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This primer article focuses on the basic reproduction number, ℛ0, for infectious diseases,
and other reproduction numbers related toℛ0 that are useful in guiding control strategies.
Beginning with a simple population model, the concept is developed for a threshold value
of ℛ0 determining whether or not the disease dies out. The next generation matrix
method of calculating ℛ0 in a compartmental model is described and illustrated. To
address control strategies, type and target reproduction numbers are defined, as well as
sensitivity and elasticity indices. These theoretical ideas are then applied to models that
are formulated for West Nile virus in birds (a vector-borne disease), cholera in humans (a
disease with two transmission pathways), anthrax in animals (a disease that can be spread
by dead carcasses and spores), and Zika in humans (spread by mosquitoes and sexual
contacts). Some parameter values from literature data are used to illustrate the results.
Finally, references for other ways to calculate ℛ0 are given. These are useful for more
complicated models that, for example, take account of variations in environmental fluc-
tuation or stochasticity.
Crown Copyright © 2017 Production and hosting by Elsevier B.V. on behalf of KeAi Com-
munications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Infectious diseases continue to debilitate and to cause death in humans and animals, with new disease-causing pathogens
emerging and old pathogens reemerging or evolving. For example, viruses give rise to influenza, measles andWest Nile virus,
bacteria give rise to anthrax, salmonella, chlamydia and cholera, and protozoa give rise to malaria and trypanosomiasis
(sleeping sickness). Disease may be passed directly from person to person by respiratory droplets (e.g., measles), via body
secretions (e.g., chlamydia), by biting tsetse flies (e.g., trypanosomiasis) or mosquitoes (e.g., malaria), or by ingestion in food
or water (e.g., cholera). Some diseases can be controlled by vaccines, antibiotics, antiviral drugs, reduction in vector pop-
ulations, increased sanitation or behavioral changes. In order to consider control strategies for a particular disease, it is
essential to know features of the pathogen, the mode of transmission and other epidemiological details, since as indicated by
the above examples, these differ greatly between diseases.

Mathematical modelling can play an important role in helping to quantify possible disease control strategies by focusing
on the important aspects of a disease, determining threshold quantities for disease survival, and evaluating the effect of
particular control strategies. A very important threshold quantity is the basic reproduction number, sometimes called the basic
reproductive number or basic reproductive ratio (Heffernan, Smith, & Wahl, 2005), which is usually denoted by ℛ0. The
unications Co., Ltd.
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epidemiological definition ofℛ0 is the average number of secondary cases produced by one infected individual introduced into a
population of susceptible individuals, where an infected individual has acquired the disease, and susceptible individuals are
healthy but can acquire the disease.

In reality, the value ofℛ0 for a specific disease depends onmany variables, such as location and density of population. For a
few specific diseases, Table 1 gives estimates of ℛ0 gleaned from data in the literature.

The aim of this review is to elaborate onmathematical ways of findingℛ0 for ODE disease models in a population, bearing
in mind the epidemiological meaning of ℛ0, and to demonstrate how this and other reproduction numbers can be used to
guide control strategies. Section 2 introduces simple models that establish notation and serve as background for later sec-
tions. The next generation matrix method to theoretically calculateℛ0 for ODEmodels is presented in Section 3. In Section 4,
the use ofℛ0 and other reproduction numbers to guide control strategies is shown by defining elasticity indices, and type and
target reproduction numbers. Sections 5, 6, and 7 apply these ideas to models specific for West Nile virus in birds, cholera in
humans, and anthrax in animals, respectively. As suggested by a referee, Zika models are briefly discussed in Section 8. For
these diseases, numerical values for model parameters are taken from the literature, with references given for these and for
proofs (which are not detailed here). A final section, Section 9, gives references to other approaches for calculating ℛ0, in
particular for models formulated in other ways. Inevitably the reference list is incomplete as there have recently been many
articles on infectious diseases (it has been said that there is an epidemic of disease models), many of which determine a basic
or control reproduction number.

2. Simple compartmental disease models

2.1. SIR epidemic model

To beginwith a simple model, assume that eachmember of a population is either susceptible, infectious (infected with the
disease) or recovered from the disease with life-long immunity. If the disease is short lived compared with the population
lifetime, then demography can be ignored. Such a model may be appropriate as a very simple model for seasonal influenza,
ignoring features such as immunity from past infections. Let S; I;R denote the number of susceptible, infectious, recovered
individuals at time t. Transmission of influenza is airborne or by respiratory secretions on hands, so this is often modeled by
mass action, namely a term bSI, where b is the disease transmission rate constant and bI is the force of infection. Let 1=g
denote the mean infectious time (about 5 days for influenza), thus g>0 is the recovery rate, and let f denote the fraction of
infectious individuals who recover from the disease (thus the fraction 1� f die from the disease). The flow diagram for the
disease dynamics with compartments S, I and R is given in Fig. 1.

Ordinary differential equations (ODEs) for this SIR model are given by

dS
dt

¼ �bSI;
dI
dt

¼ bSI � gI;
dR
dt

¼ fgI:
Initially Sð0Þ ¼ S0; Ið0Þ>0 with Ið0Þ≪Sð0Þ, and Rð0Þ ¼ 0. There is a disease free equilibrium (DFE) with ðS; I;RÞ ¼ ðS0;0;0Þ.
Focusing on the I equation, the initial behavior is governed by the sign of bS0 � g, or equivalently bS0

g � 1. This leads to the

definition ofℛ0 ¼ bS0
g , with the DFE locally asymptotically stable (LAS) ifℛ0 <1, but unstable ifℛ0 >1. Thisℛ0 is the product

of the transmission rate, the mean infectious time and S0, and clearly fits with the epidemiological definition of ℛ0 given in
the Introduction. Note that ℛ0 is independent of the fraction dying from the disease. From the dynamics of the system, if
ℛ0 <1, then the number of infectious individuals decreases monotonically to 0; whereas if ℛ0 >1, then this number first
increases (before tending to zero); thus ℛ0 ¼ 1 acts as a sharp threshold between the disease dying out or causing an
epidemic.
Table 1
Estimated Mean Values of ℛ0 from Data.

Disease outbreak and location ℛ0 Reference

Smallpox in Indian subcont. (1968e73) 4.5 Anderson and May (1991)
Poliomyelitis in Europe (1955e60) 6 Anderson and May (1991)
Measles in Ghana (1960e68) 14.5 Anderson and May (1991)
SARS epidemic in (2002e03) 3.5 Gumel et al. (2004)
1918 Spanish influenza in Geneva
Spring wave 1.5 Chowell, Ammon, Hengartner, and Hyman (2006)
Fall wave 3.8 Chowell et al. (2006)

H2N2 influenza pandemic in US (1957) 1.68 Longini, Halloran, Nizam, and Yang (2004)
H1N1 influenza in South Africa (2009) 1.33 White, Archer, and Pagano (2013)
Ebola in Guinea (2014) 1.51 Althaus (2014)
Zika in South America (2015e16) 2.06 Gao et al. (2016)



Fig. 1. Flow diagram for the SIR model.

