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Abstract

In systems biology uncertainty about biological processes translates into alternative mathematical model candidates. Here,
the goal is to generate, fit and discriminate several candidate models that represent different hypotheses for feedback
mechanisms responsible for downregulating the response of the Sho1 branch of the yeast high osmolarity glycerol (HOG)
signaling pathway after initial stimulation. Implementing and testing these candidate models by hand is a tedious and
error-prone task. Therefore, we automatically generated a set of candidate models of the Sho1 branch with the tool
modelMaGe. These candidate models are automatically documented, can readily be simulated and fitted automatically to
data. A ranking of the models with respect to parsimonious data representation is provided, enabling discrimination
between candidate models and the biological hypotheses underlying them. We conclude that a previously published
model fitted spurious effects in the data. Moreover, the discrimination analysis suggests that the reported data does not
support the conclusion that a desensitization mechanism leads to the rapid attenuation of Hog1 signaling in the Sho1
branch of the HOG pathway. The data rather supports a model where an integrator feedback shuts down the pathway. This
conclusion is also supported by dedicated experiments that can exclusively be predicted by those models including an
integrator feedback. modelMaGe is an open source project and is distributed under the Gnu General Public License (GPL)
and is available from http://modelmage.org.
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Introduction

Dynamic models of complex biochemical networks have

become an indispensable tool in biochemical and genetic research

[1,2,3]. Despite enormous efforts in experimental research in

cellular and molecular biology, there is still a substantial

uncertainty in both qualitative and quantitative aspects of

biochemical networks. These uncertainties need to be resolved

by confronting alternative mathematical models with experimental

data and by a combination of model selection and parameter

fitting [4,5].

Possible combinations of uncertain structures and kinetics

directly translate into alternative mathematical models. Generat-

ing and managing such candidate models poses a considerable

challenge to the modeler. This is mainly because of the

combinatorial complexity of model alternatives that often renders

it a tedious and error-prone task to implement and handle each

model individually. Currently, there is no tool that automatically

generates, implements, manages and discriminates a specific user-

defined set of candidate models that differ in both structure and

kinetics.

Another debated issue is model documentation [6,7]. It is not

only the successful models that are of interest to the research

community, but also those that failed. Usually, in the course of a

modeling project many unsuccessful model versions are tested but

only the successful one is finally published. The unsuccessful

versions, even though of interest, are never documented, because

such documentation is a laborious task and unrewarding task not

rewarded.

In order to handle uncertainty in kinetics and model structure,

we developed the tool modelMaGe that automatically generates

candidate models based on a single master model and specified

modifications [8]. The generated models are automatically

documented such that it is always apparent how they were

derived from the master model, thereby keeping track of model

alternatives. Finally, all generated models are automatically

simulated, fitted to data (if available), and compared. At the end

the user is provided with a ranking of the model fits and statistical

measures that enable him to discriminate between model

alternatives.

The aim of this study was to elucidate which mechanism(s)

could be responsible for shutting down the response of the Sho1

branch of the high osmolarity glycerol (HOG) signaling pathway

in yeast, a question that was also addressed in a recent paper [9].

In this paper, the authors compared five different models, each

employing a different negative feedback mechanism. In all
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models the activated Hog1 kinase exerts a negative feedback onto

its own activation by deactivating upstream components. The

model that fitted the data best included a Hog1-mediated

desensitization of Sho1, an upstream membrane protein that

interacts with the putative receptors of the pathway [10].

Subsequently, it was shown by experiments that Hog1 phos-

phorylates Sho1, suggesting that the phosphorylated form of

Sho1 displays diminished signaling capacity. This would result in

the negative feedback loop suggested by the model and rapid

attenuation of Hog1 signaling.

There are, however, experimental observations and theoretical

considerations that argue against such a scenario. It is well known

that the HOG pathway is a perfect adaptor: following adaptation

to high osmolarity the signaling pathway is shut off [2,11,12,13]

and phosphorylated Hog1 levels return to the pre-stress situation.

