pin joint connecting the two body seg-

ment masses (with its equal and opposite response torque). In addition to the downstroke or

upstroke averaged forces, the model includes gravitational forces, abdominal torques, and

drag forces on the body. The controls are randomized every 20 ms, which is approximately the

period of the wing downstroke or upstroke for M. sexta (25 Hz wing beat frequency) [35].

Thus our model is basically a simplified two-body dynamical system with thrust vectoring.

Since our dominant focus is on hovering flight, this provides a reasonable basis for examining

Fig 5. Sparsity of input layer of networks pruned to 93% sparsity. Each box represents the number of connections remaining between a parameter in

the input layer and the first hidden layer. For all 858 networks in this group, _y i was pruned entirely from the network.

https://doi.org/10.1371/journal.pcbi.1010512.g005
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the control consequences of pruning a deep neural network. Fig 6 shows three example hover-

ing trajectories of the simulated insect. All trajectories begin at the origin ((x, y) = (0, 0)). The

grey dotted lines show the trajectory of the center of mass of each body segment and the red

dotted line shows the trajectory of the thorax-abdomen joint.

The motion of the moth state-space is described by four parameters (x: horizontal position,

y: vertical position, θ: head-thorax angle, and ϕ: abdomen angle), as well as the respective

state-space derivatives ( _x: horizontal velocity, _y: vertical velocity, _y: head-thorax angular veloc-

ity, and _�: abdomen angular velocity). The x and y position indicate the position of the pin

joint where the head-thorax connects with the abdomen.

Generating training data

We used the ordinary differential equations from [31] (See Appendix, Equations 30–33) to

generate a dataset for training the deep neural network. All simulated trajectories were started

from the origin (i.e., (x0,y0) = (0,0)). We randomly sampled initial horizontal velocity ( _x0), ver-

tical velocity ( _y0), head-thorax angle (θ0), abdomen angle (ϕ0), head-thorax angular velocity

( _y0), and abdomen angular velocity ( _�0) as shown in S3 Table. We also randomly sampled

force (F), force angle (α), and torque (τ) as shown in S3 Table. The training dataset is com-

prised of 10 million simulated trajectories and the test set contains an additional 5 million tra-

jectories. The trajectories were simulated using the Python (Python Software Foundation,

https://www.python.org/) function, scipy.integrate.odeint [36]. Fig 1 shows which

variables were inputs and outputs from the differential equation solver.

Data preparation for deep neural network training

The force (F) and force angle (α) were converted to horizontal and vertical components (Fx
and Fy), using the following equations: Fx = F � cos(α) and Fy = F � sin(α). The data were split

into training and validation sets for cross validation (80:20 split). The validation data is a sam-

ple used to provide an unbiased evaluation of a model fit while tuning the hyper parameters

(such as number of hidden units, number of layers, optimizer, etc.). The data were scaled using

a min-max scaler according to the training dataset and transformed values to be between −0.5

and + 0.5. The same scaler was then used to transform the validation and test data.

Fig 6. Example trajectories of the simulated insects. Each trajectory is 20 ms, and each starts at (x,y) = (0,0). Force (F) is indicated with the straight

red arrow, and torque (τ) is shown with the curved arrows at the thorax-abdomen joint (red dot). The center of mass of each body segment is shown

with black dots.

https://doi.org/10.1371/journal.pcbi.1010512.g006
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Training and pruning a deep neural network

The deep, fully-connected neural network was constructed with ten input variables and seven

output variables (see Fig 1). The initial and final state space conditions are the inputs to the

network: ( _xi; _yi; �i; yi;
_� i;

_y i; xf ; yf ; �f ; yf ). The network predicts the control variables and

the final derivatives of the state space in its output layer (Fx; Fy; t; _xf ; _yf ; _� f
_y f ). The final

derivatives of the state space were made outputs to be able to chain together 20 ms solutions to

allow the moth to complete a complex trajectory for use in future work. The training and

pruning protocols were developed using Keras [37] with the TensorFlow backend [32]. To

scale up training for the statistical analysis of many networks, the training and pruning proto-

cols were parallelized using the Jax framework [38].

