
524

3D CNN for Recurrence Prediction

Cui et al.

PURPOSE
The high rate of recurrence of hepatocellular carcinoma (HCC) after radical hepatectomy is an 
important factor that affects the long-term survival of patients. This study aimed to develop a 
computed tomography (CT) images-based 3-dimensional (3D) convolutional neural network 
(CNN) for the preoperative prediction of early recurrence (ER) (≤2 years) after radical hepatec-
tomy in patients with solitary HCC and to compare the effects of segmentation sampling (SS) and 
non-segmentation sampling (NSS) on the prediction performance of 3D-CNN.

METHODS
Contrast-enhanced CT images of 220 HCC patients were used in this study (training 
group = 178 and test group = 42). We used SS and NSS to select the volume-of-interest to train 
SS-3D-CNN and NSS-3D-CNN separately. The prediction accuracy was evaluated using the test 
group. Finally, gradient-weighted class activation mappings (Grad-CAMs) were plotted to ana-
lyze the difference of prediction logic between the SS-3D-CNN and NSS-3D-CNN.

RESULTS
The areas under the receiver operating characteristic curves (AUCs) of the SS-3D-CNN and NSS-
3D-CNN in the training group were 0.824 (95% CI: 0.764-0.885) and 0.868 (95% CI: 0.815-0.921). 
The AUC of the SS-3D-CNN and NSS-3D-CNN in the test group were 0.789 (95% CI: 0.637-0.941) 
and 0.560 (95% CI: 0.378-0.742). The SS-3D-CNN could stratify patients into low- and high-risk 
groups, with significant differences in recurrence-free survival (RFS) (P < .001). But NSS-3D-CNN 
could not effectively stratify them in the test group. According to the Grad-CAMs, compared with 
SS-3D-CNN, NSS-3D-CNN was obviously interfered by the nearby tissues.

CONCLUSION
SS-3D-CNN may be of clinical use for identifying high-risk patients and formulating individual-
ized treatment and follow-up strategies. SS is better than NSS in improving the performance of 
3D-CNN in our study.

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related 
death worldwide and accounts for >80% of primary liver cancers, which constitutes 
a major global health problem.1,2 At present, there are many available treatment 

methods for HCC. Hepatic resection is still the treatment of choice for early HCC in patients 
with well-preserved liver function.3 However, the rate of recurrence after radical hepatec-
tomy is high.3-5 Five-year recurrence rates approach 70% post-resection, with two-third of  
recurrences related to intrahepatic spread occurring within two years.6 A cutoff of two  
years has been adopted to grossly classify early recurrence (ER) and late recurrence.7 
Consequently, if clinicians can identify high-risk ER groups before resection, they can con-
sider liver transplant or adjuvant treatment after resection to reduce the recurrence rate 
and develop closer follow-up strategies.8

In previous studies, it has been confirmed that computed tomography (CT), magnetic 
resonance (MR), positron emission tomography (PET), and other medical images are data 
more than images,9,10 which can be used to develop models.11,12 Since recent years, deep 
learning algorithms have been widely used in medical imaging. In particular, the convo-
lutional neural network (CNN) is the most commonly used deep learning architecture in 

Hao Cui*   
Kun-Yuan Wang*   
Wen-Yuan Li*   
Hong-Bo Zhu   
Lu-Shan Xiao*   
Li Liu* 

CT images-based 3D convolutional neural network to predict 
early recurrence of solitary hepatocellular carcinoma after 
radical hepatectomy

O R I G I N A L  A R T I C L E

6

28

You may cite this article as: Cui H, Wang K, Li W, Zhu H, Xiao L, Liu L. CT images-based 3D convolutional neural network to predict early recurrence of 
solitary hepatocellular carcinoma after radical hepatectomy. Diagn Interv Radiol. 2022;28(6):524-531.