From theory it follows that perfect adaptation is impossible in a

signaling pathway with a constant signal and a negative feedback

of a downstream component to an upstream component. The

result will always be either a non-zero steady state or oscillations,

either damped or sustained [14,15,16]. In a recent study on

simplified signaling networks it was shown that there are in

principle two mechanisms that can bring about perfect adaptation

[17], a negative integrator feedback [11,13,18] or an incoherent

feed-forward loop [19]. In the HOG pathway adaptation is

supposedly due to an integrator feedback control, consisting of the

accumulation of intracellular glycerol, which balances the osmotic

pressure gradient imposed by an osmotic shock [2,11,20].

However, most studies studying the adaptation mechanisms in

baker’s yeast concentrated on the wild-type yeast [11,13] or on the

Sln1-1 branch [2].

The aim of this study is to systematically explore several

hypotheses for the feedback mechanisms in the Sho1 branch of the

HOG pathway and test which of those are best supported by the

data published by Hao et al. (2007) with by a model discrimination

analysis. This endeavor is largely facilitated by the use of the tool

modelMaGe. Our analysis suggests that the reported data does not

support the conclusion that a negative feedback of activated Hog1

on the upstream Sho1 leads to rapid attenuation of Hog1

signaling. The data rather supports a model where an integrator

feedback shuts down the pathway. This conclusion is also

supported by dedicated triple osmo-shock experiments that can

exclusively be predicted by those models including an integrator

feedback.

Results

The candidate models
We developed a master model that includes the best fitting

model of Hao et al. (2007) as well as a set of other candidate

models. In line with the purpose of this study, we keep the models

as simple as possible and abstract from concepts like volume

change, turgor, transcription, etc. that are known to be involved in

HOG signaling and osmo-adaptation [2]. The wiring diagram of

the master model is depicted in Figure 1 in Systems Biology

Graphical Notation (SBGN) [21].

In short, osmo-adaptation in yeast by the Sho1 branch of the

HOG pathway functions through activation of several membrane

proteins involving Sho1 [10] that trigger a mitogen activated

protein (MAP) kinase cascade, including Ste11, Pbs2 and Hog1.

Activated Hog1 either directly by increasing metabolic fluxes or

indirectly via a transcriptional response stimulates glycerol

production to balance the water potential differences between

inside and outside of the cell thereby recovering the pre-shock

volume [12].

As indicated in the introduction, the main new feature we

wanted to test in order to explain the data is a negative feedback

that involved an integral response instead of a transient response

(P-Hog1-mediated conversion of active Sho1 (Sho1a) to desensi-

tized Sho1 (Shoi) (Figure 1, reaction v3 in Figure S1 in Supporting

Information S1)). We achieved this by assuming that phosphor-

ylated, i.e. activated, Hog1 (P-Hog1) stimulates the production of

intracellular glycerol (Figure 1, reaction v11 in Figure S1 in

Supporting Information S1). The newly introduced component

Signal mimics the notion that it is the imbalance of internal and

external water potential (for simplicity represented by Glycerol and

Outerosmolarity, respectively), that activates the signaling pathway,

rather than just the external osmolarity. Therefore, Signal is

defined as the difference between OuterOsmolarity and Glycerol.

Accumulation of Glycerol can also be achieved by constitutive

production of glycerol and impaired outflow through closure of the

glycerol channel Fps1, which is also subject to regulation (here by

Signal) (Figure 1, reactions v12 and v13 in Figure S1 in Supporting

Information S1) [12,22].

We systematically tested various combinations of these different

feedback mechanisms, which are depicted in a model tree in

Figure 2. For simplicity, we name the generated models according

to their number of species.