To demonstrate the effects of pruning, the network was chosen to have a deep, feed-forward

architecture with wide hidden layers (many more nodes than in the input and output layer).

The network had four hidden layers with 400, 400, 400, and 16 nodes, respectively. Wide hid-

den layers were used rather than using a bottleneck structure (narrower hidden layer width) to

allow the network to find the optimal mapping with little constraint, however, the specific

choices of layer widths were arbitrary. The inverse tangent activation function was used for all

hidden layers to introduce nonlinearity in the model. To account for the multiple outputs, the

loss function was the uniformly-weighted average of the mean squared error for all the outputs

combined.

MSE ¼
1

m

Xm

i¼1

ðyi � ŷiÞ
2

ð1Þ

For optimizing performance, there are several hyper-parameter differences in the Tensor-

Flow model and the Jax model. In developing the training and pruning protocol in Tensor-

Flow, the network was trained using the rmsprop optimizer with a batch size of 212 samples.

However, to scale up and speed up training we used the Jax framework, the Adam optimizer

[39], and the batch size was reduced to 128 samples. Regularization techniques such as weight

regularization, batch normalization, or dropout were not used. However, early stopping (with

a minimum delta of 0.01 with a patience of 1000 batches) was used to reduce overfitting by

monitoring the mean squared error.

After the fully-connected network is trained to a minimum error, we used the method of

neural network pruning to promote sparsity between the network layers. In this work, a target

sparsity (percentage of pruned network weights) is specified and those weights are forced to

zero. The network is then retrained until a minimum error is reached. This process is repeated

until most of the weights have been pruned from the network.

We developed two methods to prune the neural network: 1) a manual method that involves

setting a number of weights to zero after each training epoch and 2) a method using Tensor-

Flow’s Model Optimization Toolkit [32] which involves creating a masking layer to control

sparsity in the network. Both methods are described in detail in the following sections.

Manual pruning. Algorithm 1 describes the a method of pruning in which the n weights

whose magnitudes are closest to zero are manually set to zero. If N is the total number of

weights in the network, the n weights are chosen such that n/N is equivalent to a specified

pruning percentage (e.g. 15%, 25%, . . ., 98%). After the n weights are set to zero, the network

is retrained for one epoch. This process is repeated until the loss is minimized. After the net-

work has been trained to a minimum loss, we select the next pruning percentage from the pre-

determined list and repeat the retraining process. The entire pruning process is repeated until

the network has been pruned to the final pruning percentage in the list.
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Algorithm 1: Sequential pruning and fine-tuning
Train fully-connected model until loss is minimized
Define list of sparsity percentages
for Each sparsity percentage do
while Loss is not minimized do
for Each epoch do
Set n weights to zero s.t. n/N equals the sparsity percentage;
Evaluate loss;
Update weights;

end
end

end
Upon retraining, the weights are able to regain a non-zero weight and the network is evalu-

ated using these non-zero weights. Although this likely still captures the effects of pruning the

network over the full training time, it is not true pruning in the sense that connections that

have been pruned can regain weight.

Pruning using Model Optimization Toolkit. The manual pruning method described

above has the downside of allowing weights to regain non-zero value after training. These

weights are subsequently set back to zero on the next epoch, but the algorithm does not guar-

antee that the same weights will be pruned every time.

To ensure weights remain pruned during retraining, we implemented the pruning func-

tionality of a TensorFlow built toolkit called the Model Optimization Toolkit [32]. The toolkit

contains functions for pruning deep neural networks. In the Model Optimization Toolkit,

pruning is achieved through the use of binary masking layers that are multiplied element-wise

to each weight matrix in the network. A four-layer neural network can be mathematically

described the following way.

ŷ ¼ s4ðA4 . . . ðs1ðA1xÞÞ ð2Þ

In Eq 2, the inputs to the network are represented by x, the predictions by ŷ, the weight

matrices by Ai, and the activation function by σi, where i = 1, 2, 3, 4 for the four layers of the

network. During pruning, the binary masking matrix, Mi is placed between each layer.