A R T I F I C I A L  I N T E L L I G E N C E  A N D  I N F O R M AT I C SDiagn Interv Radiol 2022; DOI: 10.5152/dir.2022.201097

From the Department of Medical Quality Management 
(H.C., L.L.,  liuli@i.smu.edu.cn); Hepatology Unit 
and Department of Infectious Diseases (H.C., K.-Y.W., 
L.-S.X  15622178423@163.com, L.L); China Big Data 
Center (W.-Y.L.), Nanfang Hospital, Southern Medical 
University, Guangzhou, China; and Department 
of Oncology (H.-B.Z.), The First Affiliated Hospital, 
University of South China, Hengyang, China.

*Hao Cui, Kun-Yuan Wang, Lu-Shan Xiao, and Li Liu 
contributed equally to this work.

Received 1 January 2021; revision requested 21 March 
2021; last revision received 23 July 2021; accepted  
10 August 2021.

Publication date: October 7, 2022.

DOI: 10.5152/dir.2022.201097

Copyright@Author(s) - Available online at dirjournal.org.  
Content of this journal is licensed under a Creative Commons  
Attribution-NonCommercial 4.0 International License.

https://orcid.org/0000-0002-6005-7389
https://orcid.org/0000-0002-6907-7765
https://orcid.org/0000-0001-5689-788X
https://orcid.org/0000-0002-2462-2192
https://orcid.org/0000-0002-8387-6336
https://orcid.org/0000-0002-5188-2408
mailto:liuli@i.smu.edu.cn


3D CNN for Recurrence Prediction • 525

medical image analysis.13 The CNN model 
can predict the results directly from images 
without extracting artificially designed fea-
tures. Therefore, CNNs have the ability to 
identify critical features that may be miss-
ing. Among them, 3-dimensional (3D) CNN 
can take advantage of both 1-dimensional 
and 2-dimensional (2D) CNNs by extracting 
both spectral and spatial features simul-
taneously from the input volume. This is 
particularly helpful for analyzing volumet-
ric data in medical imaging, including CT, 
MR, and PET images.14 Three-dimensional 
CNN has been applied in medical image 
classification, segmentation, localiza-
tion, and detection. Zhou et  al.15 pro-
posed a novel fully CNN constructed by 

3D atrous-convolution for fully automatic 
brain tumor segmentation via MR images. 
Gu et al.16 presented a 3D deep CNN-based 
framework with multiscale nodule predic-
tion for automatic lung-nodule detection 
in CT scans.

In the previous studies of CNN of 
medical images, we found that there 
are two  sampling methods. One is seg-
mentation sampling (SS) that segments 
the tumor region in detail and deletes 
the background without tumors.17,18 
The other is non-segmentation sam-
pling (NSS) that does not segment  
the tumors region and retains all  
of the background information.19-21 These 
two segmentation methods are widely 
used in studies but few studies have  
compared them.

In this study, we developed 3D-CNNs 
based on contrast-enhanced CT images 
for the preoperative prediction of ER of 
solitary HCC and compared the effects of SS 
and NSS on the prediction performance of 
3D-CNN.

Methods
Patients

This study was approved by the 
Institutional Review Board and Ethical 
Committee (NFEC-201208-K3), and the 

requirement for informed consent was 
waived because of the retrospective 
study design. We reviewed the contrast-
enhanced CT images of 735 patients who 
underwent radical hepatectomy in the 
period 2014-2018 and were pathologically 
proven HCC. The inclusion criteria were as 
follows: (a) a solitary lesion pathologically 
proven as HCC; (b) availability of hepatic-
arterial CT imaging within 2 weeks before 
treatment; (c) received initial treatment 
of radical hepatectomy; and (d) negative 
surgical margin. The exclusion criteria 
were as follows: (a) history of preopera-
tive HCC treatment; (b) other malignant 
tumors; (c)  Child–Pugh class C; (d) mac-
roscopic vascular tumor thrombosis or 
(and) extrahepatic metastasis; (e) sponta-
neous rupture of the lesion and bleeding; 
and (f ) the patients without recurrence or 
metastasis who were followed up for less 
than 2 years. The flowchart is presented in 
Figure 1.