The candidate models in the leftmost branch are the original

model published by Hao et al. (2007) (C10) and simplifications

thereof. Simplifications are achieved by leaving out components

and/or using simpler reaction kinetics. The two leftmost branches

include the feedback where P-Hog1 mediates conversion of active

Sho1 (Sho1a) into inactive Sho1 (Sho1i) (Sho1 desensitization,

Figure 1). The three rightmost branches include the integral

feedback, where pathway activation is regulated by Signal as

described above. The three rightmost branches vary in their

number of intermediate signaling components with the simplest

model C5 only having five components (Figure 1). The respective

simplifications of the models in the three rightmost branches

Figure 1. The wiring scheme of the master model, including all
components and reactions of the potential candidate models
in SBGN. Light gray indicate components of the original model Ca10
by Hao et al. (2007) (Table 1). Dark gray components indicate
components of the C5 model (Table 1). Hatched components are part
of both models.
doi:10.1371/journal.pone.0014791.g001
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concern assumption about the glycerol accumulation. They either

have a regulated glycerol efflux, including P-Hog1 activated and

constitutive glycerol production, a constitutive, i.e. non-regulated,

glycerol efflux, including only P-Hog1 activated glycerol produc-

tion or no glycerol efflux, also including only P-Hog1 activated

glycerol production. The latter corresponds to the hypothesis that

the glycerol channel quickly closes and does not open again in the

simulated time frame. Detailed wiring schemes of the master

model and all candidate models are shown Figures S2-S13 in

Supporting Information S1.

Candidate Model Generation and Discrimination
The candidates were automatically generated by modelMaGe, to

which we only provided the master model (Figure 1), and the

directives specifying which components should be removed for

each candidate model and which kinetics should be used. The

master model is formulated in Copasi-format, because the

parameter estimation task also has to be specified, when the

candidate models are supposed to be fitted to data (see Methods

section). Model generation, fitting and ranking is then automat-

ically performed by modelMaGe using Copasi as the simulation

engine by a single command (see Supporting Information S1). The

master model, the directives for modelMaGe, the data and other

details are supplied in Supporting Information S1. The ranking of

the candidate models according Akaike Information Criterion

corrected for small sample sizes (AICc) is displayed in Table 1.

In terms of accuracy of the fit (SSR) the model by Hao et al.

(2007) both in its original form as well as in the simplified version

with Michaelis-Menten kinetics (C10 and C6a) performed best. In

fact, the fits are even better than with the parameter set from the

original publication (last line in Table 1). However, C10 is ranked

lowest according to the AICc, because of its high number of

parameters. Thus, in terms of parsimonious representation of the

data it performed worst. Time course simulations of the original

model C10 with the original parameter set from Hao et al. (2007)

showed damped oscillations in the P-Hog1 concentrations

(Figure 3). The C10 model with the new parameter sets converges

to sustained oscillations around a steady state, which both with the

original parameter as well as with the newly fitted parameters

increased with increasing osmotic shock (Figure 3), as expected

from theory.

Recent publications on the Hog1 dynamics upon osmotic shock

in yeast with a much higher time resolution [11,13,23] imply that

oscillations as well as increasing steady state concentrations are

spurious effects and features that are not present in the data.

Fitting spurious effects in the data is an indication of an over-fitted

model. The most prominent dynamic feature of the P-Hog1 time

series, i.e. a rapid increase and slower decline to the initial state,

can faithfully be captured by the most simple three-parameter

model C5c (Figure 4). In terms of parsimonious representation of

the data (AICc) this model is ranked highest.

To challenge a critical qualitative property, we tested which of

the model candidates did or did not show perfect adaptation

behavior by comparing initial and steady-state simulated Hog1

activation after adaptation. Models were considered not to show

perfect adaptation when their simulated steady-state value of P-

Hog1 one hour after stimulation was above 5% the total protein

concentration. We employed the 5% threshold, because we

consider this value close to the measurement error, i.e. a measured

value of 5% of the maximum is practically zero. Therefore, we

treated simulated values below 5% of the possible maximum as

zero and therefore perfectly adapted. Strikingly, only those models

that did not include an integrator feedback (C10, C6a, C6b) were

not able to show perfect adaptation according to this criterion.

Model Predictions for Triple Shock
Over-fitted models, even though they tend to identify spurious

effects are often better in predictions than under-fitted models

[24]. We tested whether the simple C5c model was under-fitted by

predicting and comparing simulations to additionally measured

data of P-Hog1 time courses after repeated osmotic shock with

0.4 M KCl for both, C5c and the C10 model (Figure 5). The

amount of KCl was added to the culture three times with 30

minutes intervals.