ŷ ¼ M4 � s4ðA4 . . . ðM1 � ðs1ðA1xÞÞÞ ð3Þ

In Eq 3, the binary masking matrices, Mi, are multiplied element-wise to the weight matri-

ces (� denotes the element-wise Hadamard product). The sparsity of each layer is controlled

by a separate masking matrices to allow for different levels of sparsity in each layer. Before

pruning, all elements of Mi are set to 1. At each pruning percentage (e.g. 15%, 25%, . . ., 98%),

the n weights whose magnitudes are nearest to zero are found and the corresponding elements

of the the Mi are set to zero. The network is then retrained until a minimum error is achieved.

The masking layers are non-trainable, meaning they will not be updated during backpropaga-

tion. Then, the next pruning percentage is selected and the process is repeated until the net-

work has been pruned to the final pruning percentage.

In the TensorFlow Model Optimization Toolkit, the binary masking layer is added by wrap-

ping each layer into a prunable layer. The binary masking layer controls the sparsity of the

layer by setting terms in the matrix equal to either zero or one. The masking layer is bi-direc-

tional, meaning it masks the weights in both the forward pass and backpropagation step,

ensuring no pruned weights are updated [40]. Algorithm 1 shows the pruning paradigm utiliz-

ing the Model Optimization Toolkit.

Algorithm 2: Sequential pruning with masks and fine-tuning
Train fully-connected model until loss is minimized
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Define list of sparsity percentages;
for Each sparsity percentage do
Define pruning schedule using ConstantSparsity;
Create prunable model by calling prune_low_magnitude;
Train pruned model until loss is minimized;

end
Rather than controlling for sparsity at each epoch of training, as was done in the manual

pruning method described above, we control for sparsity each time we want to prune more

weights from the network. Sparsity is kept constant throughout each pruning cycle and there-

fore we can use TensorFlow’s built-in functions for training the network and regularization.

Preparing for statistical analysis of pruned networks

To be able to train and analyze many neural networks, the training and pruning protocols

were parallelized in the Jax framework [38]. Rather than requiring data to be in the form of

tensors (such as in TensorFlow), Jax is capable of performing transformations on NumPy [41]

structures. Jax however does not come with a toolkit for pruning, therefore pruning by way of

the binary masking matrices was coded into the training loop.

The networks were trained and pruned using a NVIDIA Titan Xp GPU operating with

CUDA [42]. At most, 400 networks were trained at the same time and the total number of net-

works used in the analysis was 1320. These networks were all trained with identical architec-

tures, pruning percentages, and hyper-parameters. The only difference between the networks

is the random initialization of the weights before training and pruning. The Adam optimizer

[39] and a batch size of 128 were used to speed up training and cross-validation was omitted.

However, early stopping was used on the training data to avoid training beyond when the loss

was adequately minimized. Additionally, early stopping was used to evaluate the decrease in

loss across batches, rather than epochs.

Discussion

In this study, we set out to investigate whether a sparse DNN can control a biologically relevant

motor-task—in our case the dynamic control of a hovering insect. Taking inspiration from

synaptic pruning found across wide ranging animal taxa, we pruned a DNN to different levels

of sparsity in order to find the optimal sparse network capable of controlling moth hovering.

The DNN uses data generated by the inertial dynamics model in [31] which models the for-

ward problem of flight control. In this work, the DNN models the inverse problem of flight

control by learning the controls given the initial and final state space variables.

Through this work, we found that sparse DNNs are capable of solving the inverse problem

of flight control, i.e. predicting the controls that are required for a moth to hover to a specified

state space. In addition, we demonstrate that across many networks, a network can be pruned

by as much as 93% and perform comparably to the median performance of a fully-connected

network. However, there are sharp performance limits and most networks pruned beyond

93% see a breakdown in performance. We found that although uniform pruning was not

enforced, on average, each layer in the network pruned to match the overall sparsity (i.e. spar-

sity of each layer was 93% for networks pruned to overall sparsity of 93%). Finally, we looked

at the sparsity of individual layers and found that the initial head-thorax angular velocity is

consistently pruned from the input layer of networks pruned to 93% sparsity, indicating a

redundancy in the forward original model.