P. van den Driessche / Infectious Disease Modelling 2 (2017) 288e303290
Ifℛ0 >1, then initially IðtÞ is approximately Ið0Þexp½gðℛ0 � 1Þt�. With a knowledge of the mean infectious time, it may be
possible to use this formulawith initial data from an epidemic to estimate the value ofℛ0. Ifℛ0 >1 and f ¼ 1 (no death due to
disease), then the fraction of susceptibles at the end of the epidemic, sð∞Þ ¼ Sð∞Þ=N where N is the total population, is given
by the unique root between 0 and 1 of the final size equation

ln sð∞Þ ¼ �ℛ0ð1� sð∞ÞÞ:
If data on this fraction are available, then this equation can be used to estimate ℛ0 after the epidemic has passed.
If a vaccine that is perfect is available, and a fraction p of the population is vaccinated, then the disease will not spread if

ð1� pÞℛ0 <1, that is a fraction p>1� 1=ℛ0 is vaccinated, giving herd immunity. So this simple model predicts that diseases
with large values of ℛ0 require a large proportion of the population to be successfully vaccinated (compare ℛ0 values for
smallpox and measles as given in Table 1). Interestingly, the disease that has historically caused the most human deaths,
namely smallpox, is the only human disease that currently has been declared eradicated (due largely to vaccination
campaigns).

Simple demography can be included in this SIRmodel with A>0 denoting the input of individuals (all susceptible) per unit
time, and d>0 denoting the natural death rate. The equation for the infectious individuals then becomes

dI
dt

¼ bSI � ðdþ gÞI;

giving ℛ0 ¼ bS0
dþg

with S0 ¼ A
d.

2.2. SEIR Compartmental model

In many infectious diseases there is an exposed period also called a latent period after transmission of infection but before
the infected individual can transmit the infection. During this time the pathogen is in the host, but in low numbers so that the
host is not yet infectious. If the exposed period is relatively long, then an exposed compartment should be included to give an
SEIR model. Let E denote the number of exposed individuals, and the mean exposed period be 1=k where k>0 is the rate of
loss of latency. To include simple demography, let A be the input of individuals per unit time, and d be the natural death rate.
Assuming that the disease does not cause death, the disease evolves according to the equations

dS
dt

¼ A� dS� bSI

dE
dt

¼ bSI � ðdþ kÞE

dI
dt

¼ kE � ðdþ gÞI

dR
dt

¼ gI � dR;

�
A

�

with nonnegative initial conditions. The flow for this model is depicted in Fig. 2. The DFE is given by ðS0; E; I;RÞ ¼ d;0;0;0 .

There are now two infected compartments (E and I), and linearizing about the DFE it can be seen that only the equations in
these two variables determine the stability of the DFE. From these two equations, the Jacobian matrix at the DFE gives the
characteristic equation

z2 þ ð2dþ kþ gÞzþ ðdþ kÞðdþ gÞ � kbS0 ¼ 0:
This equation has all roots with negative real parts (thus the DFE is linearly stable) if and only if each coefficient is positive,
i.e., ðdþ kÞðdþ gÞ> kbS0. Writing this condition in non-dimensional form as kbS0=ðdþ kÞðdþ gÞ<1 is more epidemiologically



Fig. 2. Flowchart for the SEIR model.
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meaningful. In fact k=ðdþ kÞ is the fraction of individuals progressing from exposed to infectious, and 1=ðdþ gÞ is the average
infectious time taking death into account. From the biological definition,

ℛ0 ¼ k

ðdþ kÞ
bS0

ðdþ gÞ

for this SEIR model. Note that if d ¼ 0 this simplifies to the ℛ0 for the SIR model obtained in Section 2.1. If ℛ0 <1, then the
disease dies out; whereas if ℛ0 >1, the quadratic has a positive root, and the disease invades the population. In fact the

disease then tends to an endemic state with I� ¼ Akð1�1=ℛ0Þ
ðdþkÞðdþgÞ . This endemic equilibrium exists only for ℛ0 >1, and there is a

forward bifurcation at ℛ0 ¼ 1. A mathematical way to determine ℛ0 for this and more complex models is given in the next
Section.

3. Computation of ℛ0 by the next generation matrix method

The Jacobian method used for the SEIR model yields a biologically reasonable ℛ0, but for more complex compartmental
models, especially those with more infected compartments, the method is hard to apply as it relies on the algebraic Routh-
Hurwitz conditions for stability of the Jacobianmatrix. An alternative method proposed by Diekmann, Heesterbeek, andMetz
(1990) and elaborated by van den Driessche andWatmough (2002) gives away of determiningℛ0 for an ODE compartmental
model by using the next generationmatrix. Here an outline of thismethod is given, the proofs and further details can be found
in van den Driessche and Watmough (2002) and van den Driessche and Watmough (2008).

Let x ¼ ðx1; x2;…; xnÞT be the number of individuals in each compartment, where the first m<n compartments contain
infected individuals. Assume that the DFE x0 exists and is stable in the absence of disease, and that the linearized equations for
x1;…; xm at the DFE decouple from the other equations. The assumptions are given in more details in the references cited

above. Consider these equations written in the form dxi
dt ¼ F iðxÞ �V iðxÞ for i ¼ 1;2;…;m. In this splitting, F iðxÞ is the rate of

appearance of new infections in compartment i, and V iðxÞ is the rate of other transitions between compartment i and other

infected compartments. It is assumed that F i and V i2C 2, and F i ¼ 0 if i 2 ½mþ 1;n�.
Now define F ¼

�
vF iðx0Þ

vxj

�
and V ¼

�
vV iðx0Þ

vxj

�
for 1 � i; j � m: From the biological meanings of F and V, it follows that F is

entrywise non-negative and V is a non-singular M-matrix (see Berman and Plemmons (1994)), so V�1 is entrywise non-
negative. Let jð0Þ be the number of initially infected individuals. Then FV�1jð0Þ is an entrywise non-negative vector giv-
ing the expected number of new infections. Matrix FV�1 has ði; jÞ entry equal to the expected number of secondary infections
in compartment i produced by an infected individual introduced in compartment j. Thus FV�1 is the next generation matrix
and

ℛ0 ¼ r
�
FV�1

�
;

where r denotes the spectral radius. The linear stability of the DFE is determined from the Jacobianmatrix by sðF � VÞ, where s
denotes the maximum real part of the eigenvalues sometimes called the spectral bound. Using the above notation, the relation
between this quantity and ℛ0 is given in the following result, the proof of which uses properties of M-matrices; see the
references cited above.