Finally, 178 patients (January 2014 to 
December 2017) with HCC constituted the 
training group (73 patients with ER). Forty-
two patients (January 2018 to November 
2018) were allocated to the test group 
(21 patients with ER). The first follow-up 
appointments were fixed 1-2 months 
after the surgery and every 3–4 months 
thereafter. 

Main points

•	 The segmentation sampling-3-dimensional- 
convolutional neural network (SS-3D-CNN) 
successfully stratified patients according to 
the differences in recurrence-free survival.

•	 We plotted the gradient-weighted class 
activation mappings and found that non-
segmentation sampling-3-dimensional- 
convolutional neural network (NSS-3D-
CNN) compared with SS-3D-CNN was 
obviously interfered by the nearby tissues.

•	 NSS is better than SS in improving the per-
formance of 3D-CNN in our study.

Figure 1.  The flowchart.
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CT acquisition and volume-of-interest 
segmentation

Supplementary S1 and Table S1 pres-
ents the scan characteristics and image 
acquisition process. In the original CT 
image, the resolution of the x-axis and 
y-axis ranged from 0.55859 to 0.94727 
mm/pixel, and the resolution of the z-axis 
ranged from 5 to 8 mm/pixel. Therefore, 
a linear interpolation algorithm was 
applied for resampling to normalize the 
resolution to 1  ×  1  × 1  mm/pixel and 
make images of different resolutions 
comparable in size and shape.

The hepatic-arterial CT images of all 
patients were fed into ITK-SNAP (version 
3.8.0). The SS-volumes-of-interest (VOIs) in 
training group were analyzed and manually 
segmented by 2 abdominal CT interpreta-
tion radiologists. Disagreements between 
the radiologists about delineating the VOI 
were resolved by discussion and consen-
sus. The SS-VOIs in test group were manu-
ally segmented by a liver oncologist. On 
the level, a region of 150 × 150 pixels that 
could cover the whole tumor was selected. 
For larger tumors, a height of 10 pixels 
was necessary in the center of the tumor. 
Therefore, the SS-VOIs were determined to 
be 3D patches of size 10 × 150 × 150 pix-
els (Figure 2b). Voxels without tumors were 
set to 0. The NSS-VOIs were determined 
by marking the bounding box of tumors 
without manually segmenting in detail 
(Figure 2c). 

Data pre-processing
Data augmentation was used to increase 

the diversity of the training data set, prevent 
model overfitting, and improve the robust-
ness of the model.22 In the training group, 
the SS-VOIs and NSS-VOIs were expanded 
7 times by data augmentation techniques, 
including up-down flip, left-right flip, ran-
dom translation, 90° rotation, 180° rotation, 
and 270° rotation. This augmentation was 
not performed in the test group.

Model structure
We created a 3D-CNN model in python 

(version 3.8) using Keras framework (ver-
sion 2.3.1). In designing the 3D-CNN, we 
use small convolution kernel and continu-
ous convolution layers which may be more 
effective in the previous study,23 and the 
3D-CNN should not be too deep to avoid 
overfitting due to the limited size of the 
training group. Dropout was applied to 
reduce complex co-adaptations of neurons, 

Figure 2. a-c.  Segmentation technique. (a) A hepatic-arterial CT; (b) a SS-VOI; (c) a NSS-VOI. 
CT, computed tomography, SS, segmentation sampling; NSS, non-segmentation sampling; 
VOI, volume-of-interest. 

Figure 3.  Model structure.

Figure 4. a-d.  The ROCs of the 3D-CNNs. (a) The ROC of SS-3D-CNN in the training group; (b) the ROC 
of SS-3D-CNN in the test group; (c) the ROC of NSS-3D-CNN in the training group; (d) the ROC of 
NSS-3D-CNN in the test group. ROC, receiver operating characteristic; CNN, convolutional neural 
network.
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which consisted of setting the output of 
each hidden neuron with a probability 
of 0.5 to 0.24 The structure of the model is 
shown in Figure 3. The detailed parameters 
of the model can be seen in Supplementary 
Table S2.