Though we have shown that a DNN is capable of learning the controls for a flight task,

there are several limitations to this work. Firstly, though the model in [31] used to generate the

training data provided control predictions for accurate motion tracking in a two-dimensional
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task, biological reality is more rich and complex than can be captured by the forward model.

Thus, since the DNN is trained with this data, it is only capable of learning the dynamics cap-

tured in the model in [31]. Furthermore, the size, shape, and body biomechanics of this sys-

tems all matter. This study uses the same global parameters across the data set (see S1 Table),

but, in reality, these parameters vary significantly (across insect taxa and within the life of an

individual) and this likely affects the performance of the DNN.

We have shown here that DNNs are capable of learning the inverse problem of flight con-

trol. The fully-connected DNN used here learned a nonlinear mapping between input and out-

put variables, where the inputs are the initial and final state space variables and the outputs are

the controls and final velocities. A fully-connected network can learn this task with a median

loss of 7.9 x 10−4. However, due to the random initialization of weights preceding training,

some networks perform as much as an order of magnitude worse (see Fig 4). This suggests that

the performance of a trained DNN is heavily influenced by the random initialization of its

weights.

We used magnitude-based pruning to sparsify the DNNs in order to find the optimal,

sparse network capable of controlling moth hovering. For the task of moth hovering, a DNN

can be pruned to approximately 7% of its original network weights and still perform compara-

bly to the fully-connected network. The results of this analysis show that when trained to per-

form a biological task, fully-connected DNNs are indeed over-parameterized. Much like their

biological counterparts, DNNs do not require fully-connected connectivity to accomplish this

task. Additionally, flying insects maneuver through high noise environments and therefore

perfect flight control is traded for robustness to noise. It is therefore assumed that the data has

a given signal-to-noise ratio or performance threshold. The performance threshold repre-

sented by the red dashed line in Figs 2, 3 and 4 was arbitrarily chosen to represent a loss com-

parable to the loss of the fully-connected network (i.e. 0.001). In other words, this line

represents a noise threshold, below which the network is considered well-performing and

adapted to noise. It has been shown that biological motor control systems are adapted to han-

dle noise [43]. Biological pruning may be a mechanism for identifying sparse connectivity pat-

terns that allow for control within a noise threshold.

On average, when the networks are pruned beyond 7% connectivity, there is a dramatic

performance breakdown. Beyond 93% sparsity, the performance of the networks break down

because too many critical weights have been removed. A significant proportion of the 1320

networks breakdown before they reach 7% connectivity (approximately 30% of the networks).

This again supports the aforementioned claim that the random initialization of the weights

before training affects the performance of a DNN and can be exacerbated by neural network

pruning. Additionally, this shows that there exists a diversity of network structures that per-

form within the bounds of the noise threshold.

To investigate the substructure of the well-performing, sparse networks, we looked closer at

the subset of networks that were optimally sparse at 93% pruned (858 networks). We have

shown that the average sparsity of each layer in this subset is uniform, meaning each of the five

layers have approximately 7% of their original connections remaining. However, the variance

on the number of remaining connections between input layer and first hidden layer and

between the final hidden layer and the output layer is markedly higher than the variance in the

weight matrices between the hidden layers. This suggests that in networks pruned to 93% spar-

sity, the greatest amount of change in network connectivity occurs in input and output layers.

However, there are notable features in the connectivity between the input and first hidden

layer that are consistent across the 858 networks. Fig 5 shows that the input parameter, initial

head-thorax angular velocity ( _y i), is completely pruned from all of the 858 networks. The
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initial abdomen angular velocity ( _�i) is also almost entirely pruned from all of the networks.

All of the other input parameters maintain an median of at least 5% connectivity to the first

hidden layer. The complete pruning of _y i suggests a redundancy in the original forward

model. However, this redundancy makes physical sense because θi and ϕi are coupled in the

original forward model.