Theorem 1. If x0 is a DFE of the system dxi
dt ¼ F iðxÞ �V iðxÞ, then x0 is locally asymptotically stable if ℛ0 ¼ rðFV�1Þ<1, but

unstable if ℛ0 >1, i.e. sign sðF � VÞ ¼ sign ðℛ0 � 1Þ:
This next generation matrix approach is now illustrated by returning to the SEIR Model of Section 2.2. The infected

compartments are E and I. At the DFE matrices F and V are

F ¼
�
0 bS0
0 0

�
; V ¼

�
dþ k 0
�k dþ g

�
;

giving
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FV�1 ¼

264 kbS0
ðdþ kÞðdþ gÞ

bS0
dþ g

0 0

375:
So FV�1 has eigenvalues 0 and ℛ0 where

ℛ0 ¼ kbS0
ðdþ kÞðdþ gÞ ;

as deduced biologically in Section 2.2. Here bS0 is the infection rate in a population of S0 susceptibles, k=ðdþ kÞ is the fraction
progressing from E to I, 1=ðdþ gÞ is the mean time in I, thus the ð1;1Þ entry of FV�1 is the expected number of secondary
infections produced in compartment E by an infected person originally in E.

As an extension of this SEIRmodel, suppose that individuals in E are mildly infectious at a reduced rate εbSEwith 0< ε<1.
This could also be thought of as an initial infectious class before the pathogen has fully developed in the host. Proceeding as
previously yields

F ¼
�
εbS0 bS0
0 0

�

with V unchanged. Thus

ℛ0 ¼ kbS0
ðdþ kÞðdþ gÞ þ

εbS0
ðdþ kÞ :
The first term gives contributions from the infectious compartment I as before, whereas the second term gives contributions
from the mildly infectious E compartment, thus increasing the value of ℛ0.

As another extension of the SEIR model (with the E compartment assumed not infectious), suppose that a fraction p of
individuals are vaccinated at recruitment into the susceptible population. This is an approximation for vaccination of babies
against childhood diseases. In addition, suppose that the vaccine is perfectly effective, so everyone receiving the vaccine is
protected from the disease. With input A ¼ dN, keeping the total population N ¼ Sþ E þ I þ R constant, ð1� pÞdN enter S and
pN enter the R compartment. The DFE then becomes ðS; E; I;RÞ ¼ ðð1� pÞN;0;0; pNÞ and the vaccination reproduction number
also called a control reproduction number, denoted here by ℛV , is given by

ℛV ¼ kbð1� pÞN
ðdþ kÞðdþ gÞ :
This gives the fraction that need to be vaccinated as p>1� 1=ℛ0 (with S0 ¼ N) to bringℛV below the threshold value of one,
as determined to give herd immunity (see Section 2.1).

The examples given above each have the rank of the next generation matrix equal to one, so the reproduction number is
easy to calculate as the trace of this matrix. A more complicated model in which this occurs is when the next generation
matrix is separable, i.e., K ¼ FV�1 has ði; jÞ entry kij ¼ aibj. Assume that bj ¼ cj and ai ¼ ciNi=

P
[
c[N[ with

P
k
Nk ¼ 1 as given in

Diekmann, Heesterbeek, and Britton (2012, Exercise 7.18) for a sexually transmitted disease in groups, with populations given
by Nj and the total population normalized to 1. Then ℛ0 ¼ P

j
ajbj ¼

P
j
c2j Nj=

P
[
c[N[ ¼ 〈c〉þ Var½c�=〈c〉, where 〈c〉 denotes the

mean value of c and Var½c� denotes the variance of c.

Remark 2. As a cautionary remark, note that Theorem 1 assures local stability ifℛ0 <1. For manymodels, global stability can
be proved by comparison theorems (see, for example, Castillo-Ch�avez, Feng, and Huang (2002)) or Lyapunov functions (see,
for example, Shuai and van den Driessche (2013)). However, in some models that have more complicated structure (e.g.,
include vaccination that is not perfect (Arino, McCluskey, & van den Driessche, 2003; Brauer, 2004; Kribs-Zaleta & Velasco-
Hernandez, 2000)) multigroup models (Hadeler & Castillo-Ch�avez, 1995) endemic equilibria may exist near the DFE for
ℛ0 <1, and there is a backward bifurcation at ℛ0 ¼ 1, with the DFE locally but not globally stable in a range of ℛ0 values
below 1. In such a situation, the initial numbers in the infected compartments determine whether or not the disease persists;
see for example, Castillo-Ch�avez and Song (2004) andMartcheva (2015, Section 7.5). So for disease control,ℛ0 may have to be
decreased further below 1.
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4. Use of reproduction numbers to suggest control strategies

Related reproduction numbers, and elasticity indices of ℛ0 are now defined, and then in later sections applied to specific
disease models.

4.1. Type and target reproduction numbers

Herd immunity is applicable if a control strategy is aimed at all individuals in a population, but if the population has
several host types, then a control strategy may be aimed at only one host population. For example, in a vector-host model for
malaria, spraying may be targeted at the mosquito vectors. To address this Roberts and Heesterbeek (2003) and Heesterbeek
and Roberts (2007) introduced the concept of a type reproduction number denoted by T . In general such a strategy influences
one row or one column of the next generation matrix, depending on whether the control influences susceptibility or
infectivity. This concept was further generalized by Shuai, Heesterbeek, and van den Driessche (2013) by singling out sets of
entries for control, leading to the definition of a target reproduction number. For example, in a cholera outbreak, the prevention
of contacts among children could be a reduction strategy; an age structured model would then target a specific entry of the
next generation matrix.

To describe this algebraically, let K ¼ ½kij� be the order n next generation matrix (i.e., K ¼ FV�1) and suppose that the
entries in a set S are to be targeted with a control strategy (this can be either a decrease or an increase in entries of S). The
target matrix KS has ði; jÞ entry equal to kij if entry ði; jÞ 2 S, and 0 otherwise. If rðK � KSÞ<1, then the target reproduction
number T S is defined as

T S ¼ r
�
KSðId� K þ KSÞ�1

�
where Id is the identity matrix of order n. When all entries in one or more rows (or columns) of K are targeted, then the target
reproduction number reduces to the type reproduction number as defined by Roberts and Heesterbeek (2003) and
Heesterbeek and Roberts (2007). If a fraction at least 1� 1=T S of the contributions due to the set S can be prevented, then the
disease will die out. Note that if K is irreducible, then T S ¼ 1ð>1Þ if and only if ℛ0 ¼ 1ð>1Þ (Roberts & Heesterbeek, 2003;
Shuai et al., 2013).