Statistical analysis
For statistical analysis, we plotted the 

receiver operating characteristic (ROC) 
curves, the calibration curves, and calcu-
lated the area under the curves (AUCs) to 

evaluate the SS-3D-CNN and NSS-3D-CNN 
for discriminating ER and non-ER patients. 
Survival curves were generated using the 
Kaplan–Meier method and compared using 
a 2-sided log-rank test (P < .001 was con-
sidered statistically significant). The gradi-
ent-weighted class activation mappings 
(Grad-CAMs) were plotted using keras-vis 
(version 0.4.1). Risk factors of ER were iden-
tified using univariate analysis. The chi-
square test or Fisher exact test was used 
to compare categorical variables where 

appropriate (P < .05 was considered statisti-
cally significant).

Training
In the training process, the 5-fold cross-

validation was applied. In each round of 
cross-validation, 80% of the VOIs of the 
training group were used as training data; 
the remaining 20% were used as valida-
tion data. Because the ER and non-ER (NER) 
patients were not evenly distributed in the 
training group, we balanced the weights of 

Figure 5. a-d.  The calibration curves of the 3D-CNNs. (a) The calibration curve of SS-3D-CNN in the training group; (b) the calibration curve of SS-3D-CNN 
in the test group; (c) the calibration curve of NSS-3D-CNN in the training group; (d) the calibration curve of NSS-3D-CNN in the test group.



528 • November 2022 • Diagnostic and Interventional Radiology� Cui et al.

the 2 sets of data to improve the accuracy 
of the model. The model was optimized 
by Adam with a global learning rate of 
0.00001 without decay. The SS-VOIs and 
NSS-VOIs were respectively used to train 
SS-3D-CNN and NSS-3D-CNN. The train-
ing experiments were performed on a 
machine with the following specifications: 
Intel(R) Core (TM) i5-10300H CPU @ 2.50 
GHz 64-bit, GPU NVIDIA GeForce GTX 1650, 
4GB of RAM, and the Windows 10 Home  
version 1909 system. 

Results
The baseline characteristics of patients 

in the training and test groups are pre-
sented in Supplementary Table S3. The 

statistical information of the data is pre-
sented in Supplementary Table S4. No 
information rates in training group and 
test group are 0.60 and 0.50. We tested 
the SS-3D-CNN model using the train-
ing and test groups (training group: AUC 
of 0.824 (95% CI: 0.764-0.885), Figure 4a; 
test group: AUC of 0.789 (95% CI: 0.637-
0.941), Figure 4b) and tested NSS-3D-CNN 
in the same way (training group: AUC of 
0.868 (95% CI: 0.0.815-0.921), Figure 4c; 
test group: AUC of 0.560 (95% CI: 0.378-
0.742), Figure 4d). The calibration curves 
of 2 models are shown in Figure 5. In 
Supplementary Figure S1, we compared 
the performance of the CNN for 2 differ-
ent raters who do the segmentations and 
found that the results are similar.

The confusion matrixes of SS-3D-CNN 
and NSS-3D-CNN are shown in Figure 6. 
For the test group, sensitivity, specificity, 
positive predictive value (PPV), negative 
predictive value (NPV), and accuracy value 
of SS-3D-CNN were 61.9%, 90.5%, 86.7%, 
70.4%, and 0.762, respectively (95% Cl: 
0.606, 0.880) (P < .001). For the test group, 
sensitivity, specificity, PPV, NPV, and accu-
racy value of NSS-3D-CNN were 52.4%, 
61.9%, 57.9%, 56.5%, and 0.571, respec-
tively (95% Cl: 0.410, 0.723) (P = .2204). 