The results of this study pose an interesting question about how the size of the initial net-

work architecture affects the resultant pruning statistics. The networks pruned in this study

are feed-forward, each with four hidden layers with 400, 400, 400, 16 nodes, respectively. This

choice of architecture is somewhat arbitrary, however through the process of tuning and

cross-validating the fully-connected network, we converged to a set of hyperparameters

(including the size of the hidden layers) which resulted in the most optimally performing net-

work. To begin to explore the effect that initial network architecture size has on the pruning

statistics, we repeated the experiment with increasingly smaller network architectures. For

example, in S1 Fig we trained 400 networks, each with four hidden layers with 200, 200, 200, 8

nodes. S2 Fig shows the same results for networks of sizes 100, 100, 100, 8 and S3 Fig shows

the results for networks of size 50, 50, 50, 8. These decreases in hidden layer widths correspond

to a decrease in the total number of weights across the networks from 330, 512 (for the original

networks in Fig 4) to 83, 656 (S1 Fig), 21, 856 (S2 Fig), and 5, 956 (S3 Fig). Across all networks,

there is a slight improvement in performance for low levels of pruning. All networks show a

performance breakdown, however the sparsity at which the breakdown occurs changes with

the size of the network. For example, the networks in S3 Fig show a performance breakdown

at 65% or when there are 2, 084 weights remaining. This is compared to the original 1320 net-

works which showed a performance breakdown at 93% or when there are 23, 135 weights

remaining. The initial architecture of the network affects the achievable sparsity by the pruning

protocol employed here. Additionally, smaller network architectures result in more volatility

when higher levels of sparsity are reached. However, the results of these preliminary experi-

ments only begin to explore the relationship between initial network architecture and resultant

pruning statistics. We found that as the network architecture is made smaller, the raw number

of parameters post-pruning is fewer. Whether these extra small networks are as robust to noise

or better at generalizing to unseen data is yet to be seen. It is also unclear what the optimal

starting architecture size should be because large, over-parameterized networks are thought to

be more efficient to optimize via gradient descent [44]. As stated, these preliminary experi-

ments open up many interesting questions to be explored in future work.

In this work, we have shown that a sparse neural network can learn the controls for a bio-

logical motor task and we have also shown, via Monte Carlo simulations, that there exists at

least some aspects of network structure that are stereotypical. There are several computation-

ally non-trivial extensions to the work presented here. Firstly, network analysis techniques

(such as network motif theory) could be used to further compare the pruned networks and

investigate the impacts of neural network structure on a control task. Network motifs are sta-

tistically significant substructures in a network and have been shown to be indicative of net-

work functionality in control systems [45]. Other areas of future work include investigating

the sparse network’s response to noise and changes in the biological parameters. Biological

control systems are adapted to function adequately in the presence of noise. Pruning improves

the performance of neural networks up to a certain level of sparsity, however the effects of

noise on this bio-inspired control task are yet to be explored. Furthermore, the size and shape

of a real moth can change rapidly (e.g. change of mass after feeding). The question of whether

sparsity improves robustness in the face of such physical parameters could also be a future

extension of this work.
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Conclusion

Synaptic pruning has been shown to play a major role in the refinement of neural connections,

leading to more effective motor task control. Taking inspiration from synaptic pruning in bio-

logical systems, we apply the equally thoroughly investigated method of DNN pruning to the

inverse problem of insect flight control. We use the inertial dynamics model in [31] to simulate

examples of M. sexta hovering flight. This data is used to train a DNN to learn the controls for

moving the simulated insect between two points in state-space. We then prune the DNN

weights to find the optimally sparse network for completing flight tasks. We developed two

paradigms for pruning: via manual weight removal and via binary masking layers. Further-

more, we pruned the DNN sequentially with retraining occurring between prunes. Monte

Carlo simulations were also used to quantify the statistical distribution of network weights

during pruning to find similarities in the internal structure across pruned networks. In this

work, we have shown that sparse DNNs are capable of predicting the controls required for a

simulated hawkmoth to move from one state-space to another.
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