4.2. Sensitivity and elasticity

To determine best control measures, knowledge of the relative importance of the different factors responsible for
transmission is useful. Initially disease transmission is related to ℛ0 and sensitivity predicts which parameters have a high
impact on ℛ0. The sensitivity index of ℛ0 with respect to a parameter u is vℛ0

vu : Another measure is the elasticity index

(normalized sensitivity index) that measures the relative change of ℛ0 with respect to u, denoted by Yℛ0
u , and defined as

Yℛ0
u ¼ vℛ0

vu
� u

ℛ0
:

The sign of the elasticity index tells whetherℛ0 increases (positive sign) or decreases (negative sign) with the parameter;
whereas the magnitude determines the relative importance of the parameter. These indices can guide control by indicating
the most important parameters to target, although feasibility and cost play a role in practical control strategy. Ifℛ0 is known
explicitly, then the elasticity index for each parameter can be computed explicitly, and evaluated for a given set of parameters.
The magnitude of the elasticity indices depends on these parameter values, which are probably only estimates. To help
identify the robustness of ℛ0 to the parameters, Latin Hypercube Sampling maximin criteria can be used; see, for example,
Blower and Dowlatabadi (1994). Another technique to investigate this is to compute ℛ0 over the feasible region of a given
parameter while keeping the other parameters fixed at baseline values; see for example Manore, Hickmann, Xu, and Hyman
(2014).

5. A model for West Nile virus

Some diseases, for example, West Nile virus, dengue fever, malaria, Zika virus are transmitted through a vector (for these
diseases the vectors are various species of mosquitoes), rather than directly from person to person. Female mosquitoes bite to
obtain a blood meal that is essential for reproduction, so only female mosquitoes need be considered. West Nile virus can kill
birds and humans, but infected mosquitoes remain infectious for life and do not die of the virus. Birds can transmit the virus
back to mosquitoes, whereas humans appear to be dead end hosts, and so may be excluded from a simple model. Since the
life-cycle of mosquitoes is much shorter than that of birds, mosquito demography should be included in a model, but bird
demography can be ignored. For a simple mosquito-bird (vector-host) model, take S and I compartments in each population,
giving a system of four ODEs as formulated by Wonham and Lewis (2008). The equations for this system with nonnegative
initial conditions are
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dSB
dt

¼ �aBb
SBIM
SB þ IB

dIB
dt

¼ aBb
SBIM
SB þ IB

� dBIB

dSM
dt

¼ bMðSM þ IMÞ � dMSM � aMb
SMIB
SB þ IB

dIM
dt

¼ aMb
SMIB
SB þ IB

� dMIM ;

where the variables and parameters are defined as

� SB; SM: number of susceptible birds, mosquitoes
� IB; IM: number of infectious birds, mosquitoes
� aB;aM: probability per bite of virus transmission to bird, mosquito
� b: biting rate of mosquitoes on birds
� dB: bird death rate from virus
� bM ; dM: mosquito birth, natural death rate

The disease is transferred by an infectious mosquito biting a susceptible bird, or by a susceptible mosquito biting an in-
fectious bird, This cross infection betweenmosquitoes and birds is illustrated in the flow diagram in Fig. 3. The transmission is
assumed to be frequency dependent; see Wonham and Lewis (2008) for more discussion on the model and transmission
assumptions.

Assuming that bM ¼ dM so the bird population is constant, there is a DFE with all birds and mosquitoes susceptible, with
populations denoted by SB ¼ SB0, SM ¼ SM0 and IB ¼ IM ¼ 0. Using the next generation matrix at the DFE

F ¼

264 0 aBb

aMb
SM0

SB0
0

375;V ¼
�
dB 0
0 dM

�
; FV�1 ¼

26664
0

aBb

dM
aMbSM0

dBSB0
0

37775;
giving
ℛ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aBb

dM

��
aMbSM0

dBSB0

�s
:

The first ratio under the square root represents the number of bird infections caused by one infectious mosquito, and the
second represents the number of mosquito infections caused by one infected bird. The square root represents a geometric
mean. In the literature the square root is often omitted, giving the same threshold for stability at 1, but taking the average
Fig. 3. Flowchart for the West Nile virus model by Wonham and Lewis (2008).
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number of secondary infected humans resulting from a single infected human; see, for example, Roberts and Heesterbeek
(2003).

The relative importance of each parameter for control can be estimated by computing elasticity indices. For this model,
Yℛ0
aB

¼ Yℛ0
aM

¼ 1
2; Y

ℛ0
b

¼ 1; Yℛ0
dM

¼ Yℛ0
dB

¼ �1
2. Thus reducing the biting rate of mosquitoes has the largest proportional effect on

reducing ℛ0.
Targeting the mosquito to bird transmission, the target reproduction number has S ¼ fð1;2Þg, thus

T S ¼ r

0B@
2640 aB

b

dM
0 0

375
24 1 0

�aMbSM0
dSSB0

1

35�11CA ¼ ℛ2
0:

2
If the transmission frommosquitoes to birds can be reduced by a fraction at least 1� 1=ℛ0, then the vector-host disease will
die out.

This simple model has in particular neglected the period during which mosquitoes are in the larval stage, and also the
exposed period of infected mosquitoes during which the viral load becomes sufficiently high for bites to be able to transmit
the disease. Both these periods are significant fractions of the mosquito life-span. Including the two extra compartments of
larval and exposedmosquitoes, gives a 6-dimensional ODE system, as formulated inWonham and Lewis (2008). The resulting
ℛ0 is not changed by the larval stage, but the exposed class reducesℛ0 by a factor that is the square root of the probability of
an exposed mosquito becoming infectious. Numerical model simulations in Wonham and Lewis (2008) show that the in-
clusion of these classes delays the disease outbreak.

Jiang, Qiu, Wu, and Zhu (2009) consider a bird-mosquito West Nile virus model (proposed by Bowman, Gumel, van den
Driessche, Wu, and Zhu (2005)) and find that backward bifurcation is possible for some parameter values, thus the initial
numbers of mosquitoes and birds are important in determining whether or not the disease dies out, even if ℛ0 <1. More
complicated vector-host models require appropriate parameter values to estimate elasticity indices and so to guide control
planning; see, for example, Manore et al. (2014) for a comparison of dengue and chikungunya dynamics, and Cai, Li, Tuncer,
Martcheva, and Lashari (2017) for a malaria model that may also exhibit backward bifurcation. Temperature plays an
important role in the reproduction of many vectors that transmit vector-borne diseases. Thus climate change and variations in
temperature may have an important influence onℛ0 and disease persistence. A detailed study of this effect for Lyme Disease,
which is transmitted by ticks, using data from northeastern North America is given by Ogden et al. (2014), and concludes that
climate warming may have partly driven the emergence of Lyme disease in this region. More recently, Wang and Zhao (2017)
develop a periodic time-delayed model of Lyme disease, compute ℛ0 from data, and show that ℛ0 can be driven below 1 if
the recruitment rate of tick larvae is reduced.