Upon triple shock, the C5c model replicated the single shock P-

Hog1 profile a third time, as it is also seen in the data. The C10

model with the original parameter set showed no Hog1 activation

Figure 2. Model tree. Schematic representation of the generated
candidate models and their features. Models are named according to
their number of species. The numbers in the subscript indicate the
number of fitted parameters.
doi:10.1371/journal.pone.0014791.g002

Table 1. Model ranking.

Rank Model k SSR AICc feedback Hog1-PSS

1. C5c 3 0.251 -38.045 I ,0.05

2. C5b 4 0.251 -34.104 I ,0.05

3. C7c 5 0.259 -31.316 I ,0.05

4. C6a 12 0.061 -29.246 D .0.05

5. C7b 6 0.258 -27.373 I ,0.05

6. C7a 9 0.153 -26.465 I ,0.05

7. C5a 7 0.241 -25.091 I ,0.05

8. C8c 7 0.259 -23.335 D+I ,0.05

9. C8b 8 0.258 -19.393 D+I ,0.05

10. C8a 11 0.153 -14.537 D+I ,0.05

11. C6b 6 0.740 -1.069 D .0.05

12. C10 20 0.049 164.842 D .0.05

Hao 20 0.181 205.92 D .0.05

k: number of parameters. SSR: sum of squared residuals as calculated by Copasi,
AICc: Akaike Information Criterion corrected for small sample size. n is 25 for all
models. In the last line the SSR and the corresponding AICc of the original
model (C10) with the parameter set from Hao et al. (2007) is displayed.
feedback: the type of feedback employed by the model (D: Sho1
desensitization, I: integrator feedback).
doi:10.1371/journal.pone.0014791.t001
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upon a third consecutive shock. This can be explained by the fact

that all activated receptor protein Sho1 (Sho1a) was already

desensitized after the second shock (Sho1i, light gray dashed line in

Figure 5) and not yet recycled again, in order to be able to react to

a third shock (dark gray dashed line in Figure 5). The C10 model

with the new parameter set was able to show a third P-Hog1

response. However, the third response was weakened and again

resulted in sustained oscillations around an even higher steady

state concentration. Interestingly, with the new parameter set the

model C10 was only able to react to a third shock at the expense of

the desensitization mechanism of activated Sho1 (Sho1a), i.e. Sho1i

showed no response at all (light gray curve in Figure 5). In fact, the

velocity of the reaction that facilitated the conversion of Sho1a to

Sho1i was at the lower boundary allowed in the parameter

estimation (1026, Supporting Information S1) and therefore

negligible. The time courses of Sho1a showed an oscillatory

behavior (dark gray curve in Figure 5) corresponding to the

oscillations in P-Hog1.

Discussion

The aim of this study was to analyze feedback mechanisms in

the Sho1 branch of the HOG pathway that are best supported by

a data set of the dynamics of P-Hog1 upon single and double shock.

The use of modelMaGe allowed us to systematically explore an

ensemble of model candidates, also documenting unsuccessful

candidates. The results are completely transparent, comprehensi-

ble and easily communicated to the community, as the master

model, the data, as well as the directives how to generate candidate

models are described in a compact and comprehensible manner.

Moreover, the fitting and ranking procedure can be reproduced

online at http://modelmage.org using the master model and the

reduction directives provided in Supporting Information S1.

The generated models comprised the best model of Hao et al.

(2007) as well as other alternatives including several types of

transient and/or integrator feedbacks. The set of candidate models

was automatically generated and fitted to data given in Hao et al.

(2007). In addition, modelMaGe automatically generated a ranking

of the fitted models according to the Akaike Information Criterion

corrected for small sample size (AICc).

We show that according to the AICc the three-parameter C5

model approximates the data better in terms of parsimony than

the 20-parameter C10 model. The original model seems to fit

spurious effects in the data, indicating that it was over-fitted.

Instead, our parsimonious three-parameter model could predict

the triple shock Hog1 activation profile better than the C10 model

with the original parameter set. We found also a new parameter

set for the original C10 model that fitted the data best, but was

ranked worst according to the AICc, because of its high number of

parameters. The C10 model with the new parameter set was able

to predict the triple shock Hog1 activation profile, but only at the

expense of the feedback mechanism that was actually proposed.