Based on the maximum Youden index, 
we used AUC to determine the optimal 
cutoff value (SS-3D-CNN: 0.598; NSS-3D-
CNN: 0.503) based on the training group. 
The optimal cutoff value was applied to 
the training and test groups to separate 

Figure 6. a-d.  The confusion matrixes of the 3D-CNNs. (a) The confusion matrix of SS-3D-CNN in the training group; (b) the confusion matrix of  
SS-3D-CNN in the test group; (c) the confusion matrix of NSS-3D-CNN in the training group; (d) the confusion matrix of NSS-3D-CNN in the test group.



3D CNN for Recurrence Prediction • 529

patients into low- and high-risk groups. 
The Kaplan–Meier curves of recurrence-
free survival (RFS) of the SS-3D-CNN and 
NSS-3D-CNN in the 2 groups are shown 
in Figure 7. The Kaplan–Meier curve of 
SS-3D-CNN in the test group demonstrates 
a significant difference in RFS (P ≤ .001) (in 
Figure 7b) but that of NSS-3D-CNN demon-
strates a non-significant difference in RFS 
(P = .4) (in Figure 7d). In the training group, 
the median RFS of high-risk groups in the 
SS-3D-CNN and NSS-3D-CNN was 8 ± 1.79 
and 12 ± 1.76 months and the median RFS 
of low-risk groups was not reached in both 
3D-CNNs. In the test group, the median RFS 
of high-risk groups in the SS-3D-CNN and 
NSS-3D-CNN was 4 ± 0.76 and 15 ± 10.16 
months and the median RFS of low-risk 
groups was not reached in both 3D-CNNs.

Next, we plotted Grad-CAMs to analyze 
the difference of prediction logic between 
the SS-3D-CNN and NSS-3D-CNN (in 
Figure 8a). Grad-CAMs showed that NSS-
3D-CNN had the ability to localize tumors 
(in Figure 8b), but was obviously interfered 
by nearby tissues, while SS-3D-CNN focuses 
on the tumor area.

Discussion
In this study, we assessed the ability of 

3D-CNN for the preoperative prediction 
of 2-year RFS of solitary HCC patients after 
radical hepatectomy based on contrast-
enhanced CT data. According to different 
sampling methods, we have completed 
2  different models, SS-3D-CNN and NSS-
3D-CNN, which have the same model struc-
ture, in order to compare the impact of 
the 2 sampling methods on the prediction 
results. This SS-3D-CNN successfully strati-
fied patients according to the differences in 
RFS and may be of clinical use in identifying 
optimal treatment strategies. Multimodality 
therapy is increasingly being explored to 
decrease the incidence of tumor recurrence; 
however, the effectiveness of multimodality 
therapy is controversial.25 We speculate that 
this may be related to the lack of effective 
stratification of patients; 3D-CNN may be an 
effective tool for stratification.

According to ROC, calibration curves, 
confusion matrixes, and the Kaplan–Meier 
curves in the test group, the generalization 
performance of SS-3D-CNN is obviously 

better than that of NSS-3D-CNN. In order 
to explore the reason for the poor perfor-
mance of NSS-3D-CNN and the difference 
of prediction logic between 2 sampling 
methods, we plotted Grad-CAMs which 
shows that NSS-3D-CNN is interfered by 
nearby tissues. SS forces the model to 
focus on the tumor area by deleting the 
background without tumor, but SS needs 
more human resources and time to seg-
ment the tumor manually. NSS retains the 
background information and economizes 
in time and human resources, but exces-
sive background information also interferes 
with the model, especially when the sample 
size is limited. 