6. Cholera models

Cholera is an infection of the small intestine caused by the bacterium Vibrio cholerae. Infection causes mild diarrhea in
most cases, but some cases develop severe diarrhea and vomiting, which if untreated may lead to death within a few hours
due to dehydration and electrolyte imbalance. Cholera can be transmitted indirectly to humans via water infected with the
bacterium that is shed from infected humans, or directly from human to human (without differentiating between males and
females). The relative importance of these two transmission paths is a key factor in designing control strategies as illustrated
by the following models of cholera from the literature.
Fig. 4. Flowchart of the cholera model by Tien and Earn (2010).
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6.1. Direct and indirect transmission, Tien and Earn (2010)

The same notation is used as previously, augmented by a variable Bmeasuring the concentration of bacterium in thewater,
with d the removal rate of the bacterium, and x the shedding rate of bacterium by infectious humans. The model formulated
by Tien and Earn (2010) incorporates both direct and indirect transmission by usingmass action termswith transmission rate
constants bI and bB. Their model assumes that there is no death due to cholera, so that the human population N ¼ Sþ I þ R
remains constant. The flow for this model of cholera dynamics is given in Fig. 4. The equations governing the dynamics are

dS
dt

¼ dN � bBSB� bISI � dS

dI
dt

¼ bBSBþ bISI � ðdþ gÞI

dR
dt

¼ gI � dR

dB
dt

¼ xI � dB;

with nonnegative initial conditions having 0< Ið0Þ þ Bð0Þ≪ Sð0Þ and Rð0Þ ¼ 0. The DFE is given by ðS; I;R;BÞ ¼ ðN;0;0;0Þ, and

assuming that shedding is not a new infection (i.e., goes into the V matrix), the next generation matrix has rank 1 and gives

ℛ0 ¼ bB þ bI
dþ g

where bB ¼ bBNx
d

; bI ¼ bIN:
The two routes of transmission enter ℛ0 in an additive way, thus ℛ0 ¼ ℛ0B þℛOI , with ℛ0B ¼ bB=ðdþ gÞ and
ℛ0I ¼ bI=ðdþ gÞ. If either the indirect or direct reproduction number is greater than one, then ℛ0 >1, emphasising the fact
that both transmission routes must be controlled to eliminate cholera.

However, if shedding is regarded as a new infection, then this alternative splitting gives

~F ¼
�
bIN bBN
x 0

�
; ~V ¼

�
dþ g 0
0 d

�
; ~F ~V

�1 ¼

26664
bIN
dþ g

bBN
d

x

dþ g
0

37775:

�1

This splitting gives a next generation matrix of rank 2, so ~ℛ0 ¼ rð~F ~V Þ is the positive root of the quadratic equation

GðzÞ ¼ z2 � bI
dþ g

z� bB
dþ g

¼ 0:
From the signs of the coefficients, this quadratic has a unique positive root, ~ℛ0; and if Gð1Þ>0ð<0Þ, then ~ℛ0 <1ð>1Þ. But
Gð1Þ ¼ 1� bI

dþg
� bB

dþg
, giving the same threshold as derived for ℛ0 above. However, it is hard to interpret ~ℛ0 biologically.

For qualitative control, both splittings suggest vaccination to reduce the susceptible population at the DFE, however
current vaccines are only 50� 60% effective for a short duration. More importantly, provision of clean water, which reduces
indirect transmission (decreases bB), water treatment to increase the bacterium decay rate d, improvement in sanitation by
disposal of human faeces (decreases x), and improvement in hygiene (decreases bI), all combined in the acronymWASH, may
be more beneficial in controlling cholera.

For this cholera model with shedding not a new infection, elasticity indices of ℛ0 can be calculated explicitly as

Yℛ0
bB

¼ ℛ0B

ℛ0
; Yℛ0

bI
¼ ℛ0I

ℛ0
; Yℛ0

g ¼ � g

dþ g
:

The parameter estimates for the 2006 cholera outbreak in Angola as reported in Table 1 of Eisenberg, Robertson, and Tien
(2013) with time unit one day, namely bB ¼ 1:21; bI ¼ 0:264;g ¼ 0:25; dz0, give

ℛ0B ¼ 4:84; ℛ0I ¼ 1:05; thus ℛ0 ¼ 5:89;

Yℛ0 ¼ 0:82; Yℛ0 ¼ 0:18; Yℛ0
g ¼ �1:
bB bI
This latter result means that if the recovery rate is increased, then ℛ0 decreases by the same relative amount. From these
elasticity indices for the normalized transmission rates, it follows that the indirect transmission has the larger effect on ℛ0.
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Note that bB depends on the water transmission rate as well as the shedding rate and pathogen decay rate. However,
Eisenberg et al. (2013) find that both transmission pathways are needed to explain the data well, and both should be
considered in formulating public health policies to reduce the impact of cholera.

Taking the next generation matrix K ¼ ~F ~V
�1

, type and target reproduction numbers can be calculated; see Shuai et al.
(2013). If direct transmission is targeted (for example, by improving hygiene or isolation), then S ¼ fð1;1Þg, and the for-
mula in Section 4.1 gives this target reproduction number as T S ¼ ℛ0I=ð1�ℛ0BÞ provided that ℛ0B <1, i.e., cholera cannot
be maintained by only indirect transmission. If adequate clean water is provided, then the target reproduction number with
S ¼ fð1;2Þg gives T S ¼ ℛ0B=ð1�ℛ0IÞ provided that cholera cannot bemaintained by direct transmission alone. Thus if clean
water is provided to at least a proportion ðℛ0 � 1Þ=ℛ0B of the population, then cholera will die out.

6.2. A random network model, Li, Ma, and van den Driessche (2015).

To take account of realistic heterogeneity in human contacts, network models have been introduced; see, for example,
Newman (2003). The network consists of nodes as humans and edges as contacts. Miller (2011) showed that an SIRmodel on a
configuration type random network can be represented by a 2-dimensional ODE system. Li et al. (2015) extended this model
to a random network of humans with each connected to a single infectious water node, as is appropriate for cholera.