Therefore, we conclude that even though Hao et al. (2007) show

that Hog1 phosphorylates Sho1 and thereby dampens its own

response, the single- and double-shock data they provide do not

support the hypothesis that it is this desensitisation mechanism

Figure 3. Time course simulations of P-Hog1 for single (t = 0) and double (t = 0,t = 30 min) osmotic shocks of different
concentrations for the C10 model, both with original parameters from Hao et al. (2008) (dashed lines, Orig.) and re-fitted
parameters (lines, New).
doi:10.1371/journal.pone.0014791.g003

Figure 4. Time course simulations of P-Hog1 for single (t = 0) and double (t = 0,t = 30 min) osmotic shocks of different
concentrations for the C5c model.
doi:10.1371/journal.pone.0014791.g004
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which leads to rapid attenuation of Hog1 signaling in the Sho1

branch. Our model discrimination analysis rather supports the

hypothesis that there is a negative integrator feedback acting

through glycerol accumulation. This could be tested by measuring

internal glycerol concentration for the Ssk2/22 mutant as it has

been done for the wild type [2], however, this is out of the scope of

our study. Glycerol accumulation mediating adaptation and Hog1

de-activation probably acts via removal of the stimulus, which in

turn might be volume or membrane related, e.g. turgor pressure

[25]. It has been shown that for the wild type and the Sln1 branch

of the HOG pathway that such an integrator feedback are

probably responsible for the adaptation response. Here, we

provide computational as well as experimental evidence that this

is also the case for the Sho1 branch [2,11,12,13]. The rapid

attenuation of the signal indicates that there is not necessarily a

transcriptional-translational response involved. It has been sug-

gested that this fast integrator feedback by fast accumulation of

glycerol can be achieved by a fast activation of glycerol production

that does not involve a transcriptional-translational response and/

or by rapid closure of the glycerol channel Fps1 [2,11]. Indeed, the

simple C5c model that does not include glycerol efflux can be

interpreted with both an activation of glycerol production as well

as fast closure of the glycerol channel. However, we do not refute

that the proposed negative feedback of Hog1 onto Sho1 modulates

the Hog1 response and may serve other functions than Hog1

deactivation, e.g. stability of the response, noise filtering, inhibiting

crosstalk to other pathways or dose-response alignment, as

suggested for the pheromone pathway [26].

We also conclude that modelMaGe is a useful tool that facilitates

systematic testing a set of candidate models, making the modeling

process and its results transparent to the community in an easy and

comprehensible manner.

Methods

Model generation and discrimination
The main idea of modelMaGe is simple: model alternatives are

generated from a master model that includes all alternatives of

interest. The master model is the only place that is meant to be

manipulated by the modeler, which avoids errors that are

introduced by handling several models at the same time. The

general workflow is depicted in Figure 6.

Generation of candidate models in modelMaGe is a two step

process. The first step is to create a master model in Copasi [27] or

in any other SBML [28,29] compliant editor like CellDesigner [30]

or SemanticSBML [31]. The master model is a combination of all

candidate models that are to be generated and simulated. Thus,

the master model must include all possible species and reactions

that shall be included in any of the candidate models. In the

second step, the set of candidate models is generated by removing

reactions, species or modifiers and combinations thereof from the

master model and/or by assigning alternative kinetics to certain

reactions. The removal of components and exchange of kinetics is

done by giving simple logical directives to the program. Details of

the usage, technology and algorithms are described in Flöttmann

et al. (2008) and at www.modelMaGe.org.

The generated models come as a set of both SBML and Copasi

files that can readily be simulated by appropriate tools, e.g. Copasi

or CellDesigner (Figure 6). When data for certain components is

available, modelMaGe can automatically fit the models to the data

by estimating parameters. For simulation and parameter estima-

tion ModelMaGe utilizes the COPASI simulation engine CopasiSE.