There are previous studies that have used 
CNN to predict the prognosis of tumors. 
Hosny et  al.20 trained 3D-CNN model to 
predict 2-year survival in radiotherapy 
patients (AUC = 0.70) and surgical patients 
(AUC = 0.71) with non-small cell lung can-
cer. In their study, the researchers used 
NSS to get VOIs, but they got good results. 
Therefore, we speculate that non-small 
cell lung cancer is different from HCC and 
its boundary with surrounding tissues is 

Figure 7. a-d.  The Kaplan–Meier curves of RFS. (a) The Kaplan–Meier curve of SS-3D-CNN in the training group; (b) the Kaplan–Meier curve of SS-3D-CNN 
in the test group; (c) the Kaplan–Meier curve of NSS-3D-CNN in the training group; (d) the Kaplan–Meier curve of NSS-3D-CNN in the test group. RFS, 
recurrence-free survival.
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clearer, which is conducive to the correct 
recognition of the model. And they made 
all-inclusive sampling in surgical patients. 
In our study, the size of the tumors is large 
and the size span between the tumors is 
large, too. So it is difficult for us to deter-
mine a fixed volume to achieve all-inclusive 
sampling. Jiang et al.19 developed a 3D-CNN 
model to assess microvascular invasion in 
HCC patients, and the AUC of the 3D-CNN 
model in the training set and the valida-
tion set were 0.980 and 0.906, respectively. 
Next, the researchers found that this model 
also stratified patients in RFS. In this article, 
they also used NSS to get VOIs, which can 
get good results in assessing microvascular 
invasion. But SS-3D-CNN in our study is bet-
ter than their model in terms of stratifying 
patients. A recent study built deep learn-
ing  model based on 2D imagings to predict 
the ER of HCC. They developed the clinical 
model (AUC = 0.7532) and the deep learn-
ing model (AUC = 0.7233) and proposed 
4 fusion models to combine clinical data 

and deep learning features which achieved 
higher AUC.21 However, they did not set up 
test group, which made it difficult to evalu-
ate the generalization ability of the fusion 
models. 

In this study, 2 major drawbacks affect 
the performance of our 3D-CNN model. 
First, the sample size was relatively small, 
which easily caused the curse of dimen-
sionality, leading to overfitting. We used 
data augmentation techniques in the 
data pre-processing stage and added the 
dropout to the model structure to avoid 
overfitting. However, the relatively small 
sample size was still the major drawback 
that restricted the development of the 
model. In addition, the limited sample 
size greatly affects the performance of 
NSS-3D-CNN. In the future, we will try our 
best to seek a much larger database of 
the prospective study would be collected 
from more centers to further compare 
the impact of SS and NSS on the predic-
tion performance of 3D-CNN. Second, the 

high computational cost of the 3D-CNN 
limited the size of the VOI. Compared with 
2D-CNN, the high computational cost of 
3D-CNN is the main obstacle to its devel-
opment. Thus, when the tumor diameter 
is very large, the VOI cannot contain the 
complete tumor. The problem needs to be 
further studied in future. 

In conclusion, it is feasible to use CT 
images-based 3D-CNN models to predict 
ER of HCC. Additionally, SS can help 3D-CNN 
get better performance than NSS when the 
sample size is limited.
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All patients from the Nanfang Hospital, 
Southern Medical University underwent 
contrast-enhanced CT (CECT) using either 
of two multi-detector row CT (MDCT) sys-
tems: the SOMATOM (Siemens Medical 
Systems) or the Brilliance iCT 256 (Philips 

Healthcare). The scan characteristics are 
listed in Supplementary Table 1.

Additionally, we injected contrast 
material (1.5 mL/kg, Ultravist 370, Bayer 
Schering Pharma) intravenously at a 
flow rate of 2.0–3.0 mL/s using a pump 

injector (Ulrich CT Plus 150, Ulrich Medical) 
to obtain CECT images. Four-phase (unen-
hanced, hepatic-arterial, portal venous, 
and delayed phases) CT images were 
obtained at 0 s, 30 s, 60 s, and 120 s after 
injection, respectively.

Supplementary Figure S1.  The ROC of SS-VOIs which were segmented by a radiology expert. We invited a radiologist to independently segment the 
SS-VOIs in test group. The AUC of the SS-VOIs segmented by the radiologist in the test group was 0.785 (95% CI: 0.630-0.939) (in the figure), which is 
similar with AUC of the SS-VOIs segmented by the liver oncologist.