Assume that the human to human network is generated by the probability generating function jðxÞ ¼ P∞
k¼0x

kpk where pk
is the degree distribution and k is the node degree. Let bI be the transmission rate along a human to human edge, and let bW ¼
bWx=d with bW the rate of transmission along the water to human edges caused by a unit concentration of bacterium in the
water. Parameters g; x; d are as in the previousmodel (Section 6.1). The dynamics of this network choleramodel are then given
by a 3-dimensional ODE system, see Li et al. (2015) for details, which has the next generation matrix at the DFE given by

FV�1 ¼
24ℛp ℛw ℛw

0 0 0
ℛi ℛw ℛw

35;
whereℛw ¼ bW

g ,ℛi ¼ bI
bIþg

j0ð1Þ andℛp ¼ bI
bIþg

j
00 ð1Þ
j0ð1Þ are the basic reproduction numbers for the human towater to human, the

water infected human to human, and the human infected human to human infected individuals, respectively. Note that j 0ð1Þ
is the average degree of the network. Since FV�1 has rank 2 (the second row and column can be ignored in calculating the
spectral radius) the basic reproduction number ℛ0 is given by the largest positive root of the quadratic equation

z2 � 	
ℛw þℛp



zþℛw

	
ℛp �ℛi


 ¼ 0;

with the disease threshold given by ℛ0 ¼ 1. For a Poisson network, the variance is equal to the mean, i.e., j
00 ð1Þ ¼ ½j0ð1Þ�2,

givingℛp ¼ ℛi, thusℛ0 ¼ ℛw þℛp as in the compartmental model of Section 6.1. However, for other networks this additive
result of indirect and direct transmission does not hold. For example, on a scale-free network, the variance is greater than the
mean, so ℛp >ℛi and ℛ0 <ℛw þℛp. Thus the network structure is important in considering ways to control cholera by
bringing ℛ0 below the threshold value of 1.

If ℛ0 >1, then target reproduction numbers can help guide strategies for control. For example, if ℛp <1, i.e., cholera
cannot be sustained in the population just by the human to human transmission, then the type reproduction on the water
transmission is given by

T w ¼ r

��
0 0
ℛi ℛw

�� 	
1�ℛp


 �ℛw
0 1

��1�
¼ ℛw þ ℛwℛi

1�ℛp
:

Preventing a fraction of at least 1� 1=T w contributions from human infections due towater infectionwould cause cholera to
die out.

For a Poisson network, the elasticity indices with respect to the transmission parameters are

Yℛ0
bW

¼ ℛw

ℛ0
and Yℛ0

bI
¼ gℛi

ðbþ gÞℛ0
:

For other networks, the elasticity indices can be found by implicitly differentiating the quadratic in z.

7. A model for anthrax transmission

Anthrax is caused by a spore forming bacterium Bacillus anthracis. It is mainly a disease of animals, but humans can
become infected by contact with infected animals, their hides, wool or meat. Infected animals may recover from anthrax
(usually carnivores) or die from the disease (usually herbivores) (WHO, 2016). Transmission to animals may occur from eating
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infected carcasses or by inhalation of spores, and rarely by direct transmission. A model including these first two important
models of transmission in animals can be formulated as a system of four ODEs, and is a special case of the model in Saad-Roy,
van den Driessche, and Yakubu (2017) where direct transmission is also included. Let S; I;C denote the number of susceptible
animals, infected animals and infected carcasses, and A denote the grams of anthrax spores in the environment. It is assumed
that animals follow logistic growth with birth rate r and carrying capacity K, with all newborn animals being susceptible.
Spores grow at rate b per carcass and decay at rate a. Transmission rates from infected carcasses and from spores are denoted
by hc and ha, respectively. Parameters d;g; t; d; and k denote the animal natural death rate, death rate due to anthrax, recovery
rate of infected animals, carcass consumption rate and carcass decay rate, respectively. The dynamics of the model are given
by the system

dS
dt

¼ rðSþ IÞ
�
1� ðSþ IÞ

K

�
� haAS� hcCS� dSþ tI

dI
dt

¼ haASþ hcCS� ðgþ dþ tÞI

dA
dt

¼ �aAþ bC

dC
dt

¼ ðgþ dÞI � dðSþ IÞC � kC
Assuming that r> d, the total animal population persists and there is a DFE ðS; I;A;CÞ ¼ ðS0;0;0;0Þ with S0 ¼ Kð1� d=rÞ.
Taking the infected compartments as I;A, and C and assuming that the transmission terms, spore growth rate and death of
infected animals give rise to new infections (as in Friedman and Yakubu (2013)), the Jacobianmatrix at the DFE is decomposed

as bF � bV
bF ¼

24 0 haS0 hcS0
0 0 b

gþ d 0 0

35; bV ¼
24gþ dþ t 0 0

0 a 0
0 0 dS0 þ k

35;

where bF is a nonnegative matrix and bV is a nonsingular M-matrix. Thus,

cR 0 ¼ r

�bF bV�1
�

¼ r

2666666664

0
haS0
a

hcS0
dS0 þ k

0 0
b

dS0 þ k

gþ d
gþ dþ t

0 0

3777777775
:

This gives cℛ0 as the positive root of the cubic polynomial

GðzÞ ¼ z3 �ℛ0cz�ℛ0a ¼ 0

where ℛ0c ¼ gþd
gþdþt

hcS0
dS0þk

and ℛ0a ¼ gþd
gþdþt

bhaS0
aðdS0þkÞ.

Alternatively, taking spore growth rate and death of infected animals as transfer, the Jacobian is split in a different way,
giving
Table 2
Baseline Parameter Values and Elasticity Indices for the Anthrax Model.

Parameter Value Elasticity Numerical Elasticity

d 0.05 Yℛ0
d

¼ � dS0
dS0þk

�0:962
hc 0.1 Yℛ0

hc
¼ ℛ0c

ℛ0
0.909

t 0.1 Yℛ0
t ¼ � t

gþdþt
�0:409

g 0.143 Yℛ0
g ¼ � gt

ðgþdþtÞðgþdÞ 0.404
ha 0.5 Yℛ0

ha
¼ ℛ0a

ℛ0
0.091

b 0.5 Yℛ0
ha

¼ ℛ0a
ℛ0

0.091
a 0.1 Yℛ0

a ¼ �ℛ0a
ℛ0

�0:091
k 0.1 Yℛ0

k ¼ � k
dS0þk

�0:038
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F ¼
240 haS0 hcS0
0 0 0
0 0 0

35; V ¼
24gþ dþ t 0 0

0 a �b
�ðgþ dÞ 0 dS0 þ k

35;
and ℛ0 ¼ ℛ0a þℛ0c, which is the sum of infections from spores in the environment (ℛ0a) and from feeding on carcasses

ðℛ0cÞ. Note that Gð1Þ ¼ 1�ℛ0, showing that cℛ0 ¼ 1 if and only if ℛ0 ¼ 1. Thus cℛ0 gives the same threshold as the more
biologically meaningful basic reproduction number ℛ0 for anthrax to die out or persist.