The parameter estimation task is most conveniently defined in

Copasi’s graphical user interface. The user has to set up the

parameter estimation task only once for the master model.

modelMaGe automatically defines the parameter estimation task

for all generated candidate models. Using the results of the

parameter estimation, modelMaGe computes the Akaike Informa-

tion Criterion corrected for small sample sizes (AICc) [24] for each

candidate model:

AICc~2kzn ln
2pSSR

n

� �
z1

� �
z

2k(kz1)

n{k{1

where SSR is sum of squared residuals, k the number of parameters

and n the number of data points. The AICc is an information-

theory based measure of parsimonious data representation that

incorporates the goodness of the fit (SSR) as well as the complexity

of the model (k) and is used to rank the candidate models, thereby

giving an objective measure for model selection and discrimina-

tion. There also exists a web-based version of modelMaGe (http://

modelmage.org). For a detailed discussion on the AIC and its

usage in model discrimination please refer to [24].

Comparison between model simulation and data
The measured data is scaled relative to maximal measured

value + standard deviation and therefore has arbitrary units.

Accordingly, for the simulated values of phosphorylated Hog1 an

assumption has to be made what percentage of the total Hog1 is

Figure 5. Triple shock (t = 0, t = 30 min, t = 60 min) predictions and data for the C10 model (left panel, New: with newly estimated
parameters, Orig.: with the original parameters from [9]) and the C5c model (right panel). The maximum of the 0.4 M KCl triple shock time
series is scaled to the maximum of the 1 M KCl single shock time series. The error bars represent the standard deviation of three independent
measurements. For pictures of the original Western Blots please refer to Figure S14 in Supporting Information S1.
doi:10.1371/journal.pone.0014791.g005
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phosphorylated upon maximal phosphorylation. For simplicity, we

assumed that maximally 100% of the total Hog1 can be

phosphorylated. As can be seen in Figure 3 and 4 this assumption

fits nicely to that data. In fact, the measured maximum scaled

value of P-Hog1 was 0.92 (Figure 3 and 4) and it is known that a)

only the phosphorylated form enters the nucleus and b) upon

strong stimulation almost all Hog1 enters the nucleus [32].

Therefore, it is a reasonable model result that upon stimulation

with 1 M KCl around 90% of the total Hog1 becomes

phosphorylated.

Western blotting
Saccharomyces cerevisiae cells BY4741 ssk1D (BY4741; Mat a;

his3D1; leu2D0; met15D0; ura3D0; ssk1::kanMX4, from the

Saccharomyces Genome Deletion Project) were grown in synthetic

complete medium (1x DifcoTM YNB base, 1x FormediumTM

Complete Supplement Mixture, 0.5% ammonium sulfate, 2%

glucose) on a rotary shaker at 225 rpm at 30uC until reaching an

optical density of 1.0 measured at 600 nm. Cells were osmotically

shocked as noted with KCl from a 4M stock solution. Samples of

1 ml were taken and cells harvested by centrifugation at

14000 rpm for 30 s and the pellet frozen in liquid nitrogen.

Times given in the data are the times of freezing. Total protein

extracts were made from the frozen cell pellets by boiling for 6 min

in 60 ml extraction buffer (Tris-HCl 75 mM pH 6.8, Glycerol

15%, DTT 150 mM, SDS 3%, NaF 8 mM, Na3VO4 75 mM, b-

mercaptoethanol 0.11%). Protein samples were separated using

SDS-PAGE (Tris-Cl) and transferred to nitrocellulose. Phosphor-

ylated and total amounts of Hog1 protein were detected using

antibodies #9211(Cell-Signaling Technology) and #yC-20(Santa

Cruz Biotechnology) respectively. The membranes were processed

for infrared fluorescent detection using secondary antibodies

#926-32223(LI-COR biosciences) and #926-32214(LI-COR

biosciences) respectively, and scanned for both fluorescent channels

using an ODYSSEY IR-scanner(LI-COR biosciences). The signal

from phosphorylated Hog1 was divided with the total Hog1 protein

signal. The measurements were repeated three times with indepen-

dent cell cultures (Figure S14 in Supporting Information S1).

Supporting Information

Supporting Information S1 The supporting information,

including supplementary figures.

Found at: doi:10.1371/journal.pone.0014791.s001 (0.74 MB

DOC)
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