Supplementary Table S1.  The scan characteristics

Parameter SOMATOM Brilliance iCT256

Tube voltage (kVp) 120 120

Tube current (mA) Auto Auto

Detector collimation (mm) 64 × 0.6 128 × 0.625

Field of view (mm) 250-500 300-400

Matrix size 512 × 512 512 × 512

Rotation times (s) 0.5 0.5

Slice interval (mm) 0 0

Slice thickness (mm) 1-5 1-5



Supplementary Table S2.  The detailed parameters of 3D-CNN

Layer Kernel Kernel size Strides Activation Padding Output shape

Convolution1 32 3, 3, 3 1, 1, 1 Relu Same 10, 150, 150, 32

Max pooling1 - 3, 3, 3 2, 2, 2 - Same 5, 75, 75, 32

Convolution2 64 3, 3, 3 1, 1, 1 Relu Same 5, 75, 75, 64

Max pooling2 - 3, 3, 3 2, 2, 2 - Same 3, 38, 38, 64

Convolution3 128 3, 3, 3 1, 1, 1 Relu Same 3, 38, 38, 128

Convolution4 128 3, 3, 3 1, 1, 1 Relu Same 3, 38, 38, 128

Max pooling3 - 3, 3, 3 2, 2, 2 - Same 2, 19, 19, 128

Convolution5 256 2, 3, 3 1, 1, 1 Relu Same 2, 19, 19, 256

Convolution6 256 2, 3, 3 1, 1, 1 Relu Same 2, 19, 19, 256

Max pooling4 - 2, 3, 3 2, 2, 2 - Same 1, 10, 10, 256

Flatten - - - - - 25600

Dense1 512 - - Relu - 512

Dropout1 - - - - - 512

Dense2 256 - - Relu - 256

Dropout2 - - - - - 256

Dense3 128 - - Relu - 128

Dropout3 - - - - - 128

Dense4 2 - - Softmax - 2



Supplementary Table S3.  The baseline characteristics of patients in the training and test groups

Characteristic Training group (n = 178) Test group (n = 42) P

Age (years)

<60 139 29 .215

≥60 39 13

Sex

Male 157 36 .658

Female 21 6

HBsAg status

Positive 160 35 .277

Negative 18 7

Child–Pugh classification

A 162 37 .563

B 16 5

Hepatocirrhosis status

Present 111 25 .734

Absent 67 17

Tumor size (cm)

≤5 86 19 .720

>5 92 23

Pathological grade

Poorly differentiated 28 6 .124

Moderately differentiated 127 35

Well differentiated 23 1

ALT (U/mL)

≤40 132 27 .199

> 40 46 15

AST (U/mL)

≤40 157 33 .102

>40 21 9

AFP (ng/mL)

≤20 80 18 .807

>20 98 24

Class

ER 73 21 .289

NER 105 21

ALT, alanine aminotransferase; AST, aspartate aminotransferase; AFP, serum alpha-fetoprotein; ER, Early recurrence; NER, Non-early-recurrence.



Supplementary Table S4.  The statistical information of the data

Characteristic NER (n=105) ER (n = 73) P

Age (years)

<60 81 58 .714

≥60 24 15

Sex

Male 93 64 .855

Female 12 9

HBsAg status

Positive 93 67 .485

Negative 12 6

Child–Pugh classification

A 100 62 .018

B 5 11

Hepatocirrhosis status

 Present 62 49 .274

 Absent 43 24

Tumor size (cm)

≤5 64 22 <.001

>5 41 51

Pathological grade

Poorly differentiated 16 3 .043

Moderately differentiated 69 58

Well differentiated 20 12

ALT (U/L)

≤40 80 52 .457

>40 25 21

AST (U/L)

 ≤40 95 62 .259

>40 10 11

AFP (ng/L)

≤20 56 24 .007

>20 49 49

ALT, alanine aminotransferase; AST, aspartate aminotransferase; AFP, serum alpha-fetoprotein.