For values of the growth parameters K ¼ 100; r ¼ 1=300 and d ¼ 1=600 giving S0 ¼ 50, Table 2 gives baseline parameter
values from Saad-Roy et al. (2017), elasticity indices of ℛ0 and numerical values for these indices. These baseline parameters
give ℛ0a ¼ 0:114, ℛ0c ¼ 1:137, thus ℛ0 ¼ 1:251. Note that the model in Saad-Roy et al. (2017) includes a small amount of
direct transmission between animals. Also in the caption of Table 2 in Saad-Roy et al. (2017) the values of ℛ0a and ℛ0c are
erroneously switched: the correct values given here result in switching of the elasticity indices of ha and hc, and the elasticity
index of a should be �0:0880 in Saad-Roy et al. (2017).

For these baseline parameter values, the elasticity indices show that the carcass decay rate and transmission rate from
infected carcasses have the largest relative influence on ℛ0. Thus a control strategy that increases carcass decay rate or
decreases carcass transmission is likely to be successful. This can be further explored by calculating the type reproduction

number focussing on the removal of infected carcasses on death. Taking S ¼ fð3;1Þg in bF bV�1
, gives T S ¼ ℛ0. Thus for

eradication at least a fraction 1� 1=ℛ0 of infected carcasses need to be removed, which is about 20% for the baseline pa-
rameters in Table 2. Further discussion on removal of carcasses at any time after death is given in Sections 5.1 and 6.1 of Saad-
Roy et al. (2017).

8. Modelling Zika transmission

An outbreak of Zika virus started in Brazil in early 2015, and since then has spread tomany parts of the Americas. Although
Zika symptoms are usually mild, it is of great concern as serious brain anomalies, such as microcephaly, can occur in fetuses of
infected pregnant females. Zika is transmitted to humans bymosquitoes and also sexually by an infectedmale to a susceptible
female. These two modes of transmission are included in models in the recent literature; see, for example, Brauer, Castillo-
Chavez, Mubayi, and Towers (2016), Gao et al. (2016), Saad-Roy, van den Driessche, and Ma (2016). Neglecting the exposed
compartments, a simplified version of the model in Brauer et al. (2016) is

dSH
dt

¼ �bHSH
IM
NM

� aSH
IH
NH

dIH
dt

¼ bHSH
IM
NM

þ aSH
IH
NH

� gIH

dSM
dt

¼ dMNM � dMSM � bMSM
IH
NH

dIM
dt

¼ bMSM
IH
NH

� dMIM :
For this system, the human population NH is divided into SH susceptible humans, IH infectious humans and RH recovered
humans (this equation uncouples); the constant mosquito population NM is divided into SM susceptible mosquitoes and IM
infectious mosquitoes. The positive parameters are g the rate of human recovery, dM the birth and death rate of mosquitoes,
bH the biting rate times the probability of transmission from mosquito to human, bM the biting rate times the probability of
transmission from human to mosquito, and a the direct sexual transmission from human to human.

Using the next generation matrix method with all infection terms in matrix F, the basic reproduction number is the

positive root of the quadratic equation z2 �R d z�R v ¼ 0, with ℛd ¼ a
g and ℛv ¼ bHbM

gdM
, accounting for the direct sexual

transmission and vector transmission, respectively. Note that in this model the transmission term frommosquito to human is
normalized differently than that from mosquito to bird in the West Nile virus model of Section 5, and also note similarity
between this model and the cholera model in Section 6.1 with direct and indirect transmission. Brauer et al. (2016) show
different splittings for matrices F and V leading to different expressions for the basic reproduction number, one such splitting
giving ℛ0 ¼ ℛd þℛv. This point about multiple expressions for the basic reproduction number (in both discrete and
continuous time models) is elaborated by Cushing and Diekmann (2016).

In their Zika model, Gao et al. (2016) include exposed compartments and also divide the infected human compartment
into symptomatically, convalescent and asymptomatically infected. Their global sensitivity analysis shows that their basic
reproduction number is most sensitive tomosquito biting and death rates. Saad-Roy et al. (2017) divide the humanpopulation
in two regions (a source and import region) into sexually actives males and females and sexually inactive humans. Sexually
active males are further divided into two stages, since Zika can be transmitted frommales to females by blood and by semen,
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with the virus staying longer in the semen. Sexual contacts betweenmales and females are represented by a random bipartite
directed (male to female) network, with homogeneous mixing between mosquitoes and humans. Input parameter values are
used to compute ℛ0 from a matrix of order 14, and a value of ℛ0z1:4 is found. This model predicts that by the time one
microcephaly case is detected, a sizable fraction of the population has been infected with Zika, emphasizing the need for
surveillance of this disease.

9. Other approaches to obtain ℛ0

This concluding section gives a glimpse of other results about the basic reproduction number, including calculating it for
models given by systems other than ODEs, and estimating its magnitude from data. A few relevant references are given so that
a reader can follow up on these glimpses to obtain more details.

9.1. Next generation operator to calculate ℛ0

The method of computing ℛ0 as the spectral radius of the next generation matrix given in Section 3 assumes that the
population is divided into discrete compartments or states. However, if these are continuous, as for example in an age
structured model, then the next generation operator K specifies how the disease evolves in a generation, namely
ðKfÞðxÞ ¼ R

U
kðx; yÞfðyÞdy, where kðx; yÞ is the kernel of the linear positive operator K, and U is a subset of Rn; see Diekmann

et al. (1990) and Diekmann et al. (2012, Section 7.3). The kernel kðx; yÞ gives the expected number of new cases with state x
caused by an infectious individual in state y during its period of infectiousness. Then the basic reproduction number ℛ0 is
defined as the spectral radius of the positive operator K. If the range of K is one dimensional, then ℛ0 is the unique non-zero
eigenvalue; see Diekmann et al. (2012, Section 7.4) for some examples, and see Section 4 in Thieme (2009) for discussion of an
SIR model with variable susceptibility.

9.2. ℛ0 in a periodic environment

The method of Section 3 assumes that the environment is constant, but in reality environmental parameters are changing,
for example temperature changes periodically. The models then become non-autonomous dynamical systems. In the past
twenty or so years, many authors have extended the definition of ℛ0 to periodic environments; see for example, Baca€er and
Ait Dads (2011), Inaba (2012), Thieme (2009), Wang and Zhao (2017), Zhao (2013, Chapter 11) and references therein. Inaba
(2012) introduces a new definition of ℛ0 in a heterogeneous environment based on the generation evolution operator as a
generalization of previous definitions.

9.3. Survival function method to compute ℛ0

Let FðaÞ denote the infection survival probability, that is the probability that a newly infected individual remains infected
(and infectious) for at least time a, and bðaÞ denote the average number of newly infected individuals that an infectious
individual produces per unit time. Using these functions,ℛ0 ¼ R∞

0 bðaÞFðaÞda. For the SIR model of Section 2.1, the infectious
period is assumed to have a negative exponential distribution. Thus FðaÞ ¼ e�ga and bðaÞ ¼ bS0. Then

ℛ0 ¼ R∞
0 bS0e�gada ¼ bS0

g , as determined in Section 2.1.

This method can be used for models that take account of the fact that infectivity (the probability of transmission from a
contact) varies with time since infection, rather than being constant throughout the infectious period. In such an age of
infection SIR model, with a the time since first infection, bðaÞ ¼ bðaÞS0 where S0 is the DFE equilibrium. This method is not
restricted to models described by ODEs and can be extended to a series of states, for example to a vector-host system; see, for
example, Heffernan et al. (2005, Section 2.1).

9.4. Calculation of ℛ0 for discrete time systems

There are many discrete time epidemic models in the literature; see, for example, Allen (1994) and Yakubu (2010). Care
must be taken in formulating these discrete time models so that the number of individuals in each compartment does not go
negative.

The next generation matrix approach can also be used for discrete time epidemic models; see Allen and van den Driessche
(2008) and references therein. To describe this briefly, assume that the equations of the epidemic model are given by
xðt þ 1Þ ¼ GðxðtÞÞ where xðtÞ denotes the population states at time t, with x1;…; xm infected and the remaining states un-
infected. Assuming that there is a unique DFE, then linearizing the infected state equations about this DFE gives
yðt þ 1Þ ¼ ðF þ TÞyðtÞwhere F and T are nonnegative matrices evaluated at the DFE. Here F is the matrix of new infections that

survive the time interval, and T is the transition matrix with rðTÞ<1. Then matrix Q ¼ FðId� TÞ�1 is the next generation
matrix for this discrete system, and the basic reproduction number ℛ0 ¼ rðQÞ. Allen and van den Driessche (2008) give
details of the assumptions and show that the DFE is locally asymptotically stable ifℛ0 <1 but unstable ifℛ0 >1. The assumed
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order of events within each time step is important, since different assumptions can yield different ℛ0 values; see Lewis,
Rencławowicz, van den Driessche, and Wonham (2006) for an illustration of this on discrete time West Nile virus models.

A graph theoretic method to determine the net reproductive rate for discrete time systems was developed by de-Camino-
Beck and Lewis (2008) and applied to the control of invasive species. They use graph reduction rules on the life-cycle graph to
calculateℛ0. An analogousmethod for continuous timemodels given by ODEs is described in de-Camino-Beck, Lewis and van
den Driessche (2009), where an algorithm to computeℛ0 by reduction on the digraph associatedwith thematrix Fℛ�1

0 � V is
given.

9.5. Stochastic models

An excellent introduction to stochastic epidemic models formulated as discrete time Markov chains, continuous time
Markov chains, and stochastic differential equations is given in Allen (2010, Chapter 3), where some numerical examples of
stochastic sample paths and corresponding deterministic solutions are given. Also, Keeling and Rohani (2008, Chapter 6) give
three methods for approximating stochasticity into disease transmission and recovery. The probability of an outbreak de-
pends on the value of ℛ0 and also on the initial number of infected individuals, i0. If the population size is large, then this

probability is approximately 0 ifℛ0 � 1, but 1� ð1=ℛ0Þi0 ifℛ0 >1. This estimate applies to the stochastic SIS and SIRmodels
only for a finite time range, since as t/∞ the probability of an outbreak is zero (an absorbing state). Thus, one difference
between stochastic and deterministic models is that stochastic sample paths can converge to the disease free state, whereas
the corresponding deterministic solution converges to an endemic equilibrium. Thus in a vaccination program, stochasticity
may lead to disease extinction before the herd immunity level of vaccination is reached.

9.6. Estimation of ℛ0 from data

As described in previous sections, the magnitude of ℛ0 is important in determining the severity of a disease and for
designing control strategies. Early in an outbreak of some diseases, for example seasonal influenza, it may be fairly easy to
estimate the average length of infection and the initial number of infectious individuals, thus an estimate of ℛ0 can be
obtained from the formula Ið0Þexp½gðℛ0 � 1Þt� given in Section 2.1. If the exponential growth rate of the initial phase of the
outbreak, usually denoted by r, is observed from data, thenℛ0 ¼ 1þ r

g. However, this formula is based on a simple SIRmodel,

and so has limited applicability. A recent paper by Sanches and Massad (2016) compares three methods to estimate ℛ0 for
dengue fever, without this assumption of initial exponential growth. Ma, Dushoff, Bolker, and Earn (2014) use maximum
likelihood to compare four commonly used phenomenological models (exponential, Richards, logistic, delayed logistic) in
estimating initial growth rates of simulated epidemic models. Moreover, in a series of recent papers, Chowell and collabo-
rators assume sub-exponential initial growth given by

dCðtÞ
dt

¼ rCpðtÞ with r>0 and 0< p<1;

see Chowell and Viboud (2016), Chowell, Hincapie-Palacio, et al. (2016), Chowell, Sattenspiel, Bansal, Viboud (2016), Chowell,
Viboud, Simonsen, Moghadas (2016), and Viboud, Simonsen, and Chowell (2016). They find that the suboptimal growth
model outperforms the exponential model (with p ¼ 1) for several infectious disease datasets, and that the effective
reproduction number declines within 3e5 disease generations (rather than maintaining a constant ℛ0).

Most other methods to estimateℛ0 require data over a longer time period or until the outbreak is over. For example, after
an epidemic when the proportion of susceptibles who did not catch the disease is known (assuming that all individuals are

originally susceptible),ℛ0 may be estimated from the final size equation, givingℛ0 ¼ �lnðsð∞ÞÞ
1�sð∞Þ ; see Section 2.1. Using standard

optimization techniques, parameters in a model can be estimated from data points at successive times during an outbreak.
However, this means that some time must have elapsed for sufficient data to be collected, and so gives a delay in estimating
ℛ0, especially for an emerging disease. In addition, stochastic effects are important, particularly near the beginning of an
outbreak. For more details on estimating ℛ0 and fitting models to data, see Chowell and Brauer (2009, Sections 8, 9),
Diekmann et al. (2012, Chapter 13), and Martcheva (2015, Chapter 6).